Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.736
Filter
1.
Pestic Biochem Physiol ; 202: 105937, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879299

ABSTRACT

DNA methylation is an epigenetic process that involves the chemical modification of DNA, leading to the regulation of its transcriptional activity. It is primarily known for the addition of methyl groups to cytosine in DNA. The whitefly Bemisia tabaci is a polyphagous pest insect and a vector that is responsible for transmitting numerous plant viruses, resulting in significant economic losses in agricultural crops globally. In our study, we characterized the expression of two key DNA methylation genes, the DNA methyltransferases Dnmt1 and Dnmt3, in B. tabaci. Additionally, we explored the impact of inhibiting DNMTs on the miRNA pathway and fitness of whitefly. To investigate the role of the DNA methylation pathway in B. tabaci, we found that the expression of Dnmt1 and Dnmt3 varied across different tissues and developmental stages of B. tabaci. We employed azacytidine (5-AZA) treatment of adults to inhibit DNMTs (DNMT1 and DNMT3). Administration of 5-AZA affected the survival and reproduction of this pest. Moreover, inhibition of DNMTs led to a decrease in the expression of the miRNA pathway core genes Dicer1 and Argonaute1, which subsequently resulted in reduced expression of Let-7 and miR-184 which are essential microRNAs in the physiology and biology of insects. The study suggests that DNA methyltransferases could be targeted for developing an inhibition strategy to control this pest and vector insect.


Subject(s)
DNA Methylation , Hemiptera , MicroRNAs , Animals , Hemiptera/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Azacitidine/pharmacology , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Female
2.
Oncotarget ; 15: 361-373, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829622

ABSTRACT

Histone deacetylase inhibitors (HDACi) can modulate the acetylation status of proteins, influencing the genomic instability exhibited by cancer cells. Poly (ADP ribose) polymerase (PARP) inhibitors (PARPi) have a direct effect on protein poly (ADP-ribosyl)ation, which is important for DNA repair. Decitabine is a nucleoside cytidine analogue, which when phosphorylated gets incorporated into the growing DNA strand, inhibiting methylation and inducing DNA damage by inactivating and trapping DNA methyltransferase on the DNA, thereby activating transcriptionally silenced DNA loci. We explored various combinations of HDACi and PARPi +/- decitabine (hypomethylating agent) in pancreatic cancer cell lines BxPC-3 and PL45 (wild-type BRCA1 and BRCA2) and Capan-1 (mutated BRCA2). The combination of HDACi (panobinostat or vorinostat) with PARPi (talazoparib or olaparib) resulted in synergistic cytotoxicity in all cell lines tested. The addition of decitabine further increased the synergistic cytotoxicity noted with HDACi and PARPi, triggering apoptosis (evidenced by increased cleavage of caspase 3 and PARP1). The 3-drug combination treatments (vorinostat, talazoparib, and decitabine; vorinostat, olaparib, and decitabine; panobinostat, talazoparib, and decitabine; panobinostat, olaparib, and decitabine) induced more DNA damage (increased phosphorylation of histone 2AX) than the individual drugs and impaired the DNA repair pathways (decreased levels of ATM, BRCA1, and ATRX proteins). The 3-drug combinations also altered the epigenetic regulation of gene expression (NuRD complex subunits, reduced levels). This is the first study to demonstrate synergistic interactions between the aforementioned agents in pancreatic cancer cell lines and provides preclinical data to design individualized therapeutic approaches with the potential to improve pancreatic cancer treatment outcomes.


Subject(s)
Azacitidine , Decitabine , Drug Synergism , Histone Deacetylase Inhibitors , Pancreatic Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Decitabine/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Azacitidine/pharmacology , Azacitidine/analogs & derivatives , Apoptosis/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology
3.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38906675

ABSTRACT

Decitabine and azacytidine are considered as epigenetic drugs that induce DNA methyltransferase (DNMT)-DNA crosslinks, resulting in DNA hypomethylation and damage. Although they are already applied against myeloid cancers, important aspects of their mode of action remain unknown, highly limiting their clinical potential. Using a combinatorial approach, we reveal that the efficacy profile of both compounds primarily depends on the level of induced DNA damage. Under low DNMT activity, only decitabine has a substantial impact. Conversely, when DNMT activity is high, toxicity and cellular response to both compounds are dramatically increased, but do not primarily depend on DNA hypomethylation or RNA-associated processes. By investigating proteome dynamics on chromatin, we show that decitabine induces a strictly DNMT-dependent multifaceted DNA damage response based on chromatin recruitment, but not expression-level changes of repair-associated proteins. The choice of DNA repair pathway hereby depends on the severity of decitabine-induced DNA lesions. Although under moderate DNMT activity, mismatch (MMR), base excision (BER), and Fanconi anaemia-dependent DNA repair combined with homologous recombination are activated in response to decitabine, high DNMT activity and therefore immense replication stress induce activation of MMR and BER followed by non-homologous end joining.


Subject(s)
Azacitidine , DNA Damage , DNA Methylation , DNA Repair , Decitabine , Decitabine/pharmacology , DNA Damage/drug effects , Humans , DNA Repair/drug effects , DNA Methylation/drug effects , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferases/metabolism , Chromatin/metabolism , Chromatin/drug effects , DNA Modification Methylases/metabolism
4.
Clin Epigenetics ; 16(1): 79, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879530

ABSTRACT

BACKGROUND: As new treatment options for patients with higher-risk myelodysplastic syndromes are emerging, identification of prognostic markers for hypomethylating agent (HMA) treatment and understanding mechanisms of their delayed and short-term responses are essential. Early fetal hemoglobin (HbF) induction has been suggested as a prognostic indicator for decitabine-treated patients. Although epigenetic mechanisms are assumed, responding patients' epigenomes have not been thoroughly examined. We aimed to clarify HbF kinetics and prognostic value for azacytidine treated patients, as well as the epigenetic landscape that might influence HbF re-expression and its clinical relevance. RESULTS: Serial HbF measurements by high-performance liquid chromatography (n = 20) showed induction of HbF only among responders (p = 0.030). Moreover, HbF increase immediately after the first azacytidine cycle demonstrated prognostic value for progression-free survival (PFS) (p = 0.032, HR = 0.19, CI 0.24-1.63). Changes in methylation patterns were revealed with methylated DNA genome-wide sequencing analysis (n = 7) for FOG-1, RCOR-1, ZBTB7A and genes of the NuRD-complex components. Targeted pyrosequencing methodology (n = 28) revealed a strong inverse correlation between the degree of γ-globin gene (HBG2) promoter methylation and baseline HbF levels (p = 0.003, rs = - 0.663). A potential epigenetic mechanism of HbF re-expression in azacytidine responders was enlightened by targeted methylation analysis, through hypomethylation of site -53 of HBG2 promoter (p = 0.039, rs = - 0.504), which corresponds to MBD2-NuRD binding site, and to hypermethylation of the CpG326 island of ZBTB7A (p = 0.05, rs = 0.482), a known HbF repressor. These changes were associated to blast cell clearance (pHBG2 = 0.011, rs = 0.480/pZBTB7A = 0.026, rs = 0.427) and showed prognostic value for PFS (pZBTB7A = 0.037, HR = 1.14, CI 0.34-3.8). CONCLUSIONS: Early HbF induction is featured as an accessible prognostic indicator for HMA treatment and the proposed potential epigenetic mechanism of HbF re-expression in azacytidine responders includes hypomethylation of the γ-globin gene promoter region and hypermethylation of the CpG326 island of ZBTB7A. The association of these methylation patterns with blast clearance and their prognostic value for PFS paves the way to discuss in-depth azacytidine epigenetic mechanism of action.


Subject(s)
Azacitidine , DNA Methylation , Epigenesis, Genetic , Fetal Hemoglobin , Myelodysplastic Syndromes , Humans , Fetal Hemoglobin/genetics , DNA Methylation/drug effects , DNA Methylation/genetics , Azacitidine/pharmacology , Female , Male , Aged , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/genetics , Middle Aged , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Prognosis , Aged, 80 and over , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Antimetabolites, Antineoplastic/therapeutic use , Antimetabolites, Antineoplastic/pharmacology
5.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928489

ABSTRACT

Etiological factors involved in myelodysplastic syndrome (MDS) include immunologic, oxidative stress and inflammatory factors, among others, and these are targets for microRNAs (miRNs). Here, we evaluated whether some miRNs may affect tumor development comparing untreated and 5-azacitidine (5-AZA) MDS-treated patients. Peripheral blood samples were collected from 20 controls and 24 MDS patients, and selected miRNs related to redox balance and inflammation (inflamma-miRs), including miR-18a, miR-21, miR-34a and miR-146a, were isolated and measured by quantitative real-time polymerase chain reaction (qRTPCR). A differential expression profile of miRNs was detected in untreated MDS patients and the 5-AZA group. Inflammation increases miRNs and, specifically, miR-18a, miR-21 and miR-34a were significantly overexpressed in untreated MDS, compared to controls. However, we did not observe any miRN profile alteration during the progression of the disease. On the other hand, 5-AZA treatment tends to restore miRN expression levels. Relating to prognostic risk factors, high-risk MDS groups (high Revised International Prognostic Scoring System (IPSS-R), high cytogenetic risk, high molecular risk (HMR) mutations) tended to be related with higher expression levels of miR-18a and miR-34a. Higher miRN expression is correlated with lower glutathione peroxidase activity, while they are related with a higher profile of pro-inflammatory cytokines (IL-2, IL-6, IL-8, TNF-α). Although our study was limited by the low number of MDS patients included, we identified miRN deregulation involved in MDS development that could regulate redox sensors and inflammatory responses. Finally, 5-AZA treatment is related with lower miRN expression levels in MDS patients.


Subject(s)
Inflammation , MicroRNAs , Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/blood , Myelodysplastic Syndromes/drug therapy , MicroRNAs/genetics , MicroRNAs/blood , Male , Female , Middle Aged , Aged , Inflammation/genetics , Azacitidine/pharmacology , Adult , Aged, 80 and over , Oxidative Stress , Case-Control Studies , Prognosis
8.
PLoS One ; 19(5): e0296565, 2024.
Article in English | MEDLINE | ID: mdl-38781195

ABSTRACT

Epigenetic silencing through methylation is one of the major mechanisms for downregulation of tumor suppressor miRNAs in various malignancies. The aim of this study was to identify novel tumor suppressor miRNAs which are silenced by DNA hypermethylation and investigate the role of at least one of these in oral squamous cell carcinoma (OSCC) pathogenesis. We treated cells from an OSCC cell line SCC131 with 5-Azacytidine, a DNA methyltransferase inhibitor, to reactivate tumor suppressor miRNA genes silenced/downregulated due to DNA methylation. At 5-day post-treatment, total RNA was isolated from the 5-Azacytidine and vehicle control-treated cells. The expression of 2,459 mature miRNAs was analysed between 5-Azacytidine and control-treated OSCC cells by the microRNA microarray analysis. Of the 50 miRNAs which were found to be upregulated following 5-Azacytidine treatment, we decided to work with miR-6741-3p in details for further analysis, as it showed a mean fold expression of >4.0. The results of qRT-PCR, Western blotting, and dual-luciferase reporter assay indicated that miR-6741-3p directly targets the oncogene SRSF3 at the translational level only. The tumor-suppressive role of miR-6741-3p was established by various in vitro assays and in vivo study in NU/J athymic nude mice. Our results revealed that miR-6741-3p plays a tumor-suppressive role in OSCC pathogenesis, in part, by directly regulating SRSF3. Based on our observations, we propose that miR-6741-3p may serve as a potential biological target in tumor diagnostics, prognostic evaluation, and treatment of OSCC and perhaps other malignancies.


Subject(s)
Carcinoma, Squamous Cell , Gene Expression Regulation, Neoplastic , MicroRNAs , Mouth Neoplasms , Serine-Arginine Splicing Factors , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Animals , Cell Line, Tumor , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Mice , Gene Expression Regulation, Neoplastic/drug effects , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , DNA Methylation , Introns/genetics , Mice, Nude , Azacitidine/pharmacology , Oncogenes/genetics
9.
Int J Mol Sci ; 25(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732265

ABSTRACT

Epigenetic alterations my play a role in the aggressive behavior of Non-Small Cell Lung Cancer (NSCLC). Treatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA, vorinostat) has been reported to interfere with the proliferative and invasive potential of NSCLC cells. In addition, the DNA methyltransferase inhibitor azacytidine (AZA, vidaza) can modulate the levels of the metastasis suppressor KiSS-1. Thus, since cisplatin is still clinically available for NSCLC therapy, the aim of this study was to evaluate drug combinations between cisplatin and SAHA as well as AZA using cisplatin-sensitive H460 and -resistant H460/Pt NSCLC cells in relation to KiSS-1 modulation. An analysis of drug interaction according to the Combination-Index values indicated a more marked synergistic effect when the exposure to SAHA or AZA preceded cisplatin treatment with respect to a simultaneous schedule. A modulation of proteins involved in apoptosis (p53, Bax) was found in both sensitive and resistant cells, and compared to the treatment with epigenetic agents alone, the combination of cisplatin and SAHA or AZA increased apoptosis induction. The epigenetic treatments, both as single agents and in combination, increased the release of KiSS-1. Finally, the exposure of cisplatin-sensitive and -resistant cells to the kisspeptin KP10 enhanced cisplatin induced cell death. The efficacy of the combination of SAHA and cisplatin was tested in vivo after subcutaneous inoculum of parental and resistant cells in immunodeficient mice. A significant tumor volume inhibition was found when mice bearing advanced tumors were treated with the combination of SAHA and cisplatin according to the best schedule identified in cellular studies. These results, together with the available literature, support that epigenetic drugs are amenable for the combination treatment of NSCLC, including patients bearing cisplatin-resistant tumors.


Subject(s)
Azacitidine , Cisplatin , Drug Resistance, Neoplasm , Epigenesis, Genetic , Kisspeptins , Lung Neoplasms , Vorinostat , Cisplatin/pharmacology , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Humans , Mice , Epigenesis, Genetic/drug effects , Kisspeptins/metabolism , Kisspeptins/pharmacology , Kisspeptins/genetics , Cell Line, Tumor , Vorinostat/pharmacology , Azacitidine/pharmacology , Drug Resistance, Neoplasm/drug effects , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Drug Synergism , Histone Deacetylase Inhibitors/pharmacology , Female
10.
Discov Med ; 36(184): 971-980, 2024 May.
Article in English | MEDLINE | ID: mdl-38798256

ABSTRACT

OBJECTIVE: Tissue inhibitors of matrix metalloproteinases (TIMPs) are prognostic markers in cancers. However, the role of TIMPs in DNA methylation during invasive pituitary adenoma (PA) remains unclear. The purpose of this study was to assess the effects of TIMP2 and TIMP3 promoter demethylation on the proliferation, migration, and invasion of invasive PA cells. METHODS: Methylation-specific polymerase chain reaction (PCR), quantitative PCR, and western blots were used to analyze the promoter methylation and expression of TIMP1-3. Cell counting kit-8 (CCK-8), wound healing, and transwell assays were carried out to determine the effects of TIMP2 and TIMP3 demethylation. RESULTS: TIMP1-3 showed downregulated expression in invasive PA tissues and cell lines (p < 0.05). The low expression of TIMP1-3 was due to promoter methylation of these genes (p < 0.05). The results showed that downregulation of TIMP2 and TIMP3 can promote cell proliferation, migration, and invasion (p < 0.05), whereas overexpression of TIMP2 and TIMP3 can inhibit cell proliferation, migration, and invasion (p < 0.05). After treatment with 5-azacytidine (5-AzaC), the cell activity decreased, the proliferation rate decreased, and the invasion ability weakened (p < 0.05). Treatment with 5-AzaC increased TIMP2 and TIMP3 expression and decreased DNA (cytosine-5-)-methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b expression (p < 0.05). CONCLUSIONS: We showed that DNA methylation causes the silencing of TIMP2 and TIMP3 in invasive PA, it can also lead to malignant cell proliferation and cause pathological changes, whereas the use of 5-AzaC can inhibit the methylation process and can inhibit cell proliferation. Our results provide a novel method for clinical diagnosis and prevention of invasive PA.


Subject(s)
Adenoma , Cell Movement , Cell Proliferation , DNA Methylation , Neoplasm Invasiveness , Pituitary Neoplasms , Tissue Inhibitor of Metalloproteinase-2 , Tissue Inhibitor of Metalloproteinase-3 , Humans , Tissue Inhibitor of Metalloproteinase-3/genetics , Tissue Inhibitor of Metalloproteinase-3/metabolism , Cell Proliferation/genetics , Cell Proliferation/drug effects , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology , Pituitary Neoplasms/metabolism , Cell Movement/genetics , Cell Movement/drug effects , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism , Adenoma/genetics , Adenoma/pathology , Adenoma/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Male , Female , Promoter Regions, Genetic/genetics , Middle Aged , Adult , Azacitidine/pharmacology , DNA Methyltransferase 3A/metabolism
11.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731802

ABSTRACT

5-azacytidine (AZA), a representative DNA-demethylating drug, has been widely used to treat myelodysplastic syndromes (MDS). However, it remains unclear whether AZA's DNA demethylation of any specific gene is correlated with clinical responses to AZA. In this study, we investigated genes that could contribute to the development of evidence-based epigenetic therapeutics with AZA. A DNA microarray identified that AZA specifically upregulated the expression of 438 genes in AZA-sensitive MDS-L cells but not in AZA-resistant counterpart MDS-L/CDA cells. Of these 438 genes, the ALOX12 gene was hypermethylated in MDS-L cells but not in MDS-L/CDA cells. In addition, we further found that (1) the ALOX12 gene was hypermethylated in patients with MDS compared to healthy controls; (2) MDS classes with excess blasts showed a relatively lower expression of ALOX12 than other classes; (3) a lower expression of ALOX12 correlated with higher bone marrow blasts and a shorter survival in patients with MDS; and (4) an increased ALOX12 expression after AZA treatment was associated with a favorable response to AZA treatment. Taking these factors together, an enhanced expression of the ALOX12 gene may predict favorable therapeutic responses to AZA therapy in MDS.


Subject(s)
Arachidonate 12-Lipoxygenase , Azacitidine , DNA Methylation , Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/drug therapy , Azacitidine/therapeutic use , Azacitidine/pharmacology , Male , Female , DNA Methylation/drug effects , Aged , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Middle Aged , Aged, 80 and over , Adult
12.
Methods Cell Biol ; 186: 131-150, 2024.
Article in English | MEDLINE | ID: mdl-38705597

ABSTRACT

Hypomethylating therapies using decitabine or azacitidine are actively investigated to treat acute myeloid leukemia, myelodysplastic syndromes, as maintenance therapy after allogenic stem cell transplant and hemoglobinopathies. The therapeutic mechanism is to de-repress genes that have been turned off through oncogenesis or development via methylation. The therapy can be non-cytotoxic at low dosage, sparing healthy stem cells and operating on committed precursors. Because the methods of determining maximum tolerated dose are not well suited to this paradigm, and because the mechanism of action, which is depletion of DNA methylase 1 (DNMT1), is complex and dependent on passing through a cell cycle, a pharmacodynamic assay that measures DNMT1 can inform clinical trials aimed at establishing and improving therapy. Herein, we provide an assay that measures DNMT1 relative levels in circulating T cells of peripheral blood.


Subject(s)
Azacitidine , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Decitabine , Azacitidine/pharmacology , Humans , Decitabine/pharmacology , DNA Methylation/drug effects , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/metabolism
13.
Sci Rep ; 14(1): 11595, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773164

ABSTRACT

Despite growing evidence implicating the calcium-activated chloride channel anoctamin1 (ANO1) in cancer metastasis, its direct impact on the metastatic potential of prostate cancer and the possible significance of epigenetic alteration in this process are not fully understood. Here, we show that ANO1 is minimally expressed in LNCap and DU145 prostate cancer cell lines with low metastatic potential but overexpressed in high metastatic PC3 prostate cancer cell line. The treatment of LNCap and DU145 cells with DNMT inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR) potentiates ANO1 expression, suggesting that DNA methylation is one of the mechanisms controlling ANO1 expression. Consistent with this notion, hypermethylation was detected at the CpG island of ANO1 promoter region in LNCap and DU145 cells, and 5-Aza-CdR treatment resulted in a drastic demethylation at promoter CpG methylation sites. Upon 5-Aza-CdR treatment, metastatic indexes, such as cell motility, invasion, and metastasis-related gene expression, were significantly altered in LNCap and DU145 cells. These 5-Aza-CdR-induced metastatic hallmarks were, however, almost completely ablated by stable knockdown of ANO1. These in vitro discoveries were further supported by our in vivo observation that ANO1 expression in xenograft mouse models enhances the metastatic dissemination of prostate cancer cells into tibial bone and the development of osteolytic lesions. Collectively, our results help elucidate the critical role of ANO1 expression in prostate cancer bone metastases, which is epigenetically modulated by promoter CpG methylation.


Subject(s)
Anoctamin-1 , Bone Neoplasms , DNA Methylation , Gene Expression Regulation, Neoplastic , Neoplasm Proteins , Promoter Regions, Genetic , Prostatic Neoplasms , Male , Anoctamin-1/metabolism , Anoctamin-1/genetics , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Animals , Cell Line, Tumor , Bone Neoplasms/secondary , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Mice , CpG Islands , Decitabine/pharmacology , Cell Movement/genetics , Epigenesis, Genetic , Azacitidine/pharmacology
14.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731939

ABSTRACT

Myelodysplastic syndrome/neoplasm (MDS) comprises a group of heterogeneous hematopoietic disorders that present with genetic mutations and/or cytogenetic changes and, in the advanced stage, exhibit wide-ranging gene hypermethylation. Patients with higher-risk MDS are typically treated with repeated cycles of hypomethylating agents, such as azacitidine. However, some patients fail to respond to this therapy, and fewer than 50% show hematologic improvement. In this context, we focused on the potential use of epigenetic data in clinical management to aid in diagnostic and therapeutic decision-making. First, we used the F-36P MDS cell line to establish an azacitidine-resistant F-36P cell line. We performed expression profiling of azacitidine-resistant and parental F-36P cells and used biological and bioinformatics approaches to analyze candidate azacitidine-resistance-related genes and pathways. Eighty candidate genes were identified and found to encode proteins previously linked to cancer, chronic myeloid leukemia, and transcriptional misregulation in cancer. Interestingly, 24 of the candidate genes had promoter methylation patterns that were inversely correlated with azacitidine resistance, suggesting that DNA methylation status may contribute to azacitidine resistance. In particular, the DNA methylation status and/or mRNA expression levels of the four genes (AMER1, HSPA2, NCX1, and TNFRSF10C) may contribute to the clinical effects of azacitidine in MDS. Our study provides information on azacitidine resistance diagnostic genes in MDS patients, which can be of great help in monitoring the effectiveness of treatment in progressing azacitidine treatment for newly diagnosed MDS patients.


Subject(s)
Azacitidine , DNA Methylation , Myelodysplastic Syndromes , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , DNA Methylation/drug effects , Humans , Azacitidine/pharmacology , Azacitidine/therapeutic use , Gene Expression Profiling/methods , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic/drug effects , Promoter Regions, Genetic
15.
Cancer Invest ; 42(4): 319-332, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38695671

ABSTRACT

Glioblastoma multiforme (GBM), is a frequent class of malignant brain tumors. Epigenetic therapy, especially with synergistic combinations is highly paid attention for aggressive solid tumors like GBM. Here, RSM optimization has been used to increase the efficient arrest of U87 and U251 cell lines due to synergistic effects. Cell lines were treated with SAHA, 5-Azacytidine, GSK-126, and PTC-209 individually and then RSM was used to find most effective combinations. Results showed that optimized combinations significantly reduce cell survival and induce cell cycle arrest and apoptosis in both cell lines. Expression of cyclin B1 and cyclin D1 were decreased while caspase3 increased expression.


Subject(s)
Apoptosis , Drug Synergism , Epigenesis, Genetic , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Cell Line, Tumor , Apoptosis/drug effects , Epigenesis, Genetic/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Azacitidine/pharmacology , Azacitidine/administration & dosage , Cell Survival/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Cycle Checkpoints/drug effects , Vorinostat/pharmacology , Vorinostat/administration & dosage , Cell Proliferation/drug effects , Cyclin D1/genetics , Cyclin D1/metabolism
16.
Free Radic Biol Med ; 220: 139-153, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38705495

ABSTRACT

Epigenetic changes are important considerations for degenerative diseases. DNA methylation regulates crucial genes by epigenetic mechanism, impacting cell function and fate. DNA presents hypermethylation in degenerated nucleus pulposus (NP) tissue, but its role in intervertebral disc degeneration (IVDD) remains elusive. This study aimed to demonstrate that methyltransferase mediated hypermethylation was responsible for IVDD by integrative bioinformatics and experimental verification. Methyltransferase DNMT3B was highly expressed in severely degenerated NP tissue (involving human and rats) and in-vitro degenerated human NP cells (NPCs). Bioinformatics elucidated that hypermethylated genes were enriched in oxidative stress and ferroptosis, and the ferroptosis suppressor gene SLC40A1 was identified with lower expression and higher methylation in severely degenerated human NP tissue. Cell culture using human NPCs showed that DNMT3B induced ferroptosis and oxidative stress in NPCs by downregulating SLC40A1, promoting a degenerative cell phenotype. An in-vivo rat IVDD model showed that DNA methyltransferase inhibitor 5-AZA alleviated puncture-induced IVDD. Taken together, DNA methyltransferase DNMT3B aggravates ferroptosis and oxidative stress in NPCs via regulating SLC40A1. Epigenetic mechanism within DNA methylation is a promising therapeutic biomarker for IVDD.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , DNA Methyltransferase 3B , Ferroptosis , Intervertebral Disc Degeneration , Nucleus Pulposus , Oxidative Stress , Adult , Animals , Female , Humans , Male , Middle Aged , Rats , Azacitidine/pharmacology , Disease Models, Animal , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Epigenesis, Genetic , Ferroptosis/genetics , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Rats, Sprague-Dawley , Up-Regulation
17.
Br J Haematol ; 204(6): 2264-2274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38659295

ABSTRACT

The interaction of acute myeloid leukaemic (AML) blasts with the bone marrow (BM) microenvironment is a major determinant governing disease progression and resistance to treatment. The constitutive expression of E-selectin in the vascular compartment of BM, a key endothelial cell factor, directly mediates chemoresistance via E-selectin ligand/receptors. Despite the success of hypomethylating agent (HMA)-containing regimens to induce remissions in older AML patients, the development of primary or secondary resistance is common. We report that following treatment with 5-azacitidine, promoter regions regulating the biosynthesis of the E-selectin ligands, sialyl Lewis X, become further hypomethylated. The resultant upregulation of these gene products, in particular α(1,3)-fucosyltransferase VII (FUT7) and α(2,3)-sialyltransferase IV (ST3GAL4), likely causes functional E-selectin binding. When combined with the E-selectin antagonist uproleselan, the adhesion to E-selectin is reversed and the survival of mice transplanted with AML cells is prolonged. Finally, we present clinical evidence showing that BM myeloid cells from higher risk MDS and AML patients have the potential to bind E-selectin, and these cells are more abundant in 5-azacitidine-non-responsive patients. The collective data provide a strong rationale to evaluate 5-azacitidine in combination with the E-selectin antagonist, uproleselan, in this patient population.


Subject(s)
Azacitidine , E-Selectin , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , E-Selectin/metabolism , Leukemia, Myeloid, Acute/drug therapy , Animals , Myelodysplastic Syndromes/drug therapy , Mice , Azacitidine/pharmacology , Azacitidine/therapeutic use , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Female , Sialyl Lewis X Antigen , Male , Fucosyltransferases , Middle Aged
19.
Leukemia ; 38(5): 1019-1031, 2024 May.
Article in English | MEDLINE | ID: mdl-38627586

ABSTRACT

The hypomethylating agent 5-azacytidine (AZA) is the first-line treatment for AML patients unfit for intensive chemotherapy. The effect of AZA results in part from T-cell cytotoxic responses against MHC-I-associated peptides (MAPs) deriving from hypermethylated genomic regions such as cancer-testis antigens (CTAs), or endogenous retroelements (EREs). However, evidence supporting higher ERE MAPs presentation after AZA treatment is lacking. Therefore, using proteogenomics, we examined the impact of AZA on the repertoire of MAPs and their source transcripts. AZA-treated AML upregulated both CTA and ERE transcripts, but only CTA MAPs were presented at greater levels. Upregulated ERE transcripts triggered innate immune responses against double-stranded RNAs but were degraded by autophagy, and not processed into MAPs. Autophagy resulted from the formation of protein aggregates caused by AZA-dependent inhibition of DNMT2. Autophagy inhibition had an additive effect with AZA on AML cell proliferation and survival, increased ERE levels, increased pro-inflammatory responses, and generated immunogenic tumor-specific ERE-derived MAPs. Finally, autophagy was associated with a lower abundance of CD8+ T-cell markers in AML patients expressing high levels of EREs. This work demonstrates that AZA-induced EREs are degraded by autophagy and shows that inhibiting autophagy can improve the immune recognition of AML blasts in treated patients.


Subject(s)
Antimetabolites, Antineoplastic , Autophagy , Azacitidine , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Azacitidine/pharmacology , Autophagy/drug effects , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , DNA Methylation/drug effects , Cell Proliferation , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology
20.
Br J Haematol ; 204(5): 1577-1578, 2024 May.
Article in English | MEDLINE | ID: mdl-38563073

ABSTRACT

Defining mechanisms of resistance to hypomethylating agents (HMAs) and biomarkers predictive of treatment response remains challenging in myelodysplastic neoplasm (MDS). Currently available prognostic tools that predict overall survival and transformation to acute myeloid leukaemia have not been powered to predict responses to HMAs. Noguera-Castells et al. comprehensively characterized the epigenomic profile in patients with MDS treated with azacitidine and described a methylation signature-based prognostic tool in predicting responses to azacitidine. Commentary on: Noguera-Castells et al. DNA methylation profiling of myelodysplastic syndromes and clinical response to azacitidine: a multicentre retrospective study. Br J Haematol 2024;204:1838-1843.


Subject(s)
Azacitidine , DNA Methylation , Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/drug therapy , Prognosis , Azacitidine/therapeutic use , Azacitidine/pharmacology , Epigenomics/methods , Epigenesis, Genetic , Antimetabolites, Antineoplastic/therapeutic use , Antimetabolites, Antineoplastic/pharmacology , Biomarkers, Tumor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...