Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.231
1.
Nat Commun ; 15(1): 3884, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719909

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


B7-1 Antigen , B7-H1 Antigen , Extracellular Vesicles , Programmed Cell Death 1 Receptor , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Programmed Cell Death 1 Receptor/metabolism , Humans , B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Mice , Cell Line, Tumor , Female , Neoplasms/immunology , Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Tolerance , Mice, Inbred C57BL , Male , Tumor Microenvironment/immunology
2.
Immunity ; 57(5): 1071-1086.e7, 2024 May 14.
Article En | MEDLINE | ID: mdl-38677291

Following tissue damage, epithelial stem cells (SCs) are mobilized to enter the wound, where they confront harsh inflammatory environments that can impede their ability to repair the injury. Here, we investigated the mechanisms that protect skin SCs within this inflammatory environment. Characterization of gene expression profiles of hair follicle SCs (HFSCs) that migrated into the wound site revealed activation of an immune-modulatory program, including expression of CD80, major histocompatibility complex class II (MHCII), and CXC motif chemokine ligand 5 (CXCL5). Deletion of CD80 in HFSCs impaired re-epithelialization, reduced accumulation of peripherally generated Treg (pTreg) cells, and increased infiltration of neutrophils in wounded skin. Importantly, similar wound healing defects were also observed in mice lacking pTreg cells. Our findings suggest that upon skin injury, HFSCs establish a temporary protective network by promoting local expansion of Treg cells, thereby enabling re-epithelialization while still kindling inflammation outside this niche until the barrier is restored.


B7-1 Antigen , Hair Follicle , Inflammation , Skin , Stem Cells , T-Lymphocytes, Regulatory , Wound Healing , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Wound Healing/immunology , Skin/immunology , Skin/injuries , Skin/pathology , Stem Cells/immunology , Stem Cells/metabolism , Inflammation/immunology , Hair Follicle/immunology , B7-1 Antigen/metabolism , Mice, Inbred C57BL , Mice, Knockout , Re-Epithelialization/immunology , Cell Movement/immunology , Cell Proliferation
3.
Am J Physiol Cell Physiol ; 326(6): C1563-C1572, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38586879

Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. The study investigated the mechanism influencing NKT cell function in apoE deficiency-induced early atherosclerosis. Our findings demonstrated that there were higher populations of NKT cells and interferon-gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared with the control groups. Moreover, we discovered that the infiltration of CD80+ macrophages and CD1d expression on CD80+ macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in CD80+ macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo coculture of macrophages with NKT cells revealed that ox-LDL-induced CD80+ macrophages presented lipid antigen α-Galcer (alpha-galactosylceramide) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+ monocytes and CD1d+CD80+ monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+CD80+ monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrated that CD80+ macrophages stimulated NKT cells to secrete IFN-γ via CD1d-presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by CD80+ macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.NEW & NOTEWORTHY This work proposed the ox-LDL-CD80+ monocyte/macrophage-CD1d-NKT cell-IFN-γ axis in the progression of atherosclerosis. The proinflammatory IFN-γ+ NKT cells are closely related to CD1d+CD80+ monocytes in hyperlipidemic patients. Inhibiting CD80+ macrophages to present lipid antigens to NKT cells through CD1d blocking may be a new therapeutic target for atherosclerosis.


Antigens, CD1d , Atherosclerosis , B7-1 Antigen , Hyperlipidemias , Lipoproteins, LDL , Macrophages , Natural Killer T-Cells , Animals , Humans , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Antigens, CD1d/metabolism , Antigens, CD1d/immunology , Antigens, CD1d/genetics , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Hyperlipidemias/immunology , Hyperlipidemias/metabolism , Lipoproteins, LDL/immunology , Lipoproteins, LDL/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice , B7-1 Antigen/metabolism , B7-1 Antigen/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice, Inbred C57BL , Female , Middle Aged
4.
Acta Pharmacol Sin ; 45(6): 1214-1223, 2024 Jun.
Article En | MEDLINE | ID: mdl-38467718

CD80 is a transmembrane glycoprotein belonging to the B7 family, which has emerged as a crucial molecule in T cell modulation via the CD28 or CTLA4 axes. CD80-involved regulation of immune balance is a finely tuned process and it is important to elucidate the underlying mechanism for regulating CD80 function. In this study we investigated the post-translational modification of CD80 and its biological relevance. By using a metabolic labeling strategy, we found that CD80 was S-palmitoylated on multiple cysteine residues (Cys261/262/266/271) in both the transmembrane and the cytoplasmic regions. We further identified zDHHC20 as a bona fide palmitoyl-transferase determining the S-palmitoylation level of CD80. We demonstrated that S-palmitoylation protected CD80 protein from ubiquitination degradation, regulating the protein stability, and ensured its accurate plasma membrane localization. The palmitoylation-deficient mutant (4CS) CD80 disrupted these functions, ultimately resulting in the loss of its costimulatory function upon T cell activation. Taken together, our results describe a new post-translational modification of CD80 by S-palmitoylation as a novel mechanism for the regulation of CD80 upon T cell activation.


Acyltransferases , B7-1 Antigen , Lipoylation , Lymphocyte Activation , Humans , B7-1 Antigen/metabolism , Acyltransferases/metabolism , HEK293 Cells , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Protein Processing, Post-Translational , Ubiquitination
5.
J Virol Methods ; 327: 114921, 2024 Jun.
Article En | MEDLINE | ID: mdl-38552881

Dendritic cells (DCs) play a pivotal role in maintaining immune tolerance. Using recombinant adenovirus (rAd) to deliver vectors to immature dendritic cells (imDCs) is an important method for studying the tolerogenic function of DCs. We found that using RPMI medium and a higher MOI during transduction increased the expression of CD80, CD86, and MHC-II on the surface of imDCs. Our data reveal a significant increase in the secretion of the pro-inflammatory cytokine IL-6 in the group showing the most pronounced phenotypic changes. In the mouse heart transplant model, imDCs with unstable phenotype and function due to adenoviral transduction resulted in an increased proportion of Th1 and Th17 cells in recipients. However, these effects can be managed, and our proposed optimized transduction strategy significantly minimizes these adverse effects. Our study holds significant implications for the development and optimization of immunotherapy utilizing tolerogenic dendritic cells.


Adenoviridae , Dendritic Cells , Genetic Vectors , Immunotherapy , Transduction, Genetic , Dendritic Cells/immunology , Animals , Adenoviridae/genetics , Mice , Immunotherapy/methods , Genetic Vectors/genetics , Heart Transplantation , Mice, Inbred C57BL , Interleukin-6/metabolism , Immune Tolerance , B7-1 Antigen/genetics , B7-1 Antigen/metabolism , Th1 Cells/immunology , Th17 Cells/immunology , B7-2 Antigen/metabolism , B7-2 Antigen/genetics
6.
Fish Shellfish Immunol ; 148: 109482, 2024 May.
Article En | MEDLINE | ID: mdl-38458503

CD28 and CD80/86 are crucial co-stimulatory molecules for the T cell activation. Previous study illustrated that CD28 and CD80/86 present on T cells and antigen-presenting cells in flounder (Paralichthys olivaceus), respectively. The co-stimulatory molecules were closely associated with cell immunity. In this paper, recombinant protein of flounder CD80/86 (rCD80/86) and phytohemagglutinin (PHA) were added to peripheral blood leukocytes (PBLs) in vitro. Lymphocytes were significantly proliferated with CFSE staining, and the proportion of CD4+ and CD28+ lymphocytes significantly increased. In the meantime, genes related to the CD28-CD80/86 signaling pathway or T cell markers were significantly upregulated (p < 0.05). For further study, the interaction between CD80/86 and CD28 was confirmed. The plasmid of CD28 (pCD28-FLAG and pVN-CD28) or CD80/86 (pVC-CD80/86) was successfully constructed. In addition, pVN-ΔCD28 without the conserved motif "TFPPPF" was constructed. The results showed that bands of pCD28-FLAG bound to rCD80/86 were detected by both anti-FLAG and anti-CD80/86. pVN-CD28 complemented to pVC-CD80/86 showing positive fluorescent signals, and pVN-ΔCD28 failed to combine with pVC-CD80/86. The motif "TFPPPF" in CD28 played a crucial role in this linkage. These results indicate that CD28 and CD80/86 molecules interact with each other, and their binding may modulate T lymphocytes immune response in flounder. This study proved the existence of CD28-CD80/86 signaling pathway in flounder.


CD28 Antigens , Flounder , Animals , CD28 Antigens/genetics , Lymphocyte Activation , B7-1 Antigen/genetics , Cell Adhesion Molecules , CD4-Positive T-Lymphocytes
7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 215-221, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38512031

Objective To compare the functional differences between bone marrow derived macrophages and peritoneal macrophages, which may provide the basis for the selection of macrophages in immunological research and immunoregulatory drug evaluation. Methods Marophage colony-stimulating factor (M-CSF) was used to induce the differentiation of bone marrow monocytes into macrophages, and thioglycolate medium was used to induce peritonitis to obtain peritoneal macrophages. After both macrophages being stimulated by zymosan, LPS, R848 and CpG respectively, mRNA levels of tumor necrosis factor α(TNF-α), interleukin 6(IL-6), macrophage inflammatory protein 1α(MIP-1α), monocyte chemoattractant protein 1(MCP-1) were measured by Real-time fluorescent quantitative PCR and the concentrations of secreted TNF-α, IL-6, MIP-1α and MCP-1 were detected by ELISA. In addition, the expression of costimulatory molecules CD80, CD86, CD40 and histocompatibility complex II (MHC II) on the cell surface was analyzed by flow cytometry. Results After inducing by different TLR ligands, mRNA expression levels of inflammatory cytokines and chemokines were increased in both macrophages. The secretion of TNF-α, IL-6, MIP-1α and MCP-1 in peritoneal macrophages and the expression of CD86 and MHC II on the surface of peritoneal macrophages were significantly higher than those of bone marrow derived macrophages. Conclusion There are significant differences in the expression of inflammatory factors, chemokines, costimulatory molecules, and histocompatibility complex between bone marrow derived macrophages and peritoneal macrophages. Peritoneal macrophages have more complete macrophage function and is more suitable for immunological research and immunomodulatory drug evaluation.


Bone Marrow , Peritoneal Cavity , Animals , Mice , Chemokine CCL3/genetics , Interleukin-6 , Tumor Necrosis Factor-alpha , Macrophages , B7-1 Antigen , CD40 Antigens , RNA, Messenger
8.
Cancer Immunol Immunother ; 73(3): 42, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38349455

BACKGROUND: Alpha-2-glycoprotein 1, zinc-binding (ZAG), a secreted protein encoded by the AZGP1 gene, is structurally similar to HLA class I. Despite its presumed immunological function, little is known about its role in tumor immunity. In this study, we thus aimed to determine the relationship between the expression of AZGP1/ZAG and the immunological profiles of breast cancer tissues at both the gene and protein level. METHODS: Using a publicly available gene expression dataset from a large-scale breast cancer cohort, we conducted gene set enrichment analysis (GSEA) to screen the biological processes associated with AZGP1. We analyzed the correlation between AZGP1 expression and immune cell composition in breast cancer tissues, estimated using CIBERSORTx. Previously, we evaluated the infiltration of 11 types of immune cells for 45 breast cancer tissues using flow cytometry (FCM). ZAG expression was evaluated by immunohistochemistry on these specimens and analyzed for its relationship with immune cell infiltration. The action of ZAG in M1/M2 polarization models using primary cultures of human peripheral blood mononuclear cells (PBMC)-derived macrophage (Mφ) was analyzed based on the expression of M1/M2 markers (CD86, CD80/CD163, MRC1) and HLA class I/II by FCM. RESULTS: AZGP1 expression was negatively correlated with multiple immunological processes and specific immune cell infiltration including Mφ M1 using GSEA and CIBERSORTx. ZAG expression was associated with decreased infiltration of monocytes/macrophages, non-classical monocytes, and myeloid-derived suppressor cells in tumor tissues assessed using FCM. In in vitro analyses, ZAG decreased the expression of CD80, CD163, MRC1, and HLA classes I/II in the M1 polarization model and the expression of CD163 and MRC1 in the M2 polarization model. CONCLUSION: ZAG is suggested to be a novel immunoregulatory factor affecting the Mφ phenotype in breast cancer tissues.


Breast Neoplasms , Female , Humans , B7-1 Antigen , Glycoproteins , Leukocytes, Mononuclear , Tumor Microenvironment , Zinc
9.
Immunity ; 57(2): 223-244, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38354702

Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.


Autoimmune Diseases , CD28 Antigens , Humans , CD28 Antigens/metabolism , Friends , T-Lymphocytes , CTLA-4 Antigen/metabolism , Immunotherapy , B7-1 Antigen/metabolism , Immunoglobulins/metabolism , Butyrophilins/metabolism , Antigens, CD/metabolism
10.
J Clin Invest ; 134(6)2024 Feb 13.
Article En | MEDLINE | ID: mdl-38349740

Radiotherapy (RT) is considered immunogenic, but clinical data demonstrating RT-induced T cell priming are scarce. Here, we show in a mouse tumor model representative of human lymphocyte-depleted cancer that RT enhanced spontaneous priming of thymus-derived (FOXP3+Helios+) Tregs by the tumor. These Tregs acquired an effector phenotype, populated the tumor, and impeded tumor control by a simultaneous, RT-induced CD8+ cytotoxic T cell (CTL) response. Combination of RT with CTLA-4 or PD-1 blockade, which enables CD28 costimulation, further increased this Treg response and failed to improve tumor control. We discovered that upon RT, the CD28 ligands CD86 and CD80 differentially affected the Treg response. CD86, but not CD80, blockade prevented the effector Treg response, enriched the tumor-draining lymph node migratory conventional DCs that were positive for PD-L1 and CD80 (PD-L1+CD80+), and promoted CTL priming. Blockade of CD86 alone or in combination with PD-1 enhanced intratumoral CTL accumulation, and the combination significantly increased RT-induced tumor regression and OS. We advise that combining RT with PD-1 and/or CTLA-4 blockade may be counterproductive in lymphocyte-depleted cancers, since these interventions drive Treg responses in this context. However, combining RT with CD86 blockade may promote the control of such tumors by enabling a CTL response.


CD28 Antigens , Neoplasms , Animals , Humans , Mice , B7-1 Antigen/genetics , B7-H1 Antigen , CTLA-4 Antigen/genetics , Disease Models, Animal , Programmed Cell Death 1 Receptor/genetics , T-Lymphocytes, Regulatory
11.
Cancer Rep (Hoboken) ; 7(2): e1996, 2024 02.
Article En | MEDLINE | ID: mdl-38351552

BACKGROUND: Dendritic cells (DCs) play a crucial role in immunity. Research on monocyte-derived DCs (Mo-DCs) cancer vaccines is in progress despite limited success in clinical trials. This study focuses on Mo-DCs generated from prostate cancer (PCA) patients, comparing them with DCs from healthy donors (HD-DCs). METHODS: Mo-DCs were isolated from PCA patient samples, and their phenotype was compared to HD-DCs. Key parameters included monocyte count, CD14 expression, and the levels of maturation markers (HLA-DR, CD80, CD86) were assessed. RESULTS: PCA samples exhibited a significantly lower monocyte count and reduced CD14 expression compared to healthy samples (p ⟨ 0.0001). Additionally, PCA-DCs expressed significantly lower levels of maturation markers, including HLA-DR, CD80, and CD86, when compared to HD-DCs (p = 0.123, p = 0.884, and p = 0.309, respectively). CONCLUSION: The limited success of DC vaccines could be attributed to impaired phenotypic characteristics. These observations suggest that suboptimal characteristics of Mo-DCs generated from cancer patient blood samples might contribute to the limited success of DC vaccines. Consequently, this study underscores the need for alternative strategies to enhance the features of Mo-DCs for more effective cancer immunotherapies.


Prostatic Neoplasms , Vaccines , Humans , Male , Monocytes/metabolism , Cell Differentiation , Dendritic Cells/metabolism , B7-1 Antigen/metabolism , HLA-DR Antigens/metabolism , Prostatic Neoplasms/therapy , Prostatic Neoplasms/metabolism , Phenotype , Vaccines/metabolism
12.
J Pharm Biomed Anal ; 242: 116034, 2024 May 15.
Article En | MEDLINE | ID: mdl-38422671

T-cells play a significant role in the development of autoimmune diseases. The CD28-B7 costimulatory pathway is crucial for activating T-cells, and blocking this pathway is essential for treating autoimmune diseases. Therapeutic antibodies and fusion proteins that target costimulatory molecules like CD80, CD86, CTLA-4, and CD28 have been developed to explore the costimulation process and as targeted treatments. To advance our understanding of costimulation in autoimmunity and the inhibition of the costimulatory pathway, it is crucial to have an accurate, precise, and direct method for detecting and quantifying the soluble form of these molecules in body fluids and various biological systems. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying the four costimulatory proteins depending on the signature peptides derived from the soluble isoform of these proteins in multiple reaction monitoring (MRM) mode. The method was validated using the US FDA guidelines. The LOQ was determined as ∼0.5 nM for the four analytes, with quantification extended to 20 nM with a correlation coefficient of R2>0.998. The developed MRM method was used to analyze on-bead digested protein mixtures to establish a competitive assay for the CD28-B7 costimulatory pathway using CTLA4-Ig (Abatacept ™) as an FDA-approved drug for rheumatoid arthritis. The IC50 was determined to be 2.99 and 159.8 nM for sCD80 and sCD86, respectively. A straightforward MRM-based competitive assay will advance the knowledge about the costimulatory role in autoimmunity and the autoimmune therapeutic drug discovery, with the need for broad application on different in vitro and in vivo models to discover new targeted inhibitors.


Autoimmune Diseases , Immunoconjugates , Humans , CD28 Antigens/metabolism , Antigens, CD/metabolism , B7-2 Antigen , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , B7-1 Antigen/metabolism , Abatacept
13.
J Virol ; 98(3): e0201023, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38376148

Herpes simplex virus-1 (HSV-1) infections are among the most frequent serious viral eye infections in the U.S. and are a major cause of viral-induced blindness. HSV-1 infection is known to induce T cell activation, proliferation, and differentiation that play crucial roles in the development of virus-induced inflammatory lesions, leading to eye disease and causing chronic corneal damage. CD80 is a co-stimulatory molecule and plays a leading role in T cell differentiation. Previous efforts to limit lesion severity by controlling inflammation at the cellular level led us to ask whether mice knocked out for CD80 would show attenuated virus replication following reactivation. By evaluating the effects of CD80 activity on primary and latent infection, we found that in the absence of CD80, virus replication in the eyes and virus reactivation in latent trigeminal ganglia were both significantly reduced. However, latency in latently infected CD80-/- mice did not differ significantly from that in wild-type (WT) control mice. Reduced virus replication in the eyes of CD80-/- mice correlated with significantly expanded CD11c gene expression as compared to WT mice. Taken together, our results indicate that suppression of CD80 could offer significant beneficial therapeutic effects in the treatment of Herpes Stromal Keratitis (HSK).IMPORTANCEOf the many problems associated with recurrent ocular infection, reducing virus reactivation should be a major goal of controlling ocular herpes simplex virus-1 (HSV-1) infection. In this study, we have shown that the absence of CD80 reduces HSV-1 reactivation, which marks the establishment of a previously undescribed mechanism underlying viral immune evasion that could be exploited to better manage HSV infection.


Eye Infections , Herpes Simplex , Herpesvirus 1, Human , Animals , Mice , B7-1 Antigen/genetics , Eye , Eye Infections/metabolism , Eye Infections/virology , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Trigeminal Ganglion , Virus Activation , Virus Latency
14.
PeerJ ; 12: e16716, 2024.
Article En | MEDLINE | ID: mdl-38188180

Objective: The objective is to explore whether the flagellin-TLR5 complex signal can enhance the antigen presentation ability of myeloid DCs through the TRIF-ERK1/2 pathway, and the correlation between this pathway and intestinal mucosal inflammation response. Methods: Mouse bone marrow-derived DC line DC2.4 was divided into four groups: control group (BC) was DC2.4 cells cultured normally; flagellin single signal stimulation group (DC2.4+CBLB502) was DC2.4 cells stimulated with flagellin derivative CBLB502 during culture; TLR5-flagellin complex signal stimulation group (ov-TLR5-DC2.4+CBLB502) was flagellin derivative CBLB502 stimulated ov-TLR5-DC2.4 cells with TLR5 gene overexpression; TRIF signal interference group (ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA) was ov-TLR5-DC2.4 cells with TLR5 gene overexpression stimulated with flagellin derivative CBLB502 and intervened with TRIF-specific inhibitor Pepinh-TRIFTFA. WB was used to detect the expression of TRIF and p-ERK1/2 proteins in each group of cells; CCK8 was used to detect cell proliferation in each group; flow cytometry was used to detect the expression of surface molecules MHCI, MHCII, CD80, 86 in each group of cells; ELISA was used to detect the levels of IL-12 and IL-4 cytokines in each group. Results: Compared with the BC group, DC2.4+CBLB502 group, and ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, the expression of TRIF protein and p-ERK1/2 protein in ov-TLR5-DC2.4+CBLB502 group was significantly upregulated (TRIF: p = 0.02,  = 0.007,  = 0.048) (ERK1: p < 0.001, =0.0003,  = 0.0004; ERK2:p = 0.0003,  = 0.0012,  = 0.0022). The cell proliferation activity in ov-TLR5-DC2.4+CBLB502 group was enhanced compared with the other groups (p = 0.0001, p < 0.0001, p = 0.0015); at the same time, the expression of surface molecules MHCI, MHCII, CD80, 86 on DCs was upregulated (p < 0.05); and the secretion of IL-12 and IL-4 cytokines was increased, with significant differences (IL-12: p < 0.0001, p < 0.0001, p = 0.0005; IL-4: p =  < 0.0001, p =  < 0.0001, p = 0.0001). However, the ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, which was treated with TRIF signal interference, showed a decrease in intracellular TRIF protein and p-ERK1/2 protein, as well as a decrease in cell proliferation ability and surface stimulation molecules, and a decrease in the secretion of IL-12 and IL-4 cytokines (p < 0.05). Conclusion: After stimulation of flagellin protein-TLR5 complex signal, TRIF protein and p-ERK1/2 protein expression in myeloid dendritic cells were significantly up-regulated, accompanied by increased proliferation activity and maturity of DCs, enhanced antigen presentation function, increased secretion of pro-inflammatory cytokines IL-12 and IL-4. This process can be inhibited by the specific inhibitor of TRIF signal, suggesting that the TLR5-TRIF-ERK1/2 pathway may play an important role in abnormal immune response and mucosal chronic inflammation infiltration mediated by flagellin protein in DCs, which can provide a basis for our subsequent animal experiments.


Flagellin , MAP Kinase Signaling System , Animals , Mice , Adaptor Proteins, Vesicular Transport/genetics , Antigen Presentation , B7-1 Antigen , Cell Proliferation , Cytokines , Flagellin/pharmacology , Glycine Dehydrogenase (Decarboxylating) , Interleukin-12 , Interleukin-4 , Intestinal Mucosa , Signal Transduction , Toll-Like Receptor 5/genetics
15.
Immunogenetics ; 76(1): 51-67, 2024 Feb.
Article En | MEDLINE | ID: mdl-38197898

The CD28-B7 interaction is required to deliver a second signal necessary for T-cell activation. Additional membrane receptors of the CD28 and B7 families are also involved in immune checkpoints that positively or negatively regulate leukocyte activation, in particular T lymphocytes. BTLA is an inhibitory receptor that belongs to a third receptor family. Fish orthologs exist only for some of these genes, and the potential interactions between the corresponding ligands remain mostly unclear. In this work, we focused on the channel catfish (Ictalurus punctatus), a long-standing model for fish immunology, to analyze these co-stimulatory and co-inhibitory receptors. We identified one copy of cd28, ctla4, cd80/86, b7h1/dc, b7h3, b7h4, b7h5, two btla, and four b7h7 genes. Catfish CD28 contains the highly conserved mammalian cytoplasmic motif for PI3K and GRB2 recruitment, however this motif is absent in cyprinids. Fish CTLA4 share a C-terminal putative GRB2-binding site but lacks the mammalian PI3K/GRB2-binding motif. While critical V-domain residues for human CD80 or CD86 binding to CD28/CTLA4 show low conservation in fish CD80/86, C-domain residues are highly conserved, underscoring their significance. Catfish B7H1/DC had a long intracytoplasmic domain with a P-loop-NTPase domain that is absent in mammalian sequences, while the lack of NLS motif in fish B7H4 suggests this protein may not regulate cell growth when expressed intracellularly. Finally, there is a notable expansion of fish B7H7s, which likely play diverse roles in leukocyte regulation. Overall, our work contributes to a better understanding of fish leukocyte co-stimulatory and co-inhibitory receptors.


CD28 Antigens , Ictaluridae , Animals , Humans , CD28 Antigens/genetics , CD28 Antigens/metabolism , CTLA-4 Antigen , Ictaluridae/genetics , Ictaluridae/metabolism , Antigens, CD , B7-1 Antigen/genetics , B7-1 Antigen/metabolism , Ligands , Cell Adhesion Molecules , Phosphatidylinositol 3-Kinases , Mammals
16.
Clin Exp Nephrol ; 28(5): 431-439, 2024 May.
Article En | MEDLINE | ID: mdl-38267800

INTRODUCTION: Disease subtyping and monitoring are essential for the management of nephrotic syndrome (NS). Although various biomarkers for NS have been reported, their clinical efficacy has not been comprehensively validated in adult Japanese patients. METHODS: The Japanese Biomarkers in Nephrotic Syndrome (J-MARINE) study is a nationwide, multicenter, and prospective cohort study in Japan, enrolling adult (≥18 years) patients with minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MN), membranoproliferative glomerulonephritis (MPGN), C3 glomerulopathy (C3G), and lupus nephritis (LN). Baseline clinical information and plasma and urine samples will be collected at the time of immunosuppressive therapy initiation or biopsy. Follow-up data and plasma and urine samples will be collected longitudinally based on the designated protocols. Candidate biomarkers will be measured: CD80, cytotoxic T-lymphocyte antigen 4, and soluble urokinase plasminogen activator receptor for MCD and FSGS; anti-phospholipase A2 receptor and thrombospondin type-1 domain-containing protein 7A antibodies for MN; fragment Ba, C3a, factor I, and properdin for MPGN/C3G; and CD11b, CD16b, and CD163 for LN. Outcomes include complete and partial remission, relapse of proteinuria, a 30% reduction in estimated glomerular filtration rate (eGFR), eGFR decline, and initiation of renal replacement therapy. The diagnostic accuracy and predictive ability for clinical outcomes will be assessed for each biomarker. RESULTS: From April 2019 to April 2023, 365 patients were enrolled: 145, 21, 138, 10, and 51 cases of MCD, FSGS, MN, MPGN/C3G, and LN, respectively. CONCLUSION: This study will provide valuable insights into biomarkers for NS and serve as a biorepository for future studies.


B7-1 Antigen , Biomarkers , Nephrotic Syndrome , Humans , Biomarkers/blood , Biomarkers/urine , Nephrotic Syndrome/urine , Nephrotic Syndrome/blood , Nephrotic Syndrome/diagnosis , Prospective Studies , Japan , Glomerulosclerosis, Focal Segmental/urine , Glomerulosclerosis, Focal Segmental/blood , Glomerulosclerosis, Focal Segmental/diagnosis , Receptors, Urokinase Plasminogen Activator/blood , Glomerulonephritis, Membranous/urine , Glomerulonephritis, Membranous/blood , Glomerulonephritis, Membranous/diagnosis , Adult , Nephrosis, Lipoid/urine , Nephrosis, Lipoid/blood , Nephrosis, Lipoid/diagnosis , Research Design , Receptors, Phospholipase A2/immunology , Thrombospondins/blood , Glomerulonephritis, Membranoproliferative/blood , Glomerulonephritis, Membranoproliferative/urine , Glomerulonephritis, Membranoproliferative/diagnosis , Male , Female , Lupus Nephritis/blood , Lupus Nephritis/urine , Lupus Nephritis/diagnosis , East Asian People
17.
Probiotics Antimicrob Proteins ; 16(2): 367-382, 2024 Apr.
Article En | MEDLINE | ID: mdl-36884184

Probiotics play a crucial role in immunomodulation by regulating dendritic cell (DC) maturation and inducing tolerogenic DCs. Akkermansia muciniphila affects inflammatory response by elevating inhibitory cytokines. We aimed to evaluate whether Akkermansia muciniphila and its outer membrane vesicles (OMVs) affect microRNA-155, microRNA-146a, microRNA-34a, and let-7i expression of inflammatory and anti-inflammatory pathways. Peripheral blood mononuclear cells (PBMCs) were isolated from the healthy volunteers. To produce DCs, monocytes were cultivated with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). DCs were allocated into six subgroups: DC + Lipopolysaccharide (LPS), DC + dexamethasone, DC + A. muciniphila (MOI 100, 50), DC + OMVs (50 µg/ml), and DC + PBS. The surface expression of human leukocyte antigen-antigen D related (HLA-DR), CD86, CD80, CD83, CD11c, and CD14 was examined using flow cytometry, and the expression of microRNAs was assessed using qRT-PCR, and the levels of IL-12 and IL-10 were measured using ELISA. A. muciniphila (MOIs 50, 100) could significantly decrease IL-12 levels relative to the LPS group. The IL-10 levels were decreased in the DC + LPS group than the DC + dexamethasone group. Treatment with A. muciniphila (MOI 100) and OMVs could elevate the concentrations of IL-10. DC treatment with LPS led to a significant increment in the expression of microRNA-155, microRNA-34a, and microRNA-146a. The expression of these microRNAs was reversed by A. muciniphilia and its OMVs treatment. Let-7i increased in treatment groups compared to the DC + LPS group. A. muciniphilia (MOI 50) had a substantial effect on the expression of HLA-DR, CD80, and CD83 on DCs. Therefore, DCs treatment with A. muciniphila led to induce tolerogenic DCs and the production of anti-inflammatory IL-10.


Interleukin-10 , MicroRNAs , Humans , Interleukin-10/genetics , Leukocytes, Mononuclear , Lipopolysaccharides/pharmacology , Cells, Cultured , Interleukin-12/metabolism , Interleukin-12/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , B7-1 Antigen/analysis , B7-1 Antigen/metabolism , B7-1 Antigen/pharmacology , Monocytes , HLA-DR Antigens/analysis , HLA-DR Antigens/metabolism , HLA-DR Antigens/pharmacology , Anti-Inflammatory Agents/pharmacology , Dexamethasone/pharmacology , Dexamethasone/metabolism , Dendritic Cells , Akkermansia
18.
Turk Patoloji Derg ; 40(1): 16-26, 2024.
Article En | MEDLINE | ID: mdl-37614091

OBJECTIVE: Diagnostic and prognostic biomarkers for malignant melanoma are crucial for treatment and for developing targeted therapies. Malignant melanoma is a highly immunogenic tumor, and its regression, treatment, and prognostic evaluation are directly related to escape from immune destruction. Therefore, we aimed to determine the expression levels of CD80, CD86, and PD -L1 in malignant melanoma tissue samples by immunohistochemistry and to investigate the possible relationship between these proteins and the clinicopathological features in this study. MATERIAL AND METHODS: Hematoxylin and eosin staining and immunohistochemical staining for CD80, CD86, and PD-L1 were evaluated for clinical data, survival, prognosis, tumor location, malignant melanoma subtypes, tumor size, and prognostic findings. RESULTS: Higher survival rates were observed in patients with lower PD-L1 staining scores in the tumor. The 5-year survival was higher in patients with CD80-positive and CD86-positive biopsies. Mortality was lower in superficial spreading melanoma and Lentigo maligna melanoma types, whereas staining positivity of CD80 and CD86 was higher. Furthermore, a relationship between clinical stage and Breslow thickness ( < 2mm/≥2mm), tumor ulceration, lymph node metastasis, and CD80 and CD86 expression was also identified. CONCLUSION: Our findings suggest that PD-L1, CD80, and CD86 expression are essential in malignant melanoma and could be used as prognostic markers.


Melanoma , Skin Neoplasms , Humans , Melanoma/pathology , B7-H1 Antigen/metabolism , B7-1 Antigen/metabolism , Prognosis
19.
Cell Biochem Funct ; 42(1): e3895, 2024 Jan.
Article En | MEDLINE | ID: mdl-38050849

Autoimmune diseases are diseases in which the regulatory mechanisms of the immune response are disturbed. As a result, the body loses self-tolerance. Since one of the main regulatory mechanisms of the immune response is the CTLA4-CD80/86 axis, this hypothesis suggests that autoimmune diseases potentially share a similar molecular basis of pathogenesis. Hence, investigating the CTLA4-CD80/86 axis may be helpful in finding an appropriate treatment strategy. Therefore, this study aims to investigate the molecular basis of the CTLA4-CD80/86 axis in the regulation of the immune response, and then its role in developing some autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. As well, the main therapeutic strategies affecting the CTLA4-CD80/86 axis have been summarized to highlight the importance of this axis in management of autoimmune diseases.


Autoimmune Diseases , Immunoconjugates , Humans , CTLA-4 Antigen , Antigens, CD , B7-2 Antigen , B7-1 Antigen/physiology , Autoimmune Diseases/therapy , Cell Adhesion Molecules
20.
Expert Rev Clin Immunol ; 20(4): 413-421, 2024 Apr.
Article En | MEDLINE | ID: mdl-38108202

OBJECTIVES: Innate and adaptive immunity play different roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, previous studies on the relationship between immune cells and COPD reported inconsistent results. METHODS: The causal connection between 731 immune cells and COPD was established using a two-sample Mendelian randomization (MR) analysis through publicly accessible genetic data. The heterogeneity and horizontal pleiotropism of the findings were confirmed using sensitivity analysis. RESULTS: In the B-cell panel, B-cell activating factor receptor (BAFF-R) on CD20- and CD20 on IgD-CD38bright (OR (95% CI): 0.93 (0.88, 0.99) and 0.97 (0.95, 0.98), respectively) were discovered to be protective. In the cDC panel, CD62L- plasmacytoid DC AC, CD80 on monocytes and CD11c on myeloid DCs (OR (95% CI): 0.94 (0.92, 0.97), 0.97 (0.94, 0.99) and (0.97 (0.95, 0.98), respectively) exerted protective effects. However, unswitched memory AC (OR (95%CI): 1.08 (1.01,1.15)) and CD 19 on IgD- CD 27- (OR (95%CI): 1.06 (1.02,1.10)) were hazardous in the B-cell panel. However, among the 731 immune cell phenotypes, no causal relationship was found for COPD on immune cells. CONCLUSION: This study found a potential causal relationship between immune cells in COPD, ruling out reverse causation. This study provides new avenues for studying the mechanisms of COPD.


Mendelian Randomization Analysis , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Adaptive Immunity , B-Lymphocytes , B7-1 Antigen , Genome-Wide Association Study
...