Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.428
1.
Sci Rep ; 14(1): 12820, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834641

Genetic counseling and testing are more accessible than ever due to reduced costs, expanding indications and public awareness. Nonetheless, many patients missed the opportunity of genetic counseling and testing due to barriers that existed at that time of their cancer diagnoses. Given the identified implications of pathogenic mutations on patients' treatment and familial outcomes, an opportunity exists to utilize a 'traceback' approach to retrospectively examine their genetic makeup and provide consequent insights to their disease and treatment. In this study, we identified living patients diagnosed with breast cancer (BC) between July 2007 and January 2022 who would have been eligible for testing, but not tested. Overall, 422 patients met the eligibility criteria, 282 were reached and invited to participate, and germline testing was performed for 238, accounting for 84.4% of those invited. The median age (range) was 39.5 (24-64) years at BC diagnosis and 49 (31-75) years at the date of testing. Genetic testing revealed that 25 (10.5%) patients had pathogenic/likely pathogenic (P/LP) variants; mostly in BRCA2 and BRCA1. We concluded that long overdue genetic referral through a traceback approach is feasible and effective to diagnose P/LP variants in patients with history of BC who had missed the opportunity of genetic testing, with potential clinical implications for patients and their relatives.


BRCA1 Protein , Breast Neoplasms , Genetic Counseling , Genetic Predisposition to Disease , Genetic Testing , Germ-Line Mutation , Humans , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis , Female , Middle Aged , Adult , Genetic Testing/methods , Aged , BRCA1 Protein/genetics , Retrospective Studies , BRCA2 Protein/genetics , Young Adult
2.
BMC Cancer ; 24(1): 673, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38825709

Hepatocellular carcinoma (HCC) genomic research has discovered actionable genetic changes that might guide treatment decisions and clinical trials. Nonetheless, due to a lack of large-scale multicenter clinical validation, these putative targets have not been converted into patient survival advantages. So, it's crucial to ascertain whether genetic analysis is clinically feasible, useful, and whether it can be advantageous for patients. We sequenced tumour tissue and blood samples (as normal controls) from 111 Chinese HCC patients at Qingdao University Hospital using the 508-gene panel and the 688-gene panel, respectively. Approximately 95% of patients had gene variations related to targeted treatment, with 50% having clinically actionable mutations that offered significant information for targeted therapy. Immune cell infiltration was enhanced in individuals with TP53 mutations but decreased in patients with CTNNB1 and KMT2D mutations. More notably, we discovered that SPEN, EPPK1, and BRCA2 mutations were related to decreased median overall survival, although MUC16 mutations were not. Furthermore, we found mutant MUC16 as an independent protective factor for the prognosis of HCC patients after curative hepatectomy. In conclusion, this study connects genetic abnormalities to clinical practice and potentially identifies individuals with poor prognoses who may benefit from targeted treatment or immunotherapy.


Carcinoma, Hepatocellular , Liver Neoplasms , Mutation , Humans , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Male , Female , Prognosis , Middle Aged , Aged , Adult , Biomarkers, Tumor/genetics , Genomics/methods , BRCA2 Protein/genetics , Molecular Targeted Therapy , Hepatectomy , Gene Expression Profiling , Tumor Suppressor Protein p53/genetics , DNA-Binding Proteins , Neoplasm Proteins , beta Catenin
3.
Nat Commun ; 15(1): 4716, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830843

BRCA2 is a tumor suppressor protein responsible for safeguarding the cellular genome from replication stress and genotoxicity, but the specific mechanism(s) by which this is achieved to prevent early oncogenesis remains unclear. Here, we provide evidence that BRCA2 acts as a critical suppressor of head-on transcription-replication conflicts (HO-TRCs). Using Okazaki-fragment sequencing (Ok-seq) and computational analysis, we identified origins (dormant origins) that are activated near the transcription termination sites (TTS) of highly expressed, long genes in response to replication stress. Dormant origins are a source for HO-TRCs, and drug treatments that inhibit dormant origin firing led to a reduction in HO-TRCs, R-loop formation, and DNA damage. Using super-resolution microscopy, we showed that HO-TRC events track with elongating RNA polymerase II, but not with transcription initiation. Importantly, RNase H2 is recruited to sites of HO-TRCs in a BRCA2-dependent manner to help alleviate toxic R-loops associated with HO-TRCs. Collectively, our results provide a mechanistic basis for how BRCA2 shields against genomic instability by preventing HO-TRCs through both direct and indirect means occurring at predetermined genomic sites based on the pre-cancer transcriptome.


BRCA2 Protein , DNA Replication , RNA Polymerase II , Ribonuclease H , Humans , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Ribonuclease H/metabolism , Ribonuclease H/genetics , RNA Polymerase II/metabolism , Transcription, Genetic , Transcription Termination, Genetic , DNA Damage , Replication Origin , R-Loop Structures , Cell Line, Tumor
4.
Recenti Prog Med ; 115(5): 218-231, 2024 May.
Article It | MEDLINE | ID: mdl-38708533

INTRODUCTION: Given the significance of healthcare decisions in women with BRCA1 and BRCA2 mutations and their impact on patients' lives, this study aims to map the existing literature on decision regret in women with BRCA1 and BRCA2 mutations. METHODS: A scoping review was conducted in the following databases: PubMed, Embase, Scopus, CINAHL, Cochrane, and Google Scholar. Inclusion criteria focused on decision regret in the female population with BRCA1 and/or BRCA2 mutations, with no restrictions on the methodologies of the included studies, but only in the English language. The selection process led to the inclusion of 13 studies. RESULTS: The analysis revealed a significant trend toward decision regret among patients facing complex medical choices. The quality of healthcare communication, decision support, and genetic counselling emerged as key factors influencing patients' perceptions and experiences, with direct implications for their quality of life and psychological well-being. The results suggest that these decisions considerably impact patients, both in terms of clinical outcomes and emotional experiences. DISCUSSION: The investigation highlights the vital importance of a personalized care approach, emphasizing the critical role of managing patients' emotional and psychological complexity. Managing decision regret requires acute attention to individual needs and effective communication to mitigate emotional impact and improve patient outcomes. CONCLUSIONS: Insights from a nursing perspective in the analysis of results indicate the need for informed, empathetic, and integrated care that considers the emotional complexity of women with BRCA1 and/or BRCA2 mutations in their lives and health choices.


BRCA1 Protein , BRCA2 Protein , Breast Neoplasms , Decision Making , Emotions , Mutation , Quality of Life , Humans , Female , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/psychology , Genetic Counseling/psychology , Genetic Counseling/methods , Genes, BRCA1 , Communication , Decision Support Techniques , Genes, BRCA2
5.
Pol J Pathol ; 75(1): 1-7, 2024.
Article En | MEDLINE | ID: mdl-38741424

Although BRCA genes are well-known breast cancer genes, the clinicopathological features of breast cancer patients carrying BRCA1/2 pathogenic variants have not been adequately defined. The goals of this study were to determine the distribution of BRCA1/2 variants in the Turkish population and its correlation with clinicopathological features. Clinical data of 151 women who underwent BRCA1/2 gene testing at Mersin University Medical Faculty Hospital between 2016 and 2019 were retrospectively analyzed. BRCA1/2 variants were detected as pathogenic (n = 11), variants of uncertain significance (n = 5), likely benign (n = 3), and benign (n = 81) in breast cancer cases. The BRCA1/2 pathogenic variant carriers had a higher histological grade, rate of triple- negative type, Ki-67 proliferation index, and rate of no special type carcinoma than the group without mutation (p = 0.03, 0.01, 0.04, and 0.02 respectively). We analyzed the distribution of variants we detected in women living in our region and found that pathogenic variants in patients with breast cancer were associated with high histological grade, triple-negative type, high Ki-67 proliferation index, and histological type. Studies in diverse populations are needed to establish a clinicopathological relationship with variants more easily.


BRCA1 Protein , BRCA2 Protein , Breast Neoplasms , Humans , Female , Middle Aged , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Adult , Retrospective Studies , Genetic Predisposition to Disease , Aged , Turkey , Mutation , Biomarkers, Tumor/genetics
6.
Genes Chromosomes Cancer ; 63(5): e23243, 2024 May.
Article En | MEDLINE | ID: mdl-38747337

Breast cancer susceptibility 1/2 (BRCA1/2) genes play a crucial role in DNA damage repair, yet mutations in these genes increase the susceptibility to tumorigenesis. Exploiting the synthetic lethality mechanism between BRCA1/2 mutations and poly(ADP-ribose) polymerase (PARP) inhibition has led to the development and clinical approval of PARP inhibitor (PARPi), representing a milestone in targeted therapy for BRCA1/2 mutant tumors. This approach has paved the way for leveraging synthetic lethality in tumor treatment strategies. Despite the initial success of PARPis, resistance to these agents diminishes their efficacy in BRCA1/2-mutant tumors. Investigations into PARPi resistance have identified replication fork stability and homologous recombination repair as key factors sensitive to PARPis. Additionally, studies suggest that replication gaps may also confer sensitivity to PARPis. Moreover, emerging evidence indicates a correlation between PARPi resistance and cisplatin resistance, suggesting a potential overlap in the mechanisms underlying resistance to both agents. Given these findings, it is imperative to explore the interplay between replication gaps and PARPi resistance, particularly in the context of platinum resistance. Understanding the impact of replication gaps on PARPi resistance may offer insights into novel therapeutic strategies to overcome resistance mechanisms and enhance the efficacy of targeted therapies in BRCA1/2-mutant tumors.


BRCA1 Protein , BRCA2 Protein , Drug Resistance, Neoplasm , Mutation , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Female , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Neoplasms/genetics , Neoplasms/drug therapy
7.
BMC Med ; 22(1): 199, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755585

BACKGROUND: The prospective phase III multi-centre L-MOCA trial (NCT03534453) has demonstrated the encouraging efficacy and manageable safety profile of olaparib maintenance therapy in the Asian (mainly Chinese) patients with platinum-sensitive relapsed ovarian cancer (PSROC). In this study, we report the preplanned exploratory biomarker analysis of the L-MOCA trial, which investigated the effects of homologous recombination deficiency (HRD) and programmed cell death ligand 1 (PD-L1) expression on olaparib efficacy. METHODS: HRD status was determined using the ACTHRD assay, an enrichment-based targeted next-generation sequencing assay. PD-L1 expression was assessed by SP263 immunohistochemistry assay. PD-L1 expression positivity was defined by the PD-L1 expression on ≥ 1% of immune cells. Kaplan-Meier method was utilised to analyse progression-free survival (PFS). RESULTS: This exploratory biomarker analysis included 225 patients and tested HRD status [N = 190; positive, N = 125 (65.8%)], PD-L1 expression [N = 196; positive, N = 56 (28.6%)], and BRCA1/2 mutation status (N = 219). The HRD-positive patients displayed greater median PFS than the HRD-negative patients [17.9 months (95% CI: 14.5-22.1) versus 9.2 months (95% CI: 7.5-13.8)]. PD-L1 was predominantly expressed on immune cells. Positive PD-L1 expression on immune cells was associated with shortened median PFS in the patients with germline BRCA1/2 mutations [14.5 months (95% CI: 7.4-18.2) versus 22.2 months (95% CI: 18.3-NA)]. Conversely, positive PD-L1 expression on immune cells was associated with prolonged median PFS in the patients with wild-type BRCA1/2 [20.9 months (95% CI: 13.9-NA) versus 8.3 months (95% CI: 6.7-13.8)]. CONCLUSIONS: HRD remained an effective biomarker for enhanced olaparib efficacy in the Asian patients with PSROC. Positive PD-L1 expression was associated with decreased olaparib efficacy in the patients with germline BRCA1/2 mutations but associated with improved olaparib efficacy in the patients with wild-type BRCA1/2. TRIAL REGISTRATION: NCT03534453. Registered at May 23, 2018.


B7-H1 Antigen , Biomarkers, Tumor , Maintenance Chemotherapy , Ovarian Neoplasms , Phthalazines , Piperazines , Humans , Female , Phthalazines/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Piperazines/therapeutic use , Biomarkers, Tumor/genetics , Middle Aged , Maintenance Chemotherapy/methods , Aged , Adult , Prospective Studies , Neoplasm Recurrence, Local/drug therapy , BRCA2 Protein/genetics , Antineoplastic Agents/therapeutic use , BRCA1 Protein/genetics , Homologous Recombination
8.
J Transl Med ; 22(1): 484, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773604

BACKGROUND: The aim of this study was to conduct an in silico analysis of a novel compound heterozygous variant in breast cancer susceptibility gene 2 (BRCA2) to clarify its structure-function relationship and elucidate the molecular mechanisms underlying triple-negative breast cancer (TNBC). METHODS: A tumor biopsy sample was obtained from a 42-year-old Chinese woman during surgery, and a maxBRCA™ test was conducted using the patient's whole blood. We obtained an experimentally determined 3D structure (1mje.pdb) of the BRCA2 protein from the Protein Data Bank (PDB) as a relatively reliable reference. Subsequently, the wild-type and mutant structures were predicted using SWISS-MODEL and AlphaFold, and the accuracy of these predictions was assessed through the SAVES online server. Furthermore, we utilized a high ambiguity-driven protein-protein docking (HADDOCK) algorithm and protein-ligand interaction profiler (PLIP) to predict the pathogenicity of the mutations and elucidate pathogenic mechanisms that potentially underlies TNBC. RESULTS: Histological examination revealed that the tumor biopsy sample exhibited classical pathological characteristics of TNBC. Furthermore, the maxBRCA™ test revealed two compound heterozygous BRCA2 gene mutations (c.7670 C > T.pA2557V and c.8356G > A.pA2786T). Through performing in silico structural analyses and constructing of 3D models of the mutants, we established that the mutant amino acids valine and threonine were located in the helical domain and oligonucleotide binding 1 (OB1), regions that interact with DSS1. CONCLUSION: Our analysis revealed that substituting valine and threonine in the helical domain region alters the structure and function of BRCA2 proteins. This mutation potentially affects the binding of proteins and DNA fragments and disrupts interactions between the helical domain region and OB1 with DSS1, potentially leading to the development of TNBC. Our findings suggest that the identified compound heterozygous mutation contributes to the clinical presentation of TNBC, providing new insights into the pathogenesis of TNBC and the influence of compound heterozygous mutations in BRCA2.


BRCA2 Protein , Computer Simulation , Mutation , Humans , Female , Adult , Mutation/genetics , BRCA2 Protein/genetics , BRCA2 Protein/chemistry , BRCA2 Protein/metabolism , Molecular Docking Simulation , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Genes, BRCA2 , Base Sequence
9.
Radiol Clin North Am ; 62(4): 627-642, 2024 Jul.
Article En | MEDLINE | ID: mdl-38777539

Hereditary breast cancers are manifested by pathogenic and likely pathogenic genetic mutations. Penetrance expresses the breast cancer risk associated with these genetic mutations. Although BRCA1/2 are the most widely known genetic mutations associated with breast cancer, numerous additional genes demonstrate high and moderate penetrance for breast cancer. This review describes current genetic testing, details the specific high and moderate penetrance genes for breast cancer and reviews the current approach to screening for breast cancer in patients with these genetic mutations.


Breast Neoplasms , Genetic Predisposition to Disease , Genetic Testing , Mutation , Humans , Breast Neoplasms/genetics , Breast Neoplasms/diagnostic imaging , Female , Genetic Testing/methods , Genes, BRCA1 , BRCA1 Protein/genetics , Genes, BRCA2 , Penetrance , BRCA2 Protein/genetics
10.
Cells ; 13(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38786089

Resistance to olaparib is the major obstacle in targeted therapy for ovarian cancer (OC) with poly(ADP-ribose) polymerase inhibitors (PARPis), prompting studies on novel combination therapies to enhance olaparib efficacy. Despite identifying various mechanisms, understanding how OC cells acquire PARPi resistance remains incomplete. This study investigated microRNA (miRNA) expression in olaparib-sensitive (PEO1, PEO4) and previously established olaparib-resistant OC cell lines (PEO1-OR) using high-throughput RT-qPCR and bioinformatic analyses. The role of miRNAs was explored regarding acquired resistance and resensitization with the ATR/CHK1 pathway inhibitors. Differentially expressed miRNAs were used to construct miRNA-mRNA regulatory networks and perform functional enrichment analyses for target genes with miRNet 2.0. TCGA-OV dataset was analyzed to explore the prognostic value of selected miRNAs and target genes in clinical samples. We identified potential processes associated with olaparib resistance, including cell proliferation, migration, cell cycle, and growth factor signaling. Resensitized PEO1-OR cells were enriched in growth factor signaling via PDGF, EGFR, FGFR1, VEGFR2, and TGFßR, regulation of the cell cycle via the G2/M checkpoint, and caspase-mediated apoptosis. Antibody microarray analysis confirmed dysregulated growth factor expression. The addition of the ATR/CHK1 pathway inhibitors to olaparib downregulated FGF4, FGF6, NT-4, PLGF, and TGFß1 exclusively in PEO1-OR cells. Survival and differential expression analyses for serous OC patients revealed prognostic miRNAs likely associated with olaparib resistance (miR-99b-5p, miR-424-3p, and miR-505-5p) and resensitization to olaparib (miR-324-5p and miR-424-3p). Essential miRNA-mRNA interactions were reconstructed based on prognostic miRNAs and target genes. In conclusion, our data highlight distinct miRNA profiles in olaparib-sensitive and olaparib-resistant cells, offering molecular insights into overcoming resistance with the ATR/CHK1 inhibitors in OC. Moreover, some miRNAs might serve as potential predictive signature molecules of resistance and therapeutic response.


Ataxia Telangiectasia Mutated Proteins , BRCA2 Protein , Checkpoint Kinase 1 , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , MicroRNAs , Ovarian Neoplasms , Phthalazines , Piperazines , RNA, Messenger , Humans , Phthalazines/pharmacology , Phthalazines/therapeutic use , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Piperazines/pharmacology , Piperazines/therapeutic use , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Gene Regulatory Networks/drug effects , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects
11.
PLoS One ; 19(5): e0299276, 2024.
Article En | MEDLINE | ID: mdl-38809921

BACKGROUND: Familial Pancreatic Cancer (FPC) presents a notable risk, with 3-10% of pancreatic adenocarcinoma cases having a family history. Studies link FPC to syndromes like HBOC, suggesting BRCA1/BRCA2 mutations play a role. BRCA gene functions in DNA repair impact FPC management, influencing sensitivity to therapies like PARP inhibitors. Identifying mutations not only aids FPC treatment but also reveals broader cancer risks. However, challenges persist in selectively applying genetic testing due to cost constraints. This Systematic Review focuses on BRCA1/BRCA2 significance in FPC, diagnostic criteria, prognostic value, and limitations. METHOD: Original articles published from 2013 to January 2023 were sourced from databases such as Scopus, PubMed, ProQuest, and ScienceDirect. Inclusion criteria comprised observational cohort or diagnostic studies related to the role of BRCA1/2 mutation in correlation to familial pancreatic cancer (FPC), while article reviews, narrative reviews, and non-relevant content were excluded. The assessment of bias used ROBINS-I, and the results were organized using PICOS criteria in a Google spreadsheet table. The systematic review adhered to the PRISMA 2020 checklist. RESULT: We analyzed 9 diagnostic studies encompassing 1325 families and 4267 patients from Italy, USA, and Poland. Despite the limitation of limited homogenous PICO studies, our findings effectively present evidence. BRCA1/2 demonstrates benefits in detecting first-degree relatives FPC involvement with 2.26-10 times higher risk. These mutation findings also play an important role since with the BRCA1/2 targeted therapy, Poly-ADP Ribose Polymerase inhibitors (PARP) may give better outcomes of FPC treatment. Analysis of BRCA1 and BRCA2 administration's impact on odds ratio (OR) based on six and five studies respectively. BRCA1 exhibited non-significant effects (OR = 1.26, P = 0.51), while BRCA2 showed significance (OR = 1.68, P = 0.04). No heterogeneity observed, indicating consistent results. Further research on BRCA1 is warranted. CONCLUSION: Detecting the BRCA1/2 mutation gene offers numerous advantages, particularly in its correlation with FPC. For diagnostic and prognostic purposes, testing is strongly recommended for first-degree relatives, who face a significantly higher risk (2.26-10 times) of being affected. Additionally, FPC patients with identified BRCA1/2 mutations exhibit a more favorable prognosis compared to the non-mutated population. This is attributed to the availability of targeted BRCA1/2 therapy, which maximizes treatment outcomes.


BRCA1 Protein , BRCA2 Protein , Germ-Line Mutation , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Genetic Predisposition to Disease , Carcinoma
12.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731844

More than 20% of metastatic prostate cancer carries genomic defects involving DNA damage repair pathways, mainly in homologous recombination repair-related genes. The recent approval of olaparib has paved the way to precision medicine for the treatment of metastatic prostate cancer with PARP inhibitors in this subset of patients, especially in the case of BRCA1 or BRCA2 pathogenic/likely pathogenic variants. In face of this new therapeutic opportunity, many issues remain unsolved. This narrative review aims to describe the relationship between homologous recombination repair deficiency and prostate cancer, the techniques used to determine homologous recombination repair status in prostate cancer, the crosstalk between homologous recombination repair and the androgen receptor pathway, the current evidence on PARP inhibitors activity in metastatic prostate cancer also in homologous recombination repair-proficient tumors, as well as emerging mechanisms of resistance to PARP inhibitors. The possibility of combination therapies including a PARP inhibitor is an attractive option, and more robust data are awaited from ongoing phase II and phase III trials outlined in this manuscript.


Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms , Recombinational DNA Repair , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , Neoplasm Metastasis , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , Phthalazines/therapeutic use , Phthalazines/pharmacology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Piperazines
13.
Nat Commun ; 15(1): 4430, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789420

Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs). In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA1. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours, we identify a function for γH2AX in orchestrating drug-induced replication fork degradation. Mechanistically, γH2AX-driven replication fork degradation is elicited by suppressing CtIP-mediated fork protection. As a result, H2AX loss restores replication fork stability and increases chemoresistance in BRCA1/2-deficient tumour cells without restoring homology-directed DNA repair, as highlighted by the lack of DNA damage-induced RAD51 foci. Furthermore, in the attempt to discover acquired genetic vulnerabilities, we find that ATM but not ATR inhibition overcomes PARP inhibitor (PARPi) resistance in H2AX-deficient tumours by interfering with CtIP-mediated fork protection. In summary, our results demonstrate a role for H2AX in replication fork biology in BRCA-deficient tumours and establish a function of H2AX separable from its classical role in DNA damage signalling and DSB repair.


BRCA1 Protein , BRCA2 Protein , DNA Replication , Drug Resistance, Neoplasm , Histones , Poly(ADP-ribose) Polymerase Inhibitors , Humans , BRCA1 Protein/metabolism , BRCA1 Protein/deficiency , BRCA1 Protein/genetics , Histones/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , DNA Replication/drug effects , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , Cell Line, Tumor , Female , Drug Resistance, Neoplasm/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , DNA Breaks, Double-Stranded , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Mice , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , DNA Repair , Carrier Proteins/metabolism , Carrier Proteins/genetics , DNA Damage , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics
14.
Clin Imaging ; 111: 110189, 2024 Jul.
Article En | MEDLINE | ID: mdl-38759599

OBJECTIVES: Women harboring germline BRCA1/BRCA2 pathogenic sequence variants (PSVs) are at an increased risk for breast cancer. There are no established guidelines for screening during pregnancy and lactation in BRCA carriers. The aim of this study was to evaluate the utility of whole-breast ultrasound (US) screening in pregnant and lactating BRCA PSV carriers. METHODS: Data were retrospectively collected from medical records of BRCA PSV carriers between 2014 and 2020, with follow-up until 2021. Associations between imaging intervals, number of examinations performed and pregnancy-associated breast cancers (PABCs) were examined. PABCs and cancers diagnosed at follow-up were evaluated and characteristics were compared between the two groups. RESULTS: Overall 212 BRCA PSV carriers were included. Mean age was 33.6 years (SD 3.93, range 25-43 years). During 274 screening periods at pregnancy and lactation, eight (2.9 %) PABCs were diagnosed. An additional eight cancers were diagnosed at follow-up. Three out of eight (37.5 %) PABCs were diagnosed by US, whereas clinical breast examination (n = 3), mammography (n = 1) and MRI (n = 1) accounted for the other PACB diagnoses. One PABC was missed by US. The interval from negative imaging to cancer diagnosis was significantly shorter for PABCs compared with cancers diagnosed at follow-up (3.96 ± 2.14 vs. 11.2 ± 4.46 months, P = 0.002). CONCLUSION: In conclusion, pregnant BRCA PSV carriers should not delay screening despite challenges like altered breast tissue and hesitancy towards mammography. If no alternatives exist, whole-breast ultrasound can be used. For lactating and postpartum women, a regular screening routine alternating between mammography and MRI is recommended.


BRCA1 Protein , Breast Neoplasms , Early Detection of Cancer , Lactation , Ultrasonography, Mammary , Humans , Female , Pregnancy , Breast Neoplasms/genetics , Breast Neoplasms/diagnostic imaging , Adult , Retrospective Studies , Early Detection of Cancer/methods , Ultrasonography, Mammary/methods , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Pregnancy Complications, Neoplastic/genetics , Pregnancy Complications, Neoplastic/diagnostic imaging , Mammography/methods , Heterozygote
15.
Fam Cancer ; 23(2): 165-175, 2024 Jun.
Article En | MEDLINE | ID: mdl-38722431

Some patients with metastatic prostate cancer carry a pathogenic germline variant (PV) in a gene, that is mainly associated with an increased risk of breast cancer in women. If they test positive for such a PV, prostate cancer patients are encouraged to disclose the genetic test result to relatives who are at risk in case the carrier status changes the relatives' medical care. Our study aimed to investigate how men who learned they carry a PV in BRCA1, BRCA2, PALB2, CHEK2 or ATM disclosed their carrier status to at-risk relatives and to assess the possible psychological burden for the carrier and their perception of the burden for relatives. In total, 23 men with metastatic prostate cancer carrying a PV completed the IRI questionnaire about family communication; 14 also participated in a semi-structured interview. Patients felt highly confident in discussing the genetic test result with relatives. The diagnosis of prostate cancer was experienced as a burden, whereas being informed about genetic testing results did in most cases not add to this burden. Two patients encountered negative experiences with family communication, as they considered the genetic test result to be more urgent than their relatives. This mixed-methods study shows that metastatic prostate cancer patients with a PV in genes mainly associated with increased risk of breast cancer feel well-equipped to communicate about this predisposition in their families. Carriers felt motivated to disclose their genetic test result to relatives. Most of them indicated that the disclosure was not experienced as a psychological burden.


Genetic Predisposition to Disease , Genetic Testing , Germ-Line Mutation , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/psychology , Prostatic Neoplasms/pathology , Middle Aged , Aged , Genetic Predisposition to Disease/psychology , BRCA2 Protein/genetics , Disclosure , Fanconi Anemia Complementation Group N Protein/genetics , BRCA1 Protein/genetics , Checkpoint Kinase 2/genetics , Breast Neoplasms/genetics , Breast Neoplasms/psychology , Breast Neoplasms/pathology , Family/psychology , Female , Ataxia Telangiectasia Mutated Proteins/genetics , Adult
16.
Int J Gynecol Cancer ; 34(1): 88-98, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38805344

OBJECTIVE: To evaluate disease characteristics and survival according to BRCA status, administration of poly-(ADP-ribose) polymerase inhibitors (PARPi), and surgery in patients with ovarian cancer and brain metastases. METHODS: This is a monocentric retrospective cohort of patients with ovarian cancer and brain metastases treated between 2000 and 2021. Data were collected by a retrospective review of medical records and analyzed according to: (1) BRCA mutation; (2) PARPi before and after brain metastases; (3) surgery for brain metastases. RESULTS: Eighty-five patients with ovarian cancer and brain metastasis and known BRCA status (31 BRCA mutated (BRCAm), 54 BRCA wild-type (BRCAwt)) were analyzed. Twenty-two patients had received PARPi before brain metastases diagnosis (11 BRCAm, 11 BRCAwt) and 12 after (8 BRCAm, 4 BRCAwt). Brain metastases occurred >1 year later in patients who had received previous PARPi. Survival was longer in the BRCAm group (median post-brain metastasis survival: BRCAm 23 months vs BRCAwt 8 months, p=0.0015). No differences were found based on BRCA status analyzing the population who did not receive PARPi after brain metastasis (median post-brain metastasis survival: BRCAm 8 months vs BRCAwt 8 months, p=0.31). In the BRCAm group, survival was worse in patients who had received previous PARPi (median post-brain metastasis survival: PARPi before, 7 months vs no-PARPi before, 24 months, p=0.003). If PARPi was administered after brain metastases, survival of the overall population improved (median post-brain metastasis survival: PARPi after, 46 months vs no-PARPi after, 8 months, p=0.00038).In cases of surgery for brain metastases, the prognosis seemed better (median post-brain metastasis survival: surgery 13 months vs no-surgery 8 months, p=0.036). Three variables were significantly associated with prolonged survival at multivariate analysis: BRCA mutation, multimodal treatment, and ≤1 previous chemotherapy line. CONCLUSIONS: BRCA mutations might impact brain metastasis occurrence and lead to better outcomes. In a multimodal treatment, surgery seems to affect survival even in cases of extracranial disease. PARPi use should be considered as it seems to prolong survival if administered after brain metastasis.


Brain Neoplasms , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Brain Neoplasms/surgery , Brain Neoplasms/mortality , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Retrospective Studies , Middle Aged , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/mortality , Ovarian Neoplasms/surgery , Ovarian Neoplasms/genetics , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/surgery , Carcinoma, Ovarian Epithelial/mortality , Carcinoma, Ovarian Epithelial/secondary , Carcinoma, Ovarian Epithelial/pathology , Aged , Adult , BRCA2 Protein/genetics , BRCA1 Protein/genetics
17.
JCO Clin Cancer Inform ; 8: e2300251, 2024 May.
Article En | MEDLINE | ID: mdl-38709234

PURPOSE: The emergence of large real-world clinical databases and tools to mine electronic medical records has allowed for an unprecedented look at large data sets with clinical and epidemiologic correlates. In clinical cancer genetics, real-world databases allow for the investigation of prevalence and effectiveness of prevention strategies and targeted treatments and for the identification of barriers to better outcomes. However, real-world data sets have inherent biases and problems (eg, selection bias, incomplete data, measurement error) that may hamper adequate analysis and affect statistical power. METHODS: Here, we leverage a real-world clinical data set from a large health network for patients with breast cancer tested for variants in BRCA1 and BRCA2 (N = 12,423). We conducted data cleaning and harmonization, cross-referenced with publicly available databases, performed variant reassessment and functional assays, and used functional data to inform a variant's clinical significance applying American College of Medical Geneticists and the Association of Molecular Pathology guidelines. RESULTS: In the cohort, White and Black patients were over-represented, whereas non-White Hispanic and Asian patients were under-represented. Incorrect or missing variant designations were the most significant contributor to data loss. While manual curation corrected many incorrect designations, a sizable fraction of patient carriers remained with incorrect or missing variant designations. Despite the large number of patients with clinical significance not reported, original reported clinical significance assessments were accurate. Reassessment of variants in which clinical significance was not reported led to a marked improvement in data quality. CONCLUSION: We identify the most common issues with BRCA1 and BRCA2 testing data entry and suggest approaches to minimize data loss and keep interpretation of clinical significance of variants up to date.


BRCA1 Protein , BRCA2 Protein , Breast Neoplasms , Germ-Line Mutation , Registries , Humans , Breast Neoplasms/genetics , Breast Neoplasms/epidemiology , Female , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Middle Aged , Genetic Predisposition to Disease , Adult , Electronic Health Records , Aged
19.
JAMA Netw Open ; 7(4): e245552, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38592722

Importance: Testing for homologous recombination deficiency is required for the optimal treatment of high-grade epithelial ovarian cancer. The search for accurate biomarkers is ongoing. Objective: To investigate whether progression-free survival (PFS) and overall survival (OS) of patients with high-grade epithelial ovarian cancer treated with maintenance olaparib or placebo differed between patients with a tumor BRCA-like genomic profile and patients without a tumor BRCA-like profile. Design, Setting, and Participants: This cohort study was a secondary analysis of the PAOLA-1 randomized clinical trial that compared olaparib plus bevacizumab with placebo plus bevacizumab as maintenance treatment in patients with advanced high-grade ovarian cancer after a good response to first-line platinum with taxane chemotherapy plus bevacizumab, irrespective of germline or tumor BRCA1/2 mutation status. All patients with available tumor DNA were included in the analysis. The current analysis tested for an interaction between BRCA-like status and olaparib treatment on survival outcomes. The original trial was conducted between July 2015 and September 2017; at the time of data extraction for analysis in March 2022, a median follow-up of 54.1 months (IQR, 28.5-62.2 months) and a total follow-up time of 21 711 months was available, with 336 PFS and 245 OS events. Exposures: Tumor homologous recombination deficiency was assessed using the BRCA-like copy number aberration profile classifier. Myriad MyChoice CDx was previously measured. The trial was randomized between the olaparib and bevacizumab and placebo plus bevacizumab groups. Main Outcomes and Measures: This secondary analysis assessed hazard ratios (HRs) of olaparib vs placebo among biomarker strata and tested for interaction between BRCA-like status and olaparib treatment on PFS and OS, using Cox proportional hazards regression. Results: A total of 469 patients (median age, 60 [range 26-80] years) were included in this study. The patient cohort consisted of women with International Federation of Gynaecology and Obstetrics stage III (76%) high-grade serous (95%) ovarian cancer who had no evaluable disease or complete remission at initial or interval debulking surgery (76%). Thirty-one percent of the tumor samples (n = 138) harbored a pathogenic BRCA mutation, and BRCA-like classification was performed for 442 patients. Patients with a BRCA-like tumor had a longer PFS after olaparib treatment than after placebo (36.4 vs 18.6 months; HR, 0.49; 95% CI, 0.37-0.65; P < .001). No association of olaparib with PFS was found in patients with a non-BRCA-like tumor (17.6 vs 16.6 months; HR, 1.02; 95% CI, 0.68-1.51; P = .93). The interaction was significant (P = .004), and HRs and P values (for interaction) were similar in the relevant subgroups, OS, and multivariable analyses. Conclusions and Relevance: In this secondary analysis of the PAOLA-1 randomized clinical trial, patients with a BRCA-like tumor, but not those with a non-BRCA-like tumor, had a significantly longer survival after olaparib plus bevacizumab treatment than placebo plus bevacizumab treatment. Thus, the BRCA1-like classifier could be used as a biomarker for olaparib plus bevacizumab as a maintenance treatment.


Carcinoma , Ovarian Neoplasms , Phthalazines , Piperazines , Pregnancy , Humans , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Bevacizumab/therapeutic use , BRCA1 Protein/genetics , Cohort Studies , BRCA2 Protein/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Genomics , Biomarkers
20.
Cell ; 187(9): 2124-2126, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38670069

Many types of tumor cells alter metabolic pathways to meet their energy and biosynthetic demands for proliferation or stress adaptation. In this issue of Cell, Kong et al. find that the glycolytic metabolite methylglyoxal causes cancer-associated mutant single-base substitution features by inducing BRCA2 proteolysis, leading to functional haploinsufficiency of BRCA2.


BRCA2 Protein , Glycolysis , Haploinsufficiency , Humans , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , Pyruvaldehyde/metabolism , Mutation
...