Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.691
Filter
1.
Curr Microbiol ; 81(10): 340, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225871

ABSTRACT

Wheat leaf blight caused by Bipolaris sorokiniana is a widespread fungal disease that poses a serious risk to wheat. Biological control without causing environmental pollution is one of the safest and most effective method to control plant diseases. The antagonistic bacterial strain HeN-7 (identified as Bacillus velezensis) was isolated from tobacco leaves cultivated in Henan province, China. The results of different concentrations of cell-free supernatant (CFS) from HeN-7 culture against B. sorokiniana mycelia showed that 20% HeN-7 CFS (v/v) reached the maximum inhibition rate of 96%. In the potted plants control assay, B. velezensis HeN-7 CFS exhibited remarkable biocontrol activity on the wheat infected with B. sorokiniana, the best pot control efficacy was 65% at 20% CFS. The research on the mechanism of action demonstrated that HeN-7 CFS induced the membrane lipid peroxidation in B. sorokiniana, leading to the disruption of cell membrane integrity and resulting in the leakage of cell contents; in addition, the intracellular mitochondrial membrane potential in mycelium dissipated and reactive oxygen species accumulated, thereby inhibiting the growth of B. sorokiniana. These results indicate that B. velezensis HeN-7 is a promising candidate as a biological control agent against Bipolaris sorokiniana infection.


Subject(s)
Bacillus , Bipolaris , Nicotiana , Plant Diseases , Plant Leaves , Bacillus/isolation & purification , Bacillus/metabolism , Bacillus/physiology , Plant Leaves/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Nicotiana/microbiology , Triticum/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , China , Reactive Oxygen Species/metabolism , Mycelium/growth & development , Antibiosis
2.
BMC Microbiol ; 24(1): 327, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242527

ABSTRACT

BACKGROUND: Plant growth-promoting rhizobacteria (PGPR), as a group of environmentally friendly bacteria growing in the rhizosphere of plants, play an important role in plant growth and development and resistance to environmental stresses. However, their limited understanding has led to the fact that their large-scale use in agriculture is still scarce, and the mechanisms by which beneficial bacteria are selected by plants and how they interact with them are still unclear. METHOD: In this study, we investigated the interaction between the auxin-producing strain Bacillus aryabhattai LAD and maize roots, and performed transcriptomic and metabolomic analyses of Bacillus aryabhattai LAD after treatment with maize root secretions(RS). RESULTS: Our results show that there is a feedback effect between the plant immune system and bacterial auxin. Bacteria activate the immune response of plant roots to produce reactive oxygen species(ROS), which in turn stimulates bacteria to synthesize IAA, and the synthesized IAA further promotes plant growth. Under the condition of co-culture with LAD, the main root length, seedling length, root surface area and root volume of maize increased by 197%, 107%, 89% and 75%, respectively. In addition, the results of transcriptome metabolome analysis showed that LAD was significantly enriched in amino acid metabolism, carbohydrate metabolism and lipid metabolism pathways after RS treatment, including 93 differentially expressed genes and 45 differentially accumulated metabolites. CONCLUSION: Our findings not only provide a relevant model for exploring the effects of plant-soil microbial interactions on plant defense functions and thereby promoting plant growth, but also lay a solid foundation for the future large-scale use of PGPR in agriculture for sustainable agricultural development.


Subject(s)
Bacillus , Indoleacetic Acids , Plant Roots , Reactive Oxygen Species , Zea mays , Zea mays/microbiology , Zea mays/growth & development , Zea mays/metabolism , Bacillus/metabolism , Bacillus/genetics , Plant Roots/microbiology , Plant Roots/growth & development , Reactive Oxygen Species/metabolism , Indoleacetic Acids/metabolism , Rhizosphere , Soil Microbiology , Transcriptome , Plant Development , Plant Growth Regulators/metabolism
3.
Arch Microbiol ; 206(10): 395, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249579

ABSTRACT

Cello-oligosaccharides (COS) become a new type of functional oligosaccharides. COS transglycosylation reactions were studied to enhance COS yield production. Seeking the ability of the free form of Fusarium solani ß-glucosidase (FBgl1) to synthesize COS under low substrate concentrations, we found out that this biocatalyst initiates this reaction with only 1 g/L of cellobiose, giving rise to the formation of cellotriose. Cellotriose and cellopentaose were detected in biphasic conditions with an immobilized FBgl1 and when increased to 50 g/L of cellobiose as a starter concentration. After the biocatalyst recycling process, the trans-glycosylation yield of COS was maintained after 5 cycles, and the COS concentration was 6.70 ± 0.35 g/L. The crude COS contained 20.15 ± 0.25 g/L glucose, 23.15 ± 0.22 g/L non-reacting substrate cellobiose, 5.25 ± 0.53 g/L, cellotriose and 1.49 ± 0.32 g/L cellopentaose. A bioprocess was developed for cellotriose enrichment, using whole Bacillus velezensis cells as a microbial purification tool. This bacteria consumed glucose, unreacted cellobiose, and cellopentaose while preserving cellotriose in the fermented medium. This study provides an excellent enzyme candidate for industrial COS production and is also the first study on the single-step COS enrichment process.


Subject(s)
Bacillus , Cellobiose , Fusarium , Oligosaccharides , beta-Glucosidase , Fusarium/enzymology , Fusarium/metabolism , Fusarium/genetics , beta-Glucosidase/metabolism , Oligosaccharides/metabolism , Cellobiose/metabolism , Bacillus/enzymology , Bacillus/metabolism , Bacillus/genetics , Prebiotics , Glycosylation , Glucose/metabolism
4.
Curr Microbiol ; 81(10): 341, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225835

ABSTRACT

Resource islands are vegetative formations in arid and semi-arid ecosystems that harbor microorganisms facing extreme conditions. However, there is a limitation in the knowledge of the agricultural biotechnological potential of microorganisms present in these islands. This study aimed to determine the capacity of Bacillus velezensis C3-3 and Cytobacillus sp. T106 isolates from resource islands to promote plant growth and control the phytopathogen Rhizoctonia solani. The bacteria were sequenced, and both grew at 50 °C, resisted 5% NaCl, withstood UV exposure, and grew in extreme pH conditions. Sixty-six genes in C3-3 and 71 in T106 were identified associated with plant growth promotion, and C3-3 was shown to promote leaf growth in lettuce plants. This promotional effect was associated with the production of indole-3-acetic acid (IAA), phosphorus solubilization, and the presence of genes related to the assimilation of rhizosphere exudates. Both strains inhibited R. solani through the production of volatile compounds and antagonism. Forty-five and 40 of these genes in C3-3 and T106, respectively, were associated with the production of proteases, lipases, siderophores, antimicrobial compounds, degradation enzymes, and secretion systems. Notably, Cytobacillus sp. has not been previously reported as a biocontrol agent. This work contributes to the evidence of the biotechnological potential of semi-arid region bacteria, offering prospects for improving agricultural production in areas with limiting conditions.


Subject(s)
Bacillus , Soil Microbiology , Bacillus/genetics , Bacillus/metabolism , Bacillus/isolation & purification , Rhizoctonia/genetics , Rhizoctonia/growth & development , Rhizosphere , Plant Diseases/microbiology , Agriculture , Lactuca/microbiology , Biotechnology/methods , Islands , Indoleacetic Acids
5.
Food Microbiol ; 124: 104613, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244365

ABSTRACT

Anthracnose caused by Colletotrichum scovillei is a significant disease of pepper, including in postharvest stage. Bacillus species represent a potential microbial resource for controlling postharvest plant diseases. Here, a strain HG-8-2 was obtained and identified as Bacillus velezensis through morphological, biochemical, physiological, and molecular analyses. The culture filtrate showed highly antifungal activity against C. scovillei both in vitro and on pepper fruit. Crude lipopeptide extracts, which had excellent stability, could effectively inhibit mycelial growth of C. scovillei with an EC50 value of 28.48 ± 1.45 µg mL-1 and inhibited conidial germination. Pretreatment with the extracts reduced the incidence and lesion size of postharvest anthracnose on pepper fruit. Analysis using propidium iodide staining, malondialdehyde content detection and scanning electron microscope observation suggested that the crude lipopeptide extracts harbored antifungal activity by damaging cell membranes and mycelial structures. The RNA-seq analysis conducted on C. scovillei samples treated with the extracts, as compared to untreated samples, revealed significant alterations in the expression of multiple genes involved in protein biosynthesis. Overall, these results demonstrated that B. velezensis HG-8-2 and its crude lipopeptide extracts exhibit highly antagonistic ability against C. scovillei, thereby offering an effective biological agent for the control of anthracnose in pepper fruit.


Subject(s)
Bacillus , Capsicum , Colletotrichum , Fruit , Plant Diseases , Colletotrichum/drug effects , Colletotrichum/growth & development , Capsicum/microbiology , Bacillus/genetics , Bacillus/metabolism , Bacillus/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fruit/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Lipopeptides/pharmacology , Lipopeptides/metabolism , Mycelium/growth & development , Mycelium/drug effects , Biological Control Agents/pharmacology
6.
Sci Rep ; 14(1): 19168, 2024 08 19.
Article in English | MEDLINE | ID: mdl-39160249

ABSTRACT

Toxic and heavy metals cause direct and indirect damage to the environment and ultimately to humans. This study involved the isolation of indigenous bacteria from heavy metal-contaminated environments that have the ability to bioabsorb heavy metals such as cadmium, nickel, and lead. The bioabsorption process was optimized by varying parameters such as temperature, metal concentration, number of bacteria, pH, and more. The bacterial isolates were investigated in terms of morphology, biochemistry, and phylogeny, with 12 strains chosen in the initial stage and one strain chosen in the final stage. It should be remembered that the metal uptake capacity of all isolates was approximately calculated. A box and reactor were designed to house these optimized microorganisms. Based on biochemical, morphological, and molecular results, the isolated strain was found to be closely related to the Bacillus genus. In the first five steps of testing, the ideal pH for removing lead alone, lead with cadmium, lead with nickel, and lead ternary (with cadmium and nickel) by Bacillus bacteria was found to be 7, 6, 5.5, and 6.5, respectively. The absorption efficiencies for single lead (unary), lead together with nickel, cadmium (binary), and ternary (lead with cadmium and nickel) were found to be 0.36, 0.25, 0.22, and 0.21 mmol/g, respectively. The ideal temperature for lead removal was around 30 °C. The adsorption isotherm for each lead metal in different states was found to be similar to the Langmuir isotherm, indicating that the surface absorption process is a single-layer process. The kinetics of the process follow the second-order kinetic model. The amount of Bacillus bacteria biomass obtained during this process was approximately 1.5 g per liter.


Subject(s)
Biofilms , Bioreactors , Metals, Heavy , Metals, Heavy/metabolism , Bioreactors/microbiology , Biofilms/growth & development , Biodegradation, Environmental , Nickel/metabolism , Nickel/chemistry , Cadmium/metabolism , Bacillus/metabolism , Phylogeny , Hydrogen-Ion Concentration , Bacteria/metabolism , Adsorption , Lead/metabolism , Temperature
7.
Microbiome ; 12(1): 156, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39180084

ABSTRACT

BACKGROUND: Microbes colonizing each compartment of terrestrial plants are indispensable for maintaining crop health. Although corn stalk rot (CSR) is a severe disease affecting maize (Zea mays) worldwide, the mechanisms underlying host-microbe interactions across vertical compartments in maize plants, which exhibit heterogeneous CSR-resistance, remain largely uncharacterized. RESULTS: Here, we investigated the microbial communities associated with CSR-resistant and CSR-susceptible maize cultivars using multi-omics analysis coupled with experimental verification. Maize cultivars resistant to CSR reshaped the microbiota and recruited Bacillus species with three phenotypes against Fusarium graminearum including niche pre-emption, potential secretion of antimicrobial compounds, and no inhibition to alleviate pathogen stress. By inducing the expression of Tyrosine decarboxylase 1 (TYDC1), encoding an enzyme that catalyzes the production of tyramine and dopamine, Bacillus isolates that do not directly suppress pathogen infection induced the synthesis of berberine, an isoquinoline alkaloid that inhibits pathogen growth. These beneficial bacteria were recruited from the rhizosphere and transferred to the stems but not grains of the CSR-resistant plants. CONCLUSIONS: The current study offers insight into how maize plants respond to and interact with their microbiome and lays the foundation for preventing and treating soil-borne pathogens. Video Abstract.


Subject(s)
Bacillus , Disease Resistance , Fusarium , Microbiota , Plant Diseases , Zea mays , Zea mays/microbiology , Zea mays/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/prevention & control , Bacillus/metabolism , Soil Microbiology , Rhizosphere , Tyrosine Decarboxylase/metabolism , Tyrosine Decarboxylase/genetics , Host Microbial Interactions , Tyramine/metabolism
8.
Appl Microbiol Biotechnol ; 108(1): 439, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145847

ABSTRACT

The escalating interest in Bacillus velezensis as a biocontrol agent arises from its demonstrated efficacy in inhibiting both phytopathogenic fungi and bacteria, positioning it as a promising candidate for biotechnological applications. This mini review aims to offer a comprehensive exploration of the multifaceted properties of B. velezensis, with particular focus on its beneficial interactions with plants and its potential for controlling phytopathogenic fungi. The molecular dialogues involving B. velezensis, plants, and phytopathogens are scrutinized to underscore the intricate mechanisms orchestrating these interactions. Additionally, the review elucidates the mode of action of B. velezensis, particularly through cyclic lipopeptides, highlighting their importance in biocontrol and promoting plant growth. The agricultural applications of B. velezensis are detailed, showcasing its role in enhancing crop health and productivity while reducing reliance on chemical pesticides. Furthermore, the review extends its purview in the industrial and environmental arenas, highlighting its versatility across various sectors. By addressing challenges such as formulation optimization and regulatory frameworks, the review aims to chart a course for the effective utilization of B. velezensis. KEY POINTS: • B. velezensis fights phytopathogens, boosting biotech potential • B. velezensis shapes agri-biotech future, offers sustainable solutions • Explores plant-B. velezensis dialogue, lipopeptide potential showcased.


Subject(s)
Bacillus , Plant Diseases , Bacillus/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Biological Control Agents/metabolism , Biological Control Agents/pharmacology , Lipopeptides/metabolism , Lipopeptides/pharmacology , Fungi/metabolism , Fungi/drug effects , Plant Development , Pest Control, Biological/methods , Biotechnology/methods , Crops, Agricultural/microbiology , Plants/microbiology , Agriculture/methods
9.
Bioresour Technol ; 408: 131229, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39117240

ABSTRACT

Microbes used for the recovery of rare earth elements (REEs) from mining wastewater indicated traces of Escherichia coli (E. coli, 2149.6 µg/g), Bacillus sphaericus (1636.6 µg/g), Bacillus mycoides (1469.3 µg/g), and Bacillus cereus (1083.9 µg/g). Of these, E. coli showed an affinity for REEs than non-REEs (Mn and Zn). The amount of heavy REEs adsorbed (1511.1 µg/g) on E. coli was higher than light REEs (638.0 µg/g) due to the process of increasing adsorption with decreasing ionic radius. Additionally, E. coli demonstrated stability in the recovery of REEs from mining wastewater, as evidenced by 4 cycles. SEM-EDS, XPS and FTIR showed that REEs had a disruptive effect on cells, REEs absorbed and desorbed on the cell surface including ion exchange with ions such as Na+, ligand binding with functional groups like -NH2. Finally, the cost assessment confirmed the economically feasible of E. coli in recovery of REEs from mining wastewater.


Subject(s)
Escherichia coli , Metals, Rare Earth , Mining , Wastewater , Wastewater/chemistry , Bacillus/metabolism , Adsorption , Biodegradation, Environmental , Water Pollutants, Chemical
10.
J Agric Food Chem ; 72(34): 18880-18889, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39162190

ABSTRACT

The degradation of isopyrazam in soils was investigated through kinetics, microbial contributions, and transformation products (TPs). Then the acute toxicity of isopyrazam and its TP to Chlorella pyrenoidosa was explored. The half-lives of isopyrazam in cinnamon soil, red soil, and black soil were 82.2, 141.7, and 120.3 days, respectively. A strain (Bacillus sp. A01) isolated from cinnamon soil could degrade 72.9% of isopyrazam at 10 mg/L after 6 days in a Luria-Bertani medium. Six TPs were observed with Bacillus sp. A01, and three of them were found in soil as well. Through the inhibition of cytochrome P450 enzymes, the production of oxidized isopyrazam was blocked. Microbial mediated hydroxylation, epoxidation, and dehydration were the main degradation pathways of isopyrazam. The acute toxicity results showed that the EC50 of 3-(difluoromethyl)-N-(9-(2-hydroxypropan-2-yl)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)-1-methyl-1H-pyrazole-4-carboxamide to Chlorella pyrenoidosa was 40 times higher than that of the parent. This work provides new insights for understanding the degradation behavior of isopyrazam in soil.


Subject(s)
Biodegradation, Environmental , Chlorella , Soil Microbiology , Soil Pollutants , Kinetics , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Soil Pollutants/chemistry , Chlorella/metabolism , Chlorella/drug effects , Chlorella/chemistry , Bacillus/metabolism , Pyrazoles/metabolism , Pyrazoles/toxicity , Pyrazoles/chemistry , Soil/chemistry , Cytochrome P-450 Enzyme System/metabolism , Biotransformation
11.
Curr Microbiol ; 81(10): 332, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198319

ABSTRACT

Pesticides employed for controlling domestic and agricultural pests are among the most dangerous environmental contaminants. Nevertheless, negligent usage and a lack of technical expertise have led to the contamination and pollution of various ecological niches. The extensive utilization of the organophosphate chlorpyrifos (CPs) for insect infestation control, coupled with its detrimental effects and persistence in the ecosystem, has led to calls for its removal from contaminated sites. The study is mainly focused on degradation of CPs; using viz. Bacillus wiedmannii A3 and Bacillus cereus P14 isolated from tea rhizosphere soil having pesticide contamination in Sonitpur district, Assam, India. These two bacterial strains were able to degrade CPs in vitro within 3 days. Reverse-phase HPLC analysis suggested about 96% reduction of CPs concentration upon bacterial treatment. Again, in case of A3, GC-MS analysis revealed that CPs was modified to 2-hydroxy-3,5,6-trichloropyridine and chlorpyrifos-oxon, thus finally metabolized into non-toxic products. While analyzing P14, silane, dimethyl (2,2,2-trichloroethoxy) propoxy, and 3-aminobenzoic acid, N-trimethylsilyl-, trimethylsilyl ester were identified. These compounds were subsequently transformed into non-toxic products. In addition to this, they demonstrated a significant boost of plant growth-promoting traits in both absence and presence of CPs; also showed growth development in nursery scale condition. Moreover, they functioned as biocontrol agents against Phellinus lamaensis and Colletotrichum gloeosporioides, responsible for brown root rot and anthracnose in North East India tea plantations, respectively. Thus, the pesticide-tolerant Bacilli strains A3 and P14 could be used as bioremediation of contaminated sites and also as biostimulants, and biocontrols in tea crop production.


Subject(s)
Bacillus , Biodegradation, Environmental , Chlorpyrifos , Soil Microbiology , Chlorpyrifos/metabolism , Bacillus/metabolism , Bacillus/isolation & purification , India , Rhizosphere , Camellia sinensis/microbiology , Camellia sinensis/growth & development , Soil Pollutants/metabolism , Insecticides/metabolism , Insecticides/pharmacology , Tea/microbiology , Tea/chemistry
12.
Int J Mol Sci ; 25(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39201557

ABSTRACT

Biofertilizers are environmentally friendly compounds that can enhance plant growth and substitute for chemically synthesized products. In this research, a new strain of the bacterium Bacillus velezensis, designated JZ, was isolated from the roots of strawberry plants and exhibited potent antagonistic properties against Bacillus altitudinis m-1, a pathogen responsible for leaf spot disease in strawberry. The fermentation broth of JZ exerted an inhibition rate of 47.43% against this pathogen. Using an optimized acid precipitation method, crude extracts of lipopeptides from the JZ fermentation broth were obtained. The crude extract of B. velezensis JZ fermentation broth did not significantly disrupt the cell permeability of B. altitudinis m-1, whereas it notably reduced the Ca2+-ATPase activity on the cell membrane and markedly elevated the intracellular reactive oxygen species (ROS) concentration. To identify the active compounds within the crude extract, QTOF-MS/MS was employed, revealing four antimicrobial compounds: fengycin, iturin, surfactin, and a polyene antibiotic known as bacillaene. The strain JZ also produced various plant-growth-promoting substances, such as protease, IAA, and siderophore, which assists plants to survive under pathogen infection. These findings suggest that the JZ strain holds significant potential as a biological control agent against B. altitudinis, providing a promising avenue for the management of plant bacterial disease.


Subject(s)
Bacillus , Fragaria , Plant Diseases , Bacillus/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fragaria/microbiology , Plant Leaves/microbiology , Reactive Oxygen Species/metabolism , Lipopeptides/pharmacology , Lipopeptides/metabolism , Biological Control Agents/pharmacology , Antibiosis
13.
Sci Rep ; 14(1): 20141, 2024 08 29.
Article in English | MEDLINE | ID: mdl-39209944

ABSTRACT

Many notable applications have been described for magnetic nanoparticles in delivery of diverse drugs and bioactive compounds into cells, magnetofection for the treatment of cancer, photodynamic therapy, photothermal therapy, and magnetic particle imaging (MPI). In response to the growing demand for magnetic nanoparticles for drug delivery or biomedical imaging applications, more effective and eco-friendly methodologies are required for large-scale biosynthesis of this nanoparticles. The major challenge in the large-scale biomedical application of magnetic nanoparticles lies in its low efficiency and optimization of nanoparticle production can address this issue. In the current study, a prediction model is suggested by the fractional factorial designs. The present study aims to optimize culture media components for improved growth and iron uptake of this strain. The result of optimization for iron uptake by the strain ASFS1 is to increase the production of magnetic nanoparticles by this strain for biomedical applications in the future. In the present study, design of experiment method was used to probe the effects of some key medium components (yeast extract, tryptone, FeSO4, Na2-EDTA, and FeCl3) on Fe content in biomass and dried biomass of strain ASFS1. A 25-1 fractional factorial design showed that Na2-EDTA, FeCl3, yeast extract-tryptone interaction, and FeSO4-Na2-EDTA interaction were the most parameters on Fe content in biomass within the experimented levels (p < 0.05), while yeast extract, FeCl3, and yeast extract-tryptone interaction were the most significant factors within the experimented levels (p < 0.05) to effect on dried biomass of strain ASFS1. The optimum culture media components for the magnetic nanoparticles production by strain ASFS1 was reported to be 7.95 g L-1 of yeast extract, 5 g L-1 of tryptone, 75 µg mL-1 of FeSO4, 192.3 µg mL-1 of Na2-EDTA and 150 µg mL-1 of FeCl3 which was theoretically able to produce Fe content in biomass (158 µg mL-1) and dried biomass (2.59 mg mL-1) based on the obtained for medium optimization. Using these culture media components an experimental maximum Fe content in biomass (139 ± 13 µg mL-1) and dried biomass (2.2 ± 0.2 mg mL-1) was obtained, confirming the efficiency of the used method.


Subject(s)
Culture Media , Iron , Iron/metabolism , Culture Media/chemistry , Bacillus/metabolism , Bacillus/growth & development , Magnetite Nanoparticles/chemistry , Biomass
14.
Brain Behav Immun ; 121: 384-402, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39147172

ABSTRACT

Neuroinflammation is a common component of neurological disorders. In the gut-brain-immune axis, bacteria and their metabolites are now thought to play a role in the modulation of the nervous and immune systems which may impact neuroinflammation. In this respect, commensal bacteria of humans have recently been shown to produce metabolites that mimic endogenous G-protein coupled receptor (GPCR) ligands. To date, it has not been established whether plant commensal bacteria, which may be ingested by animals including humans, can impact the gut-brain-immune axis via GPCR agonism. We screened an isopropanol (IPA) extract of the plant commensal Bacillus velezensis ADS024, a non-engrafting live biotherapeutic product (LBP) with anti-inflammatory properties isolated from human feces, against a panel of 168 GPCRs and identified strong agonism of the lysophosphatidic acid (LPA) receptor LPA3. The ADS024 IPA extracted material (ADS024-IPA) did not agonize LPA2, and only very weakly agonized LPA1. The agonism of LPA3 was inhibited by the reversible LPA1/3 antagonist Ki16425. ADS024-IPA signaled downstream of LPA3 through G-protein-induced calcium release, recruitment of ß-arrestin, and recruitment of the neurodegeneration-associated proteins 14-3-3γ, ε and ζ but did not recruit the ß isoform. Since LPA3 agonism was previously indirectly implicated in the reduction of pathology in models of Parkinson's disease (PD) and multiple sclerosis (MS) by use of the nonselective antagonist Ki16425, and since we identified an LPA3-specific agonist within ADS024, we sought to examine whether LPA3 might indeed be part of a broad underlying mechanism to control neuroinflammation. We tested oral treatment of ADS024 in multiple models of neuroinflammatory diseases using three models of PD, two models of MS, and a model each of amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and chemo-induced peripheral neuropathy (CIPN). ADS024 treatment improved model-specific functional effects including improvements in motor movement, breathing and swallowing, and allodynia suggesting that ADS024 treatment impacted a universal underlying neuroinflammatory mechanism regardless of the initiating cause of disease. We used the MOG-EAE mouse model to examine early events after disease initiation and found that ADS024 attenuated the increase in circulating lymphocytes and changes in neutrophil subtypes, and ADS024 attenuated the early loss of cell-surface LPA3 receptor expression on circulating white blood cells. ADS024 efficacy was partially inhibited by Ki16425 in vivo suggesting LPA3 may be part of its mechanism. Altogether, these data suggest that ADS024 and its LPA3 agonism activity should be investigated further as a possible treatment for diseases with a neuroinflammatory component.


Subject(s)
Bacillus , Neuroinflammatory Diseases , Bacillus/metabolism , Animals , Mice , Humans , Neuroinflammatory Diseases/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Male , Encephalomyelitis, Autoimmune, Experimental/metabolism , Anti-Inflammatory Agents/pharmacology
15.
J Microbiol ; 62(8): 695-707, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39164498

ABSTRACT

Poly-γ-glutamic acid (γ-PGA) is a promising biopolymer for various applications. In this study, we isolated a novel γ-PGA-producing strain, Bacillus halotolerans F29. The one-factor-at-a-time method was used to investigate the influence of carbon sources, nitrogen sources, and culture parameters on γ-PGA production. The optimal carbon and nitrogen sources were sucrose and (NH4)2SO4, respectively. The optimal culture conditions for γ-PGA production were determined to be 37 °C and a pH of 5.5. Response surface methodology was used to determine the optimum medium components: 77.6 g/L sucrose, 43.0 g/L monosodium glutamate, and 2.2 g/L K2HPO4. The γ-PGA titer increased significantly from 8.5 ± 0.3 g/L to 20.7 ± 0.7 g/L when strain F29 was cultivated in the optimized medium. Furthermore, the γ-PGA titer reached 50.9 ± 1.5 g/L with a productivity of 1.33 g/L/h and a yield of 2.23 g of γ-PGA/g of L-glutamic acid with the optimized medium in fed-batch fermentation. The maximum γ-PGA titer reached 45.3 ± 1.1 g/L, with a productivity of 1.06 g/L/h when molasses was used as a carbon source. It should be noted that the γ-PGA yield in this study was the highest of all reported studies, indicating great potential for the industrial production of γ-PGA.


Subject(s)
Bacillus , Carbon , Culture Media , Fermentation , Nitrogen , Polyglutamic Acid , Polyglutamic Acid/analogs & derivatives , Polyglutamic Acid/biosynthesis , Polyglutamic Acid/metabolism , Bacillus/metabolism , Bacillus/isolation & purification , Bacillus/classification , Culture Media/chemistry , Carbon/metabolism , Nitrogen/metabolism , Hydrogen-Ion Concentration , Sucrose/metabolism , Glutamic Acid/metabolism , Temperature , RNA, Ribosomal, 16S/genetics
16.
Sci Rep ; 14(1): 18087, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103433

ABSTRACT

In order to investigate the mechanism of plant growth promoting (PGP) effects of strain Bacillus velezensis WSW007, its PGP traits and production of volatile organic compounds (VOCs) were tested. The effects of VOCs produced by strain WSW007 on plant growth were observed by co-culturing this strain with tobacco seedlings in I-plates. Meanwhile, the effects of VOCs on tobacco gene expression were analysed by a transcriptome analysis and VOCs were identified by solid phase micro extraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS) analysis. As results, strains WSW007 produced acetic acid and siderophore, and could solubilize phosphate; while it also significantly increased the fresh weight of tobacco seedlings via production of VOCs. In transcriptome analysis, plants co-cultured with strain WSW007 presented the highest up-regulated expression for the genes involved in plant growth and development processes, implying that the bacterial VOCs played a role as regulator of plant gene expression. Conclusively, the up-regulation in expression of growth- and development-related genes via VOCs production is an important PGP mechanism in strain B. velezensis WSW007.


Subject(s)
Bacillus , Gene Expression Regulation, Plant , Nicotiana , Up-Regulation , Volatile Organic Compounds , Bacillus/metabolism , Bacillus/genetics , Volatile Organic Compounds/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Nicotiana/microbiology , Gene Expression Profiling , Gas Chromatography-Mass Spectrometry , Seedlings/growth & development , Seedlings/metabolism
17.
Microbiol Res ; 287: 127859, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098095

ABSTRACT

Biofilms are common living states for microorganisms, allowing them to adapt to environmental changes. Numerous Bacillus strains can form complex biofilms that play crucial roles in biocontrol processes. However, our current understanding of the molecular mechanisms of biofilm formation in Bacillus is mainly based on studies of Bacillus subtilis. Knowledge regarding the biofilm formation of other Bacillus species remains limited. In this study, we identified a novel transcriptional regulator, BmfR, belonging to the GntR family, that regulates biofilm formation in marine-derived Bacillus methylotrophicus B-9987. We demonstrated that BmfR induces biofilm formation by activating the extracellular polysaccharide structural genes epsA-O and negatively regulating the matrix gene repressor, SinR; of note it positively affects the expression of the master regulator of sporulation, Spo0A. Furthermore, database mining for BmfR homologs has revealed their widespread distribution among many bacterial species, mainly Firmicutes and Proteobacteria. This study advances our understanding of the biofilm regulatory network of Bacillus strains, and provides a new target for exploiting and manipulating biofilm formation.


Subject(s)
Bacillus , Bacterial Proteins , Biofilms , Gene Expression Regulation, Bacterial , Biofilms/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacillus/genetics , Bacillus/physiology , Bacillus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Polysaccharides, Bacterial/metabolism , Aquatic Organisms/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
18.
Microbiol Res ; 287: 127866, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111018

ABSTRACT

Alpine meadows, which are critical for biodiversity and ecosystem services, are increasingly degrading, necessitating effective restoration strategies. This study explored the mechanism by which Kobresia humilis, an alpine meadow-constructive species, modulates the rhizosphere microbiome via root exudates to enhance growth. Field investigations revealed that the plant height of K. humilis in a severely degraded (SD) alpine meadow was significantly higher than that in other K. humilis populations. Consequently, we analysed the differences between this plot and other K. humilis samples with different degrees of degradation to explore the reasons underlying the phenotypic differences in K. humilis. 16 S rRNA amplicon sequencing results showed that the SD plots were significantly enriched with more Bacillus, altering the composition of the rhizosphere microbial community of K. humilis. The collection and analysis of root exudates from various K. humilis locations revealed distinct differences. Procrustes analysis indicated a strong correlation between the root exudates and the rhizosphere microbiome composition of K. humilis. Model-based integration of metabolite observations, species abundance 2 (MIMOSA2), and Spearman's rank correlation coefficient analysis were used to identify the root exudates potentially related to the enrichment and recruitment of Bacillus. Bacillus from SD samples was isolated and screened, and the representative strain D334 was found to be differentially enriched compared to other samples. A series of in vitro experiments with the screened root exudates and strain D334 demonstrated that K. humilis could recruit Bacillus and promote its colonisation by releasing flavonoids, particularly baicalin. Additionally, K. humilis can release sucrose and riboflavin, which promote strain growth. Finally, soil microbiome transplantation experiments confirmed that different K. humilis phenotypes were closely related to the functions of the rhizosphere microbiome, especially in root morphological shaping. Moreover, the effects of Bacillus inoculation and the microbiome on the plant phenotypes were consistent. In summary, this study revealed a new mechanism by which K. humilis recruits rhizosphere growth-promoting bacteria and enhances soil nutrient utilisation, thereby promoting plant growth. These findings provide a theoretical basis for ecological restoration using soil microbial communities and clarify the relationship between plant metabolites and microbial community assembly.


Subject(s)
Bacillus , Flavonoids , Microbiota , Plant Roots , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Plant Roots/microbiology , Flavonoids/metabolism , Bacillus/metabolism , Bacillus/genetics , Bacillus/isolation & purification , RNA, Ribosomal, 16S/genetics , Phylogeny , Grassland , Ecosystem
19.
Mar Genomics ; 76: 101113, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39009494

ABSTRACT

Biosurfactants are amphipathic molecules with high industrial values owing to their chemical properties and stability under several environmental conditions. They have become attractive microbial products in the emerging biotechnology industry, offering a potential environmentally-friendly alternative to synthetic surfactants. Nowadays, several types of biosurfactants are commercially available for a wide range of applications in healthcare, agriculture, oil extraction and environmental remediation. In this study, a marine bacterium Bacillus velezensis L2D39 with the capability of producing biosurfactants was successfully isolated and characterized. The complete genome sequence of the bacterium B. velezensis L2D39 was obtained using PacBio Sequel HGAP.4, resulting in a sequence consisting of 4,140,042 base pairs with a 46.2 mol% G + C content and containing 4071 protein-coding genes. The presence of gene clusters associated with biosurfactants was confirmed through antiSMASH detection. The analysis of complete genome sequence will provide insight into the potential applications of this bacterium in biotechnological and natural product biosynthesis.


Subject(s)
Bacillus , Genome, Bacterial , Surface-Active Agents , Whole Genome Sequencing , Bacillus/genetics , Bacillus/metabolism , Surface-Active Agents/metabolism
20.
J Agric Food Chem ; 72(28): 15633-15642, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38950134

ABSTRACT

The residues of acifluorfen present a serious threat to the agricultural environment and sensitive crops. DnrA, a nitroreductase, is an intracellular enzyme that restricts the application of wild-type Bacillus sp. Za in environmental remediation. In this study, two strategies were employed to successfully secrete DnrA in strains SCK6 and Za, and the secretion expression conditions were optimized to achieve rapid degradation of acifluorfen. Under the optimal conditions, the relative activities of the DnrA supernatant from strains SCK6-D and Za-W were 3.06-fold and 3.53-fold higher than that of strain Za, respectively. While all three strains exhibited similar tolerance to different concentrations of acifluorfen, strains SCK6-D and Za-W demonstrated significantly faster degradation efficiency compared to strain Za. Furthermore, the DnrA supernatant from strains SCK6-D and Za-W could effectively reduce the toxicity of acifluorfen on maize and cucumber seedlings. This study provides an effective technical approach for the rapid degradation of acifluorfen.


Subject(s)
Bacillus , Bacterial Proteins , Biodegradation, Environmental , Nitroreductases , Zea mays , Bacillus/enzymology , Bacillus/metabolism , Bacillus/genetics , Nitroreductases/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Zea mays/metabolism , Zea mays/microbiology , Cucumis sativus/microbiology , Cucumis sativus/metabolism , Soil Pollutants/metabolism , Soil Pollutants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL