Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 628
Filter
1.
Carbohydr Res ; 544: 109249, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39191198

ABSTRACT

An efficient synthetic strategy has been developed to achieve a pyruvic acid acetal containing tetrasaccharide repeating unit corresponding to the K82 capsular polysaccharide of Acinetobacter baumannii LUH5534 strain in very good yield. The synthetic scheme involves the use of suitably functionalized monosaccharide thioglycosides as glycosyl donors and a combination of N-iodosuccinimide (NIS) and trimethylsilyl trifluoromethanesulfonate (TMSOTf) as thiophilic glycosylation activator to furnish satisfactory yield of the products with appropriate stereochemistry at the glycosidic linkages. Incorporation of the (R)-pyruvic acid acetal in the d-galactose moiety was achieved in very good yield by the treatment of the diol derivative with methyl 2,2-bis(p-methylphenylthio)propionate in the presence of a combination of NIS and triflic acid.


Subject(s)
Acetals , Acinetobacter baumannii , Oligosaccharides , Polysaccharides, Bacterial , Acinetobacter baumannii/chemistry , Acetals/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/chemical synthesis , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Pyruvic Acid/chemistry , Carbohydrate Sequence , Bacterial Capsules/chemistry
2.
J Immunol Methods ; 533: 113734, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098593

ABSTRACT

Capsular polysaccharides of Streptococcus pneumoniae are used in pneumococcal polysaccharide and protein-conjugate vaccines. Cell-wall polysaccharide (C-Ps) is a critical impurity that must be kept at low levels in purified polysaccharide preparations. Hence, accurate and precise methods for determining C-Ps are needed. Currently available methods include nuclear magnetic resonance (NMR) spectroscopy and high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Both these methods suffer from their own limitations; therefore, we developed a simple and efficient enzyme-linked immunosorbent assay (ELISA) for accurate and precise quantification of C-Ps in samples of any serotype of pneumococcal capsular polysaccharide without interference. We quantified C-Ps in preparations of 14 serotype polysaccharides using newly developed ELISA method and compared the results with C-Ps values obtained using two previously reported methods, 1H NMR and HPAEC-PAD. The C-Ps value determined using 1H NMR for serotype 5 was 21.08%, whereas the values obtained using HPAEC-PAD and ELISA were 2.38% and 2.89% respectively, indicating some interference in 1H NMR method. The sensitivity of the ELISA method is higher because the sample is used directly unlike HPAEC-PAD method where sample is subjected to harsh treatment, such as acid digestion and quantify C-Ps based on peak area of ribitol or AAT. Furthermore, 1H NMR and HPAEC-PAD are expensive and laborious methods. Our work, underscores the simple and efficient ELISA that can be used for quantification of C-Ps in pneumococcal polysaccharide preparations.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Polysaccharides, Bacterial , Streptococcus pneumoniae , Streptococcus pneumoniae/immunology , Enzyme-Linked Immunosorbent Assay/methods , Polysaccharides, Bacterial/immunology , Polysaccharides, Bacterial/analysis , Bacterial Capsules/immunology , Bacterial Capsules/chemistry , Magnetic Resonance Spectroscopy/methods
3.
Int J Biol Macromol ; 277(Pt 1): 134010, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39032891

ABSTRACT

Capsular polysaccharide (CPS) as a probiotic component has the ability to regulate the function of the host's immune system. However, how the structure and function of heat-killed CPS are altered remains unclear. In the present study, CPS were isolated and purified from live (LCPS) and heat-killed (HCPS) Lacticaseibacillus paracasei 6235. The differences in structure and immunomodulation between LCPS and HCPS were compared and analyzed. The results demonstrate that after heat killed, the molecular weight of CPS decreased from 23.4 kDa to 17.5 kDa, with the disappearance of galactosamine in the monosaccharide composition, and changes in the microstructure. Methylation analysis and nuclear magnetic resonance analysis revealed that the LCPS and HCPS are similar in structure, which main units of →3,4)-α-D-Glcp-(1→4)-α-D-Galp-(1→3)-ß-L-Rhap-(1→6)-ß-D-Galp-(1→, and repeating units of →3,4)-α-D-Glcp-(1→, →3)-ß-L-Rhap-(1→, and →4)-α-D-Galp-(1→ residues. Furthermore, both LCPS and HCPS significantly downregulated the expression of pro-inflammatory cytokines in RAW264.7 cells induced by LPS. Specifically, HCPS reduced the levels of IL-6 and IL-1ß by 79.38 % and 88.42 %, respectively, compared to LCPS. Concurrently, both LCPS and HCPS effectively mitigated inflammatory responses through the NF-κB and MAPK signaling pathways. Moreover, compared to LCPS, HCPS increased the protein expression levels of NF-κB/p-NF-κB and IκB/p-IκB by 26.14 % and 28.92 %, respectively. These results suggest that CPS has a role in modulating immune responses and that HCPS is more effective. This study can be further developed into new products related to postbiotics.


Subject(s)
Hot Temperature , Lacticaseibacillus paracasei , Polysaccharides, Bacterial , Mice , Animals , RAW 264.7 Cells , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Lacticaseibacillus paracasei/chemistry , Molecular Weight , NF-kappa B/metabolism , Bacterial Capsules/chemistry , Bacterial Capsules/immunology , Interleukin-6/metabolism , Cytokines/metabolism , Methylation
4.
Biochem Biophys Res Commun ; 729: 150356, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38986261

ABSTRACT

Analysis of pneumococcal polysaccharides (PnPs) has been an arduous task, especially in similar serotypes. Pneumococci invades the host immune response by modulating capsule structure with small genetic changes making them indistinguishable from similar serotypes by conventional modes of analysis. The new serotype 24F causing invasive pneumococcal-resistant infection is an analytical challenge for its analysis as related serotypes 24A and 24B Ps share a common backbone. The difference in the branched chain which contains arabinitol and ribitol in 24F and 24B respectively are stereoisomers making their identification even more challenging. The composition analysis by GC-MS revealed distinct peaks for arabinitol in 24F and 24A Ps and ribitol in Pn 24B serotype polysaccharide. The mass spectral analysis confirmed their identification along with a heterologous cross-reactivity which confirmed anti-Pn-24F mAb reactive to Pn 24B than Pn 24A. The quantitative analysis of pneumococcal 24A, 24B and 24F using GC-MS showed sensitive analysis over the concentration range 3.125-200 µg/mL with regression coefficient >0.99 making ideal modality for the characterization, identification, and quantitation of pneumococcal 24A, 24B and 24F similar serotypes.


Subject(s)
Gas Chromatography-Mass Spectrometry , Polysaccharides, Bacterial , Serogroup , Streptococcus pneumoniae , Gas Chromatography-Mass Spectrometry/methods , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/immunology , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/immunology , Bacterial Capsules/immunology , Bacterial Capsules/chemistry
5.
Carbohydr Polym ; 341: 122349, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876728

ABSTRACT

Meningococcal glycoconjugate vaccines sourced from capsular polysaccharides (CPSs) of pathogenic Neisseria meningitidis strains are well-established measures to prevent meningococcal disease. However, the exact structural factors responsible for antibody recognition are not known. CPSs of Neisseria meningitidis serogroups Y and W differ by a single stereochemical center, yet they evoke specific immune responses. Herein, we developed specific monoclonal antibodies (mAbs) targeting serogroups C, Y, and W and evaluated their ability to kill bacteria. We then used these mAbs to dissect structural elements responsible for carbohydrate-protein interactions. First, Men oligosaccharides were screened against the mAbs using ELISA to select putative lengths representing the minimal antigenic determinant. Next, molecular interaction features between the mAbs and serogroup-specific sugar fragments were elucidated using STD-NMR. Moreover, X-ray diffraction data with the anti-MenW CPS mAb enabled the elucidation of the sugar-antibody binding mode. Our findings revealed common traits in the epitopes of all three sialylated serogroups. The minimal binding epitopes typically comprise five to six repeating units. Moreover, the O-acetylation of the neuraminic acid moieties was fundamental for mAb binding. These insights hold promise for the rational design of optimized meningococcal oligosaccharides, opening new avenues for novel production methods, including chemical or enzymatic approaches.


Subject(s)
Antibodies, Monoclonal , Meningococcal Vaccines , Neisseria meningitidis , Polysaccharides, Bacterial , Serogroup , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Neisseria meningitidis/immunology , Neisseria meningitidis/chemistry , Meningococcal Vaccines/immunology , Meningococcal Vaccines/chemistry , Polysaccharides, Bacterial/immunology , Polysaccharides, Bacterial/chemistry , Antibodies, Bacterial/immunology , Epitopes/immunology , Epitopes/chemistry , Animals , Mice , Humans , Bacterial Capsules/immunology , Bacterial Capsules/chemistry , Antibody Formation/immunology
6.
Carbohydr Res ; 541: 109165, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820992

ABSTRACT

Streptococcus pneumoniae is one of the globally important encapsulated human pathogens and more than 100 different serotypes have been identified. Despite very extensive genetic and immune-serological studies, the capsular polysaccharide repeating unit structure of several serotypes has not been determined yet, including the type 38 (type 38 in Danish nomenclature; type 71 in US nomenclature). Physicochemical data revealed that type 38 polysaccharide is composed of a pentasaccharide repeat unit →3)-[ß-D-Galf(1 â†’ 2)]-ß-D-GalpA6(L-Ser)-(1 â†’ 3)-α-D-GlcpNAc-(1 â†’ 3)-α-D-Sugp-(1 â†’ 4)-α-D-Galp(2OAc)-(1 â†’ . The polysaccharide is O-acetylated at position C2 of the α-Gal residue at approximately (68-87 %) of the repeat units.


Subject(s)
Bacterial Capsules , Carbohydrate Sequence , Polysaccharides, Bacterial , Streptococcus pneumoniae , Streptococcus pneumoniae/chemistry , Polysaccharides, Bacterial/chemistry , Bacterial Capsules/chemistry
7.
ACS Infect Dis ; 10(6): 2161-2171, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38770797

ABSTRACT

Serotypes 6C and 6D of Streptococcus pneumoniae are two major variants that cause invasive pneumococcal disease (IPD) in serogroup 6 alongside serotypes 6A and 6B. Since the introduction of the pneumococcal conjugate vaccines PCV7 and PCV13, the number of cases of IPD caused by pneumococcus in children and the elderly population has greatly decreased. However, with the widespread use of vaccines, a replacement effect has recently been observed among different serotypes and lowered the effectiveness of the vaccines. To investigate protection against the original serotypes and to explore protection against variants and replacement serotypes, we created a library of oligosaccharide fragments derived from the repeating units of the capsular polysaccharides of serotypes 6A, 6B, 6C, and 6D through chemical synthesis. The library includes nine pseudosaccharides with or without exposed terminal phosphate groups and four pseudotetrasaccharides bridged by phosphate groups. Six carbohydrate antigens related to 6C and 6D were prepared as glycoprotein vaccines for immunogenicity studies. Two 6A and two 6B glycoconjugate vaccines from previous studies were included in immunogenicity studies. We found that the conjugates containing four phosphate-bridged pseudotetrasaccharides were able to induce good immune antibodies and cross-immunogenicity by showing superior activity and broad cross-protective activity in OPKA bactericidal experiments.


Subject(s)
Antibodies, Bacterial , Oligosaccharides , Pneumococcal Infections , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/chemistry , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/chemistry , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Pneumococcal Infections/immunology , Antibodies, Bacterial/immunology , Animals , Mice , Bacterial Capsules/immunology , Bacterial Capsules/chemistry , Humans , Female
8.
Pak J Pharm Sci ; 37(2): 275-289, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767094

ABSTRACT

The capsule is a major virulence factor for Streptococcus pneumoniae which causes global morbidity and mortality. It is already known that there are few conserved genes in the capsular biosynthesis pathway, which are common among all known serotypes, called CpsA, CpsB, CpsC and CpsD. Inhibiting capsular synthesis can render S. pneumoniae defenseless and vulnerable to phagocytosis. The Inhibitory potential of active Zingiber officinale compounds was investigated against the 3D (3-dimensional) structural products of Cps genes using in silico techniques. A 3D compound repository was created and screened for drug-likeness and the qualified compounds were used for molecular docking and dynamic simulation-based experiments using gallic acid for outcome comparison. Cavity-based docking revealed five different cavities in the CpsA, CpsB and CpsD proteins, with gallic acid and selected compounds of Zingiber in a binding affinity range of -6.8 to -8.8 kcal/mol. Gingerenone A, gingerenone B, isogingerenone B and gingerenone C showed the highest binding affinities for CpsA, CpsB and CpsD, respectively. Through the Molegro Virtual Docker re-docking strategy, the highest binding energies (-126.5 kcal/mol) were computed for CpsB with gingerenone A and CpsD with gingerenone B. These findings suggest that gingerenone A, B and C are potential inhibitors of S. pneumoniae-conserved capsule-synthesizing proteins.


Subject(s)
Bacterial Proteins , Molecular Docking Simulation , Streptococcus pneumoniae , Zingiber officinale , Zingiber officinale/chemistry , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Computer Simulation , Bacterial Capsules/metabolism , Bacterial Capsules/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Molecular Dynamics Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Gallic Acid/pharmacology , Gallic Acid/chemistry
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124533, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38820814

ABSTRACT

Antimicrobial resistance poses a significant challenge in modern medicine, affecting public health. Klebsiella pneumoniae infections compound this issue due to their broad range of infections and the emergence of multiple antibiotic resistance mechanisms. Efficient detection of its capsular serotypes is crucial for immediate patient treatment, epidemiological tracking and outbreak containment. Current methods have limitations that can delay interventions and increase the risk of morbidity and mortality. Raman spectroscopy is a promising alternative to identify capsular serotypes in hypermucoviscous K. pneumoniae isolates. It provides rapid and in situ measurements with minimal sample preparation. Moreover, its combination with machine learning tools demonstrates high accuracy and reproducibility. This study analyzed the viability of combining Raman spectroscopy with one-dimensional convolutional neural networks (1-D CNN) to classify four capsular serotypes of hypermucoviscous K. pneumoniae: K1, K2, K54 and K57. Our approach involved identifying the most relevant Raman features for classification to prevent overfitting in the training models. Simplifying the dataset to essential information maintains accuracy and reduces computational costs and training time. Capsular serotypes were classified with 96 % accuracy using less than 30 Raman features out of 2400 contained in each spectrum. To validate our methodology, we expanded the dataset to include both hypermucoviscous and non-mucoid isolates and distinguished between them. This resulted in an accuracy rate of 94 %. The results obtained have significant potential for practical healthcare applications, especially for enabling the prompt prescription of the appropriate antibiotic treatment against infections.


Subject(s)
Bacterial Capsules , Klebsiella pneumoniae , Spectrum Analysis, Raman , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/drug effects , Spectrum Analysis, Raman/methods , Bacterial Capsules/chemistry , Serogroup , Neural Networks, Computer , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Klebsiella Infections/diagnosis , Humans
10.
Nature ; 628(8009): 901-909, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570679

ABSTRACT

Capsular polysaccharides (CPSs) fortify the cell boundaries of many commensal and pathogenic bacteria1. Through the ABC-transporter-dependent biosynthesis pathway, CPSs are synthesized intracellularly on a lipid anchor and secreted across the cell envelope by the KpsMT ABC transporter associated with the KpsE and KpsD subunits1,2. Here we use structural and functional studies to uncover crucial steps of CPS secretion in Gram-negative bacteria. We show that KpsMT has broad substrate specificity and is sufficient for the translocation of CPSs across the inner bacterial membrane, and we determine the cell surface organization and localization of CPSs using super-resolution fluorescence microscopy. Cryo-electron microscopy analyses of the KpsMT-KpsE complex in six different states reveal a KpsE-encaged ABC transporter, rigid-body conformational rearrangements of KpsMT during ATP hydrolysis and recognition of a glycolipid inside a membrane-exposed electropositive canyon. In vivo CPS secretion assays underscore the functional importance of canyon-lining basic residues. Combined, our analyses suggest a molecular model of CPS secretion by ABC transporters.


Subject(s)
Bacterial Capsules , Escherichia coli Proteins , Escherichia coli , Polysaccharides, Bacterial , Adenosine Triphosphate/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/ultrastructure , Bacterial Capsules/metabolism , Bacterial Capsules/chemistry , Bacterial Capsules/ultrastructure , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cryoelectron Microscopy , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli/ultrastructure , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/ultrastructure , Glycolipids/chemistry , Glycolipids/metabolism , Hydrolysis , Microscopy, Fluorescence , Models, Molecular , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/chemistry , Substrate Specificity
11.
Carbohydr Res ; 538: 109097, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38555658

ABSTRACT

The structure of the K141 type capsular polysaccharide (CPS) produced by Acinetobacter baumannii KZ1106, a clinical isolate recovered from Kazakhstan in 2016, was established by sugar analyses and one- and two-dimensional 1H and 13C NMR spectroscopy. The CPS was shown to consist of branched tetrasaccharide repeating units (K-units) with the following structure: This structure was found to be consistent with the genetic content of the KL141 CPS biosynthesis gene cluster at the chromosomal K locus in the KZ1106 whole genome sequence. Assignment of the encoded enzymes allowed the first sugar of the K unit to be identified, which revealed that the ß-d-GlcpNAc-(1→3)-d-GlcpNAc bond is the linkage between K-units formed by the WzyKL141 polymerase.


Subject(s)
Acinetobacter baumannii , Acinetobacter baumannii/genetics , Acinetobacter baumannii/chemistry , Bacterial Capsules/chemistry , Polysaccharides/analysis , Magnetic Resonance Spectroscopy , Multigene Family , Sugars , Polysaccharides, Bacterial/chemistry
12.
Carbohydr Res ; 538: 109095, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38507941

ABSTRACT

Moraxella nonliquefaciens is a commensal of the human upper respiratory tract (URT) but on rare occasions is recovered in cases of ocular, septic and pulmonary infections. Hence there is interest in the pathogenic determinants of M. nonliquefaciens, of which outer membrane (OM) structures such as fimbriae and two capsular polysaccharide (CPS) structures, →3)-ß-D-GalpNAc-(1→5)-ß-Kdop-(2→ and →8)-α-NeuAc-(2→, have been reported in the literature. To further characterise its surface virulence factors, we isolated a novel CPS from M. nonliquefaciens type strain CCUG 348T. This structure was elucidated using NMR data obtained from CPS samples that were subjected to various degrees of mild acid hydrolysis. Together with GLC-MS data, the structure was resolved as a linear polymer composed of two GalfNAc residues consecutively added to Kdo, →3)-ß-D-GalfNAc-(1→3)-α-D-GalfNAc-(1→5)-α-(8-OAc)Kdop-(2→. Supporting evidence for this material being CPS was drawn from the proposed CPS biosynthetic locus which encoded a potential GalfNAc transferase, a UDP-GalpNAc mutase for UDP-GalfNAc production and a putative CPS polymerase with predicted GalfNAc and Kdo transferase domains. This study describes a unique CPS composition reported in Moraxella spp. and offers genetic insights into the synthesis and expression of GalfNAc residues, which are rare in bacterial OM glycans.


Subject(s)
Moraxella , Polysaccharides , Humans , Polysaccharides/analysis , Transferases/analysis , Uridine Diphosphate/analysis , Bacterial Capsules/chemistry , Polysaccharides, Bacterial/chemistry
13.
Int J Biol Macromol ; 262(Pt 1): 130045, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336317

ABSTRACT

The K239 type capsular polysaccharide (CPS) isolated from Acinetobacter baumannii isolate MAR19-4435 was studied by sugar analysis, one- and two-dimensional 1H and 13C NMR spectroscopy. K239 consists of branched heptasaccharide repeats (K-units) comprised of five residues of l-rhamnose (l-Rhap), and one residue each of d-glucuronic acid (d-GlcpA) and N-acetyl-d-glucosamine (d-GlcpNAc). The structure of K239 is closely related to that of the A. baumannii K86 CPS type, though the two differ in the 2,3-substitution patterns on the l-Rhap residue that is involved in the linkage between K-units in the CPS polymer. This structural difference was attributed to the presence of a gtr221 glycosyltransferase gene and a wzyKL239 polymerase gene in KL239 that replaces the gtr80 and wzyKL86 genes in the KL86 CPS biosynthesis gene cluster. Comparison of the two structures established the role of a novel WzyKL239 polymerase encoded by KL239 that forms the ß-d-GlcpNAc-(1→2)-l-Rhap linkage between K239 units. A. baumannii MAR19-4435 was found to be non-susceptible to infection by the APK86 bacteriophage, which encodes a depolymerase that specifically cleaves the linkage between K-units in the K86 CPS, indicating that the difference in 2,3-substitution of l-Rhap influences the susceptibility of this isolate to bacteriophage activity.


Subject(s)
Acinetobacter baumannii , Polysaccharides, Bacterial , Polysaccharides, Bacterial/chemistry , Acinetobacter baumannii/genetics , Acinetobacter baumannii/chemistry , Bacterial Capsules/chemistry , Nucleotidyltransferases/genetics , Multigene Family
14.
Carbohydr Res ; 535: 109020, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38150754

ABSTRACT

K63 capsular polysaccharide produced by Acinetobacter baumannii isolate LUH5551 (previously designated isolate O24) was re-examined using sugar analysis, Smith degradation, and one- and two-dimensional 1H and 13C NMR spectroscopy. Though previously reported as O24 consisting of linear tetrasaccharide units that include a 7-acetamido-5-acylamino form of 8-epilegionaminic acid [8eLeg5R7Ac, acylated at C5 with (S)-3-hydroxybutanoyl or acetyl (1:1)], the elucidated structure of the K63 type capsule was found to include a derivative of 5,7-diamino-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulosonic (legionaminic) acid, Leg5Ac7R, where R is either (S)-3-hydroxybutanoyl or an acetyl group (∼1:1 ratio). This finding is consistent with the presence of the lgaABCHIFG gene module for Leg5Ac7R biosynthesis in the KL63 gene cluster at the capsular polysaccharide (CPS) biosynthesis K locus in the LUH5551 genome. The glycosyltransferases (Gtrs) and Wzy polymerase encoded by KL63 were assigned to linkages in the linear K63 tetrasaccharide unit and linkage of the K63 units.


Subject(s)
Acinetobacter baumannii , Acinetobacter baumannii/chemistry , Bacterial Capsules/chemistry , Polysaccharides/analysis , Sialic Acids/chemistry , Multigene Family , Polysaccharides, Bacterial/chemistry
15.
J Biol Chem ; 299(9): 105085, 2023 09.
Article in English | MEDLINE | ID: mdl-37495106

ABSTRACT

The polysaccharide (PS) capsule is essential for immune evasion and virulence of Streptococcus pneumoniae. Existing pneumococcal vaccines are designed to elicit anticapsule antibodies; however, the effectiveness of these vaccines is being challenged by the emergence of new capsule types or variants. Herein, we characterize a newly discovered capsule type, 33E, that appears to have repeatedly emerged from vaccine type 33F via an inactivation mutation in the capsule glycosyltransferase gene, wciE. Structural analysis demonstrated that 33E and 33F share an identical repeat unit backbone [→5)-ß-D-Galf2Ac-(1→3)-ß-D-Galp-(1→3)-α-D-Galp-(1→3)-ß-D-Galf-(1→3)-ß-D-Glcp-(1→], except that a galactose (α-D-Galp) branch is present in 33F but not in 33E. Though the two capsule types were indistinguishable using conventional typing methods, the monoclonal antibody Hyp33FM1 selectively bound 33F but not 33E pneumococci. Further, we confirmed that wciE encodes a glycosyltransferase that catalyzes the addition of the branching α-D-Galp and that its inactivation in 33F strains results in the expression of the 33E capsule type. Though 33F and 33E share a structural and antigenic similarity, our pilot study suggested that immunization with a 23-valent pneumococcal PS vaccine containing 33F PS did not significantly elicit cross-opsonic antibodies to 33E. New conjugate vaccines that target capsule type 33F may not necessarily protect against 33E. Therefore, studies of new conjugate vaccines require knowledge of the newly identified capsule type 33E and reliable pneumococcal typing methods capable of distinguishing it from 33F.


Subject(s)
Bacterial Capsules , Genes, Bacterial , Pneumococcal Infections , Streptococcus pneumoniae , Transferases , Antibodies, Bacterial/immunology , Pilot Projects , Pneumococcal Infections/microbiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/classification , Pneumococcal Vaccines/immunology , Polysaccharides/chemistry , Serogroup , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/immunology , Vaccines, Conjugate/classification , Vaccines, Conjugate/immunology , Bacterial Capsules/chemistry , Bacterial Capsules/genetics , Genes, Bacterial/genetics , Genes, Bacterial/immunology , Gene Silencing , Transferases/genetics , Transferases/metabolism
16.
Biochemistry (Mosc) ; 88(2): 202-210, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37072328

ABSTRACT

The polysaccharide capsule surrounding bacterial cell plays an important role in pathogenesis of infections caused by the opportunistic pathogen Acinetobacter baumannii by providing protection from external factors. The structures of the capsular polysaccharide (CPS) produced by A. baumannii isolates and the corresponding CPS biosynthesis gene clusters are highly diverse, although many of them are related. Many types of A. baumannii CPSs contain isomers of 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acid (DTNA). Three of these isomers, namely acinetaminic acid (l-glycero-l-altro isomer), 8-epiacinetaminic acid (d-glycero-l-altro isomer), and 8-epipseudaminic acid (d-glycero-l-manno isomer), have not been found so far in naturally occurring carbohydrates from other species. In A. baumannii CPSs, DTNAs carry N-acyl substituents at positions 5 and 7; in some CPSs, both N-acetyl and N-(3-hydroxybutanoyl) groups are present. Remarkably, pseudaminic acid carries the (R)-isomer and legionaminic acid carries the (S)-isomer of the 3-hydroxybutanoyl group. The review addresses the structure and genetics of biosynthesis of A. baumannii CPSs containing di-N-acyl derivatives of DTNA.


Subject(s)
Acinetobacter baumannii , Polysaccharides, Bacterial , Polysaccharides, Bacterial/chemistry , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Bacterial Capsules/chemistry , Multigene Family
17.
J Clin Microbiol ; 61(4): e0002423, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36971549

ABSTRACT

Streptococcus pneumoniae can produce a wide breadth of antigenically diverse capsule types, a fact that poses a looming threat to the success of vaccines that target pneumococcal polysaccharide (PS) capsule. Yet, many pneumococcal capsule types remain undiscovered and/or uncharacterized. Prior sequence analysis of pneumococcal capsule synthesis (cps) loci suggested the existence of capsule subtypes among isolates identified as "serotype 36" according to conventional capsule typing methods. We discovered these subtypes represent two antigenically similar but distinguishable pneumococcal capsule serotypes, 36A and 36B. Biochemical analysis of their capsule PS structure reveals that both have the shared repeat unit backbone [→5)-α-d-Galf-(1→1)-d-Rib-ol-(5→P→6)-ß-d-ManpNAc-(1→4)-ß-d-Glcp-(1→] with two branching structures. Both serotypes have a ß-d-Galp branch to Ribitol. Serotypes 36A and 36B differ by the presence of a α-d-Glcp-(1→3)-ß-d-ManpNAc or α-d-Galp-(1→3)-ß-d-ManpNAc branch, respectively. Comparison of the phylogenetically distant serogroup 9 and 36 cps loci, which all encode this distinguishing glycosidic bond, revealed that the incorporation of Glcp (in types 9N and 36A) versus Galp (in types 9A, 9V, 9L, and 36B) is associated with the identity of four amino acids in the cps-encoded glycosyltransferase WcjA. Identifying functional determinants of cps-encoded enzymes and their impact on capsule PS structure is key to improving the resolution and reliability of sequencing-based capsule typing methods and discovering novel capsule variants indistinguishable by conventional serotyping methods.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Serogroup , Reproducibility of Results , Serotyping , Polysaccharides , Pneumococcal Vaccines , Bacterial Capsules/chemistry
18.
Carbohydr Res ; 523: 108726, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36446189

ABSTRACT

A structurally diverse capsular polysaccharide (CPS) in the outer cell envelope plays an important role in the virulence of the important bacterial pathogen, Acinetobacter baumannii. More than 75 different CPS structures have been determined for the species to date, and many CPSs include isomers of a higher sugar, namely 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acid. Recently, a novel isomer having the d-glycero-l-manno configuration (5,7-di-N-acetyl-8-epipseudaminic acid; 8ePse5Ac7Ac) has been identified in the CPS from A. baumannii clinical isolate RES-546 [Carbohydr. Res. 513 (2022) 108,531]. Here, the complete chemical structure of this CPS, designated K135, was elucidated. The CPS was found to have a branched tetrasaccharide K unit and to include the higher sugar as part of a 8ePse5Ac7Ac-(2 â†’ 6)-α-Gal disaccharide branching from a →3)-α-D-GlcpNAc-(1 â†’ 3)-ß-D-GlcpNAc-(1→ main chain. Assignment of glycosyltransferases encoded by the CPS biosynthesis gene cluster in the RES-546 genome enabled the first sugar of the K unit, and hence the topology of the K135 CPS, to be determined.


Subject(s)
Acinetobacter baumannii , Acinetobacter baumannii/chemistry , Bacterial Capsules/chemistry , Polysaccharides/analysis , Glycosyltransferases/genetics , Multigene Family , Sugars , Polysaccharides, Bacterial/chemistry
19.
Carbohydr Polym ; 294: 119783, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868758

ABSTRACT

A high-quality and cost-effective purification procedure is one of the most important requirements for manufacturing glycoconjugate vaccines. The goal of the present work was to devise a method for removing impurities such as protein and nucleic acid from Streptococcus pneumoniae serotype 2 capsular polysaccharides (CPS). The use of hydrogen peroxide for the reduction of impurities of crude CPS was investigated. Centrifugation followed by filtration decreased protein contaminant of the hydrogen peroxide-treated CPS to meet the limit specified by WHO. The nucleic acid impurity remaining was removed by a further step of endonuclease treatment to yield the purified CPS. Characterization of purified CPS was evaluated by various analytical techniques including 1H NMR and antigenicity by competitive inhibition assay. Various hydrogen peroxide concentrations have significant impact on the antigenic property of CPS. Whereas, optimum process conditions can preserve the native characteristics of CPS.


Subject(s)
Hydrogen Peroxide , Nucleic Acids , Bacterial Capsules/chemistry , Endonucleases/analysis , Endonucleases/metabolism , Hydrogen Peroxide/metabolism , Polysaccharides, Bacterial/chemistry , Serogroup
20.
Int J Biol Macromol ; 217: 515-521, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35843396

ABSTRACT

Acinetobacter baumannii isolate LUH5552 carries the KL89 capsule biosynthesis gene cluster. Capsular polysaccharide (CPS) isolated from LUH5552 was analyzed by sugar analysis, Smith degradation, and one- and two-dimensional 1H and 13C NMR spectroscopy. The K89 CPS structure has not been seen before in A. baumannii CPS structures resolved to date and includes a 3-acetamido-3,6-dideoxy-d-galactose (d-Fucp3NAc) residue which is rare amongst A. baumannii CPS. The K89 CPS has a →3)-α-d-GalpNAc-(1→3)-ß-d-GlcpNAc-(1→ main chain with a ß-d-Glcp-(1→2)-ß-d-Fucp3NAc-(1→6)-d-Glcp side branch that is α-(1→4) linked to d-GalpNAc. The roles of the Wzy polymerase and the four glycosyltransferases encoded by the KL89 gene cluster in the biosynthesis of the K89 CPS were assigned. Two glycosyltransferases, Gtr121 and Gtr122, link the d-Fucp3NAc to its neighboring sugars.


Subject(s)
Acinetobacter baumannii , Acetylgalactosamine/analogs & derivatives , Acinetobacter baumannii/chemistry , Acinetobacter baumannii/genetics , Bacterial Capsules/chemistry , Bacterial Capsules/genetics , Fucose/analogs & derivatives , Galactose/analysis , Glycosyltransferases/genetics , Polysaccharides, Bacterial/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL