Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.083
Filter
1.
J Infect Dis ; 230(1): e189-e198, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052729

ABSTRACT

BACKGROUND: Streptococcus pneumoniae serotype 3 remains a problem globally. Malawi introduced 13-valent pneumococcal conjugate vaccine (PCV13) in 2011, but there has been no direct protection against serotype 3 carriage. We explored whether vaccine escape by serotype 3 is due to clonal expansion of a lineage with a competitive advantage. METHODS: The distribution of serotype 3 Global Pneumococcal Sequence Clusters (GPSCs) and sequence types (STs) globally was assessed using sequences from the Global Pneumococcal Sequencing Project. Whole-genome sequences of 135 serotype 3 carriage isolates from Blantyre, Malawi (2015-2019) were analyzed. Comparative analysis of the capsule locus, entire genomes, antimicrobial resistance, and phylogenetic reconstructions were undertaken. Opsonophagocytosis was evaluated using serum samples from vaccinated adults and children. RESULTS: Serotype 3 GPSC10-ST700 isolates were most prominent in Malawi. Compared with the prototypical serotype 3 capsular polysaccharide locus sequence, 6 genes are absent, with retention of capsule polysaccharide biosynthesis. This lineage is characterized by increased antimicrobial resistance and lower susceptibility to opsonophagocytic killing. CONCLUSIONS: A serotype 3 variant in Malawi has genotypic and phenotypic characteristics that could enhance vaccine escape and clonal expansion after post-PCV13 introduction. Genomic surveillance among high-burden populations is essential to improve the effectiveness of next-generation pneumococcal vaccines.


Subject(s)
Bacterial Capsules , Phylogeny , Pneumococcal Infections , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , Humans , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/classification , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Pneumococcal Infections/immunology , Bacterial Capsules/immunology , Bacterial Capsules/genetics , Malawi , Adult , Whole Genome Sequencing , Child, Preschool , Child , Vaccines, Conjugate/immunology , Male , Genome, Bacterial , Female , Young Adult , Infant , Genotype , Carrier State/microbiology
2.
J Infect Dis ; 230(1): 209-220, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052750

ABSTRACT

BACKGROUND: Klebsiella pneumoniae carbapenemase-producing K pneumoniae (KPC-Kp) bloodstream infections are associated with high mortality. We studied clinical bloodstream KPC-Kp isolates to investigate mechanisms of resistance to complement, a key host defense against bloodstream infection. METHODS: We tested growth of KPC-Kp isolates in human serum. In serial isolates from a single patient, we performed whole genome sequencing and tested for complement resistance and binding by mixing study, direct enzyme-linked immunosorbent assay, flow cytometry, and electron microscopy. We utilized an isogenic deletion mutant in phagocytosis assays and an acute lung infection model. RESULTS: We found serum resistance in 16 of 59 (27%) KPC-Kp clinical bloodstream isolates. In 5 genetically related bloodstream isolates from a single patient, we noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ. Disruption of wcaJ was associated with decreased polysaccharide capsule, resistance to complement-mediated killing, and surprisingly, increased binding of complement proteins. Furthermore, an isogenic wcaJ deletion mutant exhibited increased opsonophagocytosis in vitro and impaired in vivo control in the lung after airspace macrophage depletion in mice. CONCLUSIONS: Loss of function in wcaJ led to increased complement resistance, complement binding, and opsonophagocytosis, which may promote KPC-Kp persistence by enabling coexistence of increased bloodstream fitness and reduced tissue virulence.


Subject(s)
Bacterial Capsules , Complement System Proteins , Klebsiella Infections , Klebsiella pneumoniae , Phagocytosis , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/immunology , Humans , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Animals , Bacterial Capsules/immunology , Bacterial Capsules/genetics , Bacterial Capsules/metabolism , Mice , Complement System Proteins/immunology , Mutation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Whole Genome Sequencing , Reinfection/microbiology , Reinfection/immunology , Bacteremia/microbiology , Bacteremia/immunology , Female
3.
Front Immunol ; 15: 1388721, 2024.
Article in English | MEDLINE | ID: mdl-38840926

ABSTRACT

The disaccharide (ß-D-glucopyranosyluronic acid)-(1→4)-ß-D-glucopyranoside represents a repeating unit of the capsular polysaccharide of Streptococcus pneumoniae serotype 3. A conjugate of the disaccharide with BSA (di-BSA conjugate) adjuvanted with aluminum hydroxide induced - in contrast to the non-adjuvanted conjugate - IgG1 antibody production and protected mice against S. pneumoniae serotype 3 infection after intraperitoneal prime-boost immunization. Adjuvanted and non-adjuvanted conjugates induced production of Th1 (IFNγ, TNFα); Th2 (IL-5, IL-13); Th17 (IL-17A), Th1/Th17 (IL-22), and Th2/Th17 cytokines (IL-21) after immunization. The concentration of cytokines in mice sera was higher in response to the adjuvanted conjugate, with the highest level of IL-17A production after the prime and boost immunizations. In contrast, the non-adjuvanted conjugate elicited only weak production of IL-17A, which gradually decreased after the second immunization. After boost immunization of mice with the adjuvanted di-BSA conjugate, there was a significant increase in the number of CD45+/CD19+ B cells, TCR+ γδ T cell, CD5+ В1 cells, and activated cells with MHC II+ expression in the spleens of the mice. IL-17A, TCR+ γδ T cells, and CD5+ В1 cells play a crucial role in preventing pneumococcal infection, but can also contribute to autoimmune diseases. Immunization with the adjuvanted and non-adjuvanted di-BSA conjugate did not elicit autoantibodies against double-stranded DNA targeting cell nuclei in mice. Thus, the molecular and cellular markers associated with antibody production and protective activity in response to immunization with the di-BSA conjugate adjuvanted with aluminum hydroxide are IL-17A, TCR+ γδ T cells, and CD5+ В1 cells against the background of increasing MHC II+ expression.


Subject(s)
Interleukin-17 , Pneumococcal Vaccines , Serum Albumin, Bovine , Streptococcus pneumoniae , Animals , Interleukin-17/immunology , Interleukin-17/metabolism , Streptococcus pneumoniae/immunology , Mice , Serum Albumin, Bovine/immunology , Pneumococcal Vaccines/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Disaccharides/immunology , Bacterial Capsules/immunology , Polysaccharides, Bacterial/immunology , Adjuvants, Immunologic/administration & dosage , Female , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Intraepithelial Lymphocytes/immunology , Serogroup , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism
4.
Carbohydr Polym ; 341: 122349, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876728

ABSTRACT

Meningococcal glycoconjugate vaccines sourced from capsular polysaccharides (CPSs) of pathogenic Neisseria meningitidis strains are well-established measures to prevent meningococcal disease. However, the exact structural factors responsible for antibody recognition are not known. CPSs of Neisseria meningitidis serogroups Y and W differ by a single stereochemical center, yet they evoke specific immune responses. Herein, we developed specific monoclonal antibodies (mAbs) targeting serogroups C, Y, and W and evaluated their ability to kill bacteria. We then used these mAbs to dissect structural elements responsible for carbohydrate-protein interactions. First, Men oligosaccharides were screened against the mAbs using ELISA to select putative lengths representing the minimal antigenic determinant. Next, molecular interaction features between the mAbs and serogroup-specific sugar fragments were elucidated using STD-NMR. Moreover, X-ray diffraction data with the anti-MenW CPS mAb enabled the elucidation of the sugar-antibody binding mode. Our findings revealed common traits in the epitopes of all three sialylated serogroups. The minimal binding epitopes typically comprise five to six repeating units. Moreover, the O-acetylation of the neuraminic acid moieties was fundamental for mAb binding. These insights hold promise for the rational design of optimized meningococcal oligosaccharides, opening new avenues for novel production methods, including chemical or enzymatic approaches.


Subject(s)
Antibodies, Monoclonal , Meningococcal Vaccines , Neisseria meningitidis , Polysaccharides, Bacterial , Serogroup , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Neisseria meningitidis/immunology , Neisseria meningitidis/chemistry , Meningococcal Vaccines/immunology , Meningococcal Vaccines/chemistry , Polysaccharides, Bacterial/immunology , Polysaccharides, Bacterial/chemistry , Antibodies, Bacterial/immunology , Epitopes/immunology , Epitopes/chemistry , Animals , Mice , Humans , Bacterial Capsules/immunology , Bacterial Capsules/chemistry , Antibody Formation/immunology
5.
ACS Infect Dis ; 10(6): 2161-2171, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38770797

ABSTRACT

Serotypes 6C and 6D of Streptococcus pneumoniae are two major variants that cause invasive pneumococcal disease (IPD) in serogroup 6 alongside serotypes 6A and 6B. Since the introduction of the pneumococcal conjugate vaccines PCV7 and PCV13, the number of cases of IPD caused by pneumococcus in children and the elderly population has greatly decreased. However, with the widespread use of vaccines, a replacement effect has recently been observed among different serotypes and lowered the effectiveness of the vaccines. To investigate protection against the original serotypes and to explore protection against variants and replacement serotypes, we created a library of oligosaccharide fragments derived from the repeating units of the capsular polysaccharides of serotypes 6A, 6B, 6C, and 6D through chemical synthesis. The library includes nine pseudosaccharides with or without exposed terminal phosphate groups and four pseudotetrasaccharides bridged by phosphate groups. Six carbohydrate antigens related to 6C and 6D were prepared as glycoprotein vaccines for immunogenicity studies. Two 6A and two 6B glycoconjugate vaccines from previous studies were included in immunogenicity studies. We found that the conjugates containing four phosphate-bridged pseudotetrasaccharides were able to induce good immune antibodies and cross-immunogenicity by showing superior activity and broad cross-protective activity in OPKA bactericidal experiments.


Subject(s)
Antibodies, Bacterial , Oligosaccharides , Pneumococcal Infections , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/chemistry , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/chemistry , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Pneumococcal Infections/immunology , Antibodies, Bacterial/immunology , Animals , Mice , Bacterial Capsules/immunology , Bacterial Capsules/chemistry , Humans , Female
6.
ACS Infect Dis ; 10(6): 2118-2126, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38712884

ABSTRACT

This study presented the detection and quantification of capsular polysaccharide (CPS) as a biomarker for the diagnosis of melioidosis. After successfully screening four monoclonal antibodies (mAbs) previously determined to bind CPS molecules, the team developed a portable electrochemical immunosensor based on antibody-antigen interactions. The biosensor was able to detect CPS with a wide detection range from 0.1pg/mL to 1 µg/mL. The developed biosensor achieved high sensitivity for the detection of CPS spiked into both urine and serum. The developed assay platform was successfully programmed into a Windows app, and the sensor performance was evaluated with different spiked concentrations. The rapid electro-analytical device (READ) sensor showed great unprecedented sensitivity for the detection of CPS molecules in both serum and urine, and results were cross-validated with ELISA methods.


Subject(s)
Burkholderia pseudomallei , Electrochemical Techniques , Melioidosis , Polysaccharides, Bacterial , Burkholderia pseudomallei/immunology , Melioidosis/diagnosis , Melioidosis/microbiology , Melioidosis/urine , Humans , Electrochemical Techniques/methods , Immunoassay/methods , Polysaccharides, Bacterial/immunology , Biosensing Techniques/methods , Antibodies, Monoclonal/immunology , Bacterial Capsules/immunology , Antibodies, Bacterial/blood , Enzyme-Linked Immunosorbent Assay/methods , Biomarkers/blood , Biomarkers/urine
7.
Pediatr Infect Dis J ; 43(2): e67-e70, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38758207

ABSTRACT

We evaluated whether the quantification of IgG to pneumococcal capsular polysaccharides is an accurate diagnostic test for pneumococcal infection in children with pneumonia in Nepal. Children with pneumococcal pneumonia did not have higher convalescent, or higher fold change, IgG to pneumococcal polysaccharides than children with other causes of pneumonia. Caution is needed in interpreting antibody responses in pneumococcal infections.


Subject(s)
Antibodies, Bacterial , Community-Acquired Infections , Immunoglobulin G , Pneumonia, Pneumococcal , Polysaccharides, Bacterial , Streptococcus pneumoniae , Humans , Antibodies, Bacterial/blood , Child, Preschool , Polysaccharides, Bacterial/immunology , Immunoglobulin G/blood , Infant , Streptococcus pneumoniae/immunology , Pneumonia, Pneumococcal/diagnosis , Pneumonia, Pneumococcal/immunology , Community-Acquired Infections/diagnosis , Community-Acquired Infections/immunology , Male , Female , Child , Nepal , Bacterial Capsules/immunology
8.
Lancet Microbe ; 5(7): 689-696, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38679040

ABSTRACT

BACKGROUND: Group B streptococcus is a major cause of neonatal disease. Natural history studies have linked maternally transferred anti-group B streptococcus capsular polysaccharide antibodies with protection against infant group B streptococcus disease. Previous studies of capsular polysaccharide antibody concentration in European populations have used maternal (not infant) sera and a non-standardised assay. This study aimed to evaluate anti-capsular polysaccharide IgG concentrations associated with protection against invasive group B streptococcus disease in Finnish infants. METHODS: In this retrospective case-control study, we used cord sera from the Finnish DIPP study repository, which was obtained between Jan 1, 1995, and Dec 31, 2017. We included infants aged 6 months or younger with group B streptococcus infection (cases) and healthy infants (controls). We enrolled infants with invasive neonatal group B streptococcus (55 cases) and matched controls (229 controls) aged 6 months or younger after identification from Finnish health registers. We measured anti-capsular polysaccharide IgG (serotypes Ia-V) concentration using a standardised immunoassay and we estimated its relationship to disease risk using a Bayesian model. We used the derived risk-concentration curve to predict potential efficacy of six-valent group B streptococcus capsular polysaccharide vaccine (GBS6) based on previously reported immunogenicity data. FINDINGS: Most (32 [58%] of 55 cases) group B streptococcus cases were due to serotype III and anti-serotype III streptococcus capsular IgG concentrations were higher in serotype III-matched controls than in cases (p<0·001). 0·120-0·266 µg/mL serotype III-specific IgG was estimated to confer 75-90% risk reduction against serotype III disease. A universal risk-concentration curve, aggregating results across all six serotypes, yielded similar results. Application of this curve to GBS6 immunogenicity data predicted maternal immunisation to be more than 80% efficacious for prevention of infant group B streptococcus disease. INTERPRETATION: Higher neonatal anti-capsular polysaccharide serum IgG concentration at birth correlated with reduced risk of infant group B streptococcus disease in Finland. Based on these results, a maternal group B streptococcus capsular conjugate vaccine currently in development is predicted to be efficacious. FUNDING: Pfizer.


Subject(s)
Antibodies, Bacterial , Immunoglobulin G , Streptococcal Infections , Streptococcus agalactiae , Humans , Finland/epidemiology , Retrospective Studies , Streptococcus agalactiae/immunology , Streptococcal Infections/immunology , Streptococcal Infections/prevention & control , Streptococcal Infections/blood , Streptococcal Infections/epidemiology , Case-Control Studies , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , Infant, Newborn , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Male , Infant , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage , Bacterial Capsules/immunology
9.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674095

ABSTRACT

During periodontitis, the extracellular capsule of Porphyromonas gingivalis favors alveolar bone loss by inducing Th1 and Th17 patterns of lymphocyte response in the infected periodontium. Dendritic cells recognize bacterial antigens and present them to T lymphocytes, defining their activation and polarization. Thus, dendritic cells could be involved in the Th1 and Th17 response induced against the P. gingivalis capsule. Herein, monocyte-derived dendritic cells were obtained from healthy individuals and then stimulated with different encapsulated strains of P. gingivalis or two non-encapsulated isogenic mutants. Dendritic cell differentiation and maturation were analyzed by flow cytometry. The mRNA expression levels for distinct Th1-, Th17-, or T-regulatory-related cytokines and transcription factors, as well as TLR2 and TLR4, were assessed by qPCR. In addition, the production of IL-1ß, IL-6, IL-23, and TNF-α was analyzed by ELISA. The encapsulated strains and non-encapsulated mutants of P. gingivalis induced dendritic cell maturation to a similar extent; however, the pattern of dendritic cell response was different. In particular, the encapsulated strains of P. gingivalis induced higher expression of IRF4 and NOTCH2 and production of IL-1ß, IL-6, IL-23, and TNF-α compared with the non-encapsulated mutants, and thus, they showed an increased capacity to trigger Th1 and Th17-type responses in human dendritic cells.


Subject(s)
Cytokines , Dendritic Cells , Porphyromonas gingivalis , Th17 Cells , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Porphyromonas gingivalis/immunology , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Th17 Cells/immunology , Th17 Cells/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Cytokines/metabolism , Cell Differentiation , Th1 Cells/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Cells, Cultured , Bacterial Capsules/immunology , Bacterial Capsules/metabolism , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/microbiology , Tumor Necrosis Factor-alpha/metabolism
10.
Infect Disord Drug Targets ; 24(5): e150124225640, 2024.
Article in English | MEDLINE | ID: mdl-38231056

ABSTRACT

OBJECTIVE: The purpose of this study was to find data proving the influence of the Haemophilus influenzae type b (Hib) conjugate vaccination on the frequency of invasive Hib illness. METHODOLOGY: A systematic literature search was conducted on the PubMed database to identify peerreviewed publications pertaining to the epidemiology of Haemophilus influenzae meningitis, both before and after the introduction of Haemophilus influenzae type b (Hib) conjugate vaccines. The search query employed a combination of relevant keywords, including "invasive," "Haemophilus," "influenzae," "meningitis," and specific serotype b (Hib). Additionally, terms related to epidemiology, burden, risk factors, impact, Hib vaccine, Hib conjugate vaccine, combination vaccine, vaccine production, efficacy, immunisation coverage, surveillance, review, clinical aspects, outcomes, and various age groups (adults and children) were incorporated. RESULT: The search encompassed articles published till now. Subsequently, relevant research papers concerning Haemophilus influenzae meningitis were subjected to a comprehensive review and analysis. CONCLUSION: The Hib conjugate vaccination has shown to be extremely effective when administered to the entire population. However, changes to the immunisation protocol appear to be required in order to effectively manage invasive Hib illness.


Subject(s)
Haemophilus Vaccines , Haemophilus influenzae type b , Meningitis, Haemophilus , Vaccines, Conjugate , Adult , Child , Child, Preschool , Humans , Infant , Bacterial Capsules/immunology , Haemophilus Infections/prevention & control , Haemophilus Infections/epidemiology , Haemophilus Infections/microbiology , Haemophilus influenzae type b/immunology , Haemophilus Vaccines/administration & dosage , Haemophilus Vaccines/immunology , Meningitis, Haemophilus/prevention & control , Meningitis, Haemophilus/epidemiology , Meningitis, Haemophilus/microbiology , Vaccination , Vaccine Efficacy , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/immunology
11.
Immunology ; 165(1): 110-121, 2022 01.
Article in English | MEDLINE | ID: mdl-34458991

ABSTRACT

Decades of studies on antibody structure led to the tenet that the V region binds antigens while the C region interacts with immune effectors. In some antibodies, however, the C region affects affinity and/or specificity for the antigen. One example is the 3E5 monoclonal murine IgG family, in which the mIgG3 isotype has different fine specificity to the Cryptococcus neoformans capsule polysaccharide than the other mIgG isotypes despite their identical variable sequences. Our group serendipitously found another pair of mIgG1/mIgG3 antibodies based on the 2H1 hybridoma to the C. neoformans capsule that recapitulated the differences observed with 3E5. In this work, we report the molecular basis of the constant domain effects on antigen binding using recombinant antibodies. As with 3E5, immunofluorescence experiments show a punctate pattern for 2H1-mIgG3 and an annular pattern for 2H1-mIgG1; these binding patterns have been associated with protective efficacy in murine cryptococcosis. Also as observed with 3E5, 2H1-mIgG3 bound on ELISA to both acetylated and non-acetylated capsular polysaccharide, whereas 2H1-mIgG1 only bound well to the acetylated form, consistent with differences in fine specificity. In engineering hybrid mIgG1/mIgG3 antibodies, we found that switching the 2H1-mIgG3 hinge for its mIgG1 counterpart changed the immunofluorescence pattern to annular, but a 2H1-mIgG1 antibody with an mIgG3 hinge still had an annular pattern. The hinge is thus necessary but not sufficient for these changes in binding to the antigen. This important role for the constant region in antigen binding could affect antibody biology and engineering.


Subject(s)
Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Bacterial Capsules/chemistry , Bacterial Capsules/immunology , Cryptococcus neoformans/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Binding Sites, Antibody , CHO Cells , Cell Line , Cricetulus , Cryptococcosis/immunology , Epitopes/chemistry , Epitopes/immunology , Mice , Recombinant Fusion Proteins , Structure-Activity Relationship
12.
Microbiol Spectr ; 9(3): e0039921, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34878295

ABSTRACT

Escherichia coli K1 causes bacteremia and meningitis in human neonates. The K1 capsule, an α2,8-linked polysialic acid (PSA) homopolymer, is its essential virulence factor. PSA is usually partially modified by O-acetyl groups. It is known that O-acetylation alters the antigenicity of PSA, but its impact on the interactions between E. coli K1 and host cells is unclear. In this study, a phase variant was obtained by passage of E. coli K1 parent strain, which expressed a capsule with 44% O-acetylation whereas the capsule of the parent strain has only 3%. The variant strain showed significantly reduced adherence and invasion to macrophage-like cells in comparison to the parent strain. Furthermore, we found that O-acetylation of PSA enhanced the modulation of trafficking of E. coli-containing vacuoles (ECV), enabling them to avoid fusing with lysosomes in these cells. Intriguingly, by using quartz crystal microbalance, we demonstrated that the PSA purified from the parent strain interacted with human sialic acid-binding immunoglobulin-like lectins (Siglecs), including Siglec-5, Siglec-7, Siglec-11, and Siglec-14. However, O-acetylated PSA from the variant interacted much less and also suppressed the production of Siglec-mediated proinflammatory cytokines. The adherence of the parent strain to human macrophage-like cells was significantly blocked by monoclonal antibodies against Siglec-11 and Siglec-14. Furthermore, the variant strain caused increased bacteremia and higher lethality in neonatal mice compared to the parent strain. These data elucidate that O-acetylation of K1 capsule enables E. coli to escape from Siglec-mediated innate immunity and lysosomal degradation; therefore, it is a strategy used by E. coli K1 to regulate its virulence. IMPORTANCE Escherichia coli K1 is a leading cause of neonatal meningitis. The mortality and morbidity of this disease remain significantly high despite antibiotic therapy. One major limitation on advances in prevention and therapy for meningitis is an incomplete understanding of its pathogenesis. E. coli K1 is surrounded by PSA, which is observed to have high-frequency variation of O-acetyl modification. Here, we present an in-depth study of the function of O-acetylation in PSA at each stage of host-pathogen interaction. We found that a high level of O-acetylation significantly interfered with Siglec-mediated bacterial adherence to macrophage-like cells, and blunted the proinflammatory response. Furthermore, the O-acetylation of PSA modulated the trafficking of ECVs to prevent them from fusing with lysosomes, enabling them to escape degradation by lysozymes within these cells. Elucidating how subtle modification of the capsule enhances bacterial defenses against host innate immunity will enable the future development of effective drugs or vaccines against infection by E. coli K1.


Subject(s)
Bacterial Capsules/immunology , Escherichia coli Infections/immunology , Escherichia coli/immunology , Sialic Acid Binding Immunoglobulin-like Lectins/immunology , Sialic Acids/immunology , Acetylation , Animals , Escherichia coli/genetics , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Host-Pathogen Interactions , Humans , Immune Evasion , Immunity, Innate , Lysosomes/immunology , Lysosomes/microbiology , Male , Mice , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Vacuoles/immunology , Vacuoles/microbiology
13.
Microbiol Spectr ; 9(3): e0144621, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34756090

ABSTRACT

The current pneumococcal capsular polysaccharide (PPS) conjugate vaccine (PCV13) is less effective against Streptococcus pneumoniae serotype 3 (ST3), which remains a major cause of pneumococcal disease and mortality. Therefore, dissecting structure-function relationships of human ST3 pneumococcal capsular polysaccharide (PPS3) antibodies may reveal characteristics of protective antibodies. Using flow cytometry, we isolated PPS3-binding memory B cells from pneumococcal vaccine recipients and generated seven PPS3-specific human monoclonal antibodies (humAbs). Five humAbs displayed ST3 opsonophagocytic activity, four induced ST3 agglutination in vitro, and four mediated both activities. Two humAbs, namely, C10 and C27, that used the same variable heavy (VH) and light (VL) chain domains (VH3-9*01/VL2-14*03) both altered ST3 gene expression in vitro; however, C10 had fewer VL somatic mutations, higher PPS3 affinity, and promoted in vitro ST3 opsonophagocytic and agglutinating activity, whereas C27 did not. In C57BL/6 mice, both humAbs reduced nasopharyngeal colonization with ST3 A66 and a clinical strain, B2, and prolonged survival following lethal A66 intraperitoneal infection, but only C10 protected against lethal intranasal infection with the clinical strain. After performing VL swaps, C10VH/C27VL exhibited reduced ST3 binding and agglutination, but C27VH/C10VL binding was unchanged. However, both humAbs lost the ability to reduce colonization in vivo when their light chains were replaced. Our findings associate the ability of PPS3-specific humAbs to reduce colonization with ST3 agglutination and opsonophagocytic activity, and reveal an unexpected role for the VL in their functional activity in vitro and in vivo. These findings also provide insights that may inform antibody-based therapy and identification of surrogates of vaccine efficacy against ST3. IMPORTANCE Despite the global success of vaccination with pneumococcal conjugate vaccines, serotype 3 (ST3) pneumococcus remains a leading cause of morbidity and mortality. In comparison to other vaccine-included serotypes, the ST3 pneumococcal capsular polysaccharide (PPS3) induces a weaker opsonophagocytic response, which is considered a correlate of vaccine efficacy. Previous studies of mouse PPS3 monoclonal antibodies identified ST3 agglutination as a correlate of reduced ST3 nasopharyngeal colonization in mice; however, neither the agglutinating ability of human vaccine-elicited PPS3 antibodies nor their ability to prevent experimental murine nasopharyngeal colonization has been studied. We generated and analyzed the functional and in vivo efficacy of human vaccine-elicited PPS3 monoclonal antibodies and found that ST3 agglutination associated with antibody affinity, protection in vivo, and limited somatic mutations in the light chain variable region. These findings provide new insights that may inform the development of antibody-based therapies and next-generation vaccines for ST3.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Bacterial Capsules/immunology , Polysaccharides, Bacterial/immunology , Streptococcus pneumoniae/immunology , Animals , Antibody Affinity/immunology , Cell Line , Female , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Mice , Mice, Inbred C57BL , Nasopharynx/immunology , Nasopharynx/microbiology , Opsonization/immunology , Pneumococcal Vaccines/immunology , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/mortality , Serogroup , Single-Chain Antibodies/immunology , Streptococcus pneumoniae/classification , Vaccine Efficacy
14.
PLoS One ; 16(10): e0258317, 2021.
Article in English | MEDLINE | ID: mdl-34634075

ABSTRACT

Anthrax is a zoonotic disease caused by the gram-positive spore-forming bacterium Bacillus anthracis. Detecting naturally acquired antibodies against anthrax sublethal exposure in animals is essential for anthrax surveillance and effective control measures. Serological assays based on protective antigen (PA) of B. anthracis are mainly used for anthrax surveillance and vaccine evaluation. Although the assay is reliable, it is challenging to distinguish the naturally acquired antibodies from vaccine-induced immunity in animals because PA is cross-reactive to both antibodies. Although additional data on the vaccination history of animals could bypass this problem, such data are not readily accessible in many cases. In this study, we established a new enzyme-linked immunosorbent assay (ELISA) specific to antibodies against capsule biosynthesis protein CapA antigen of B. anthracis, which is non-cross-reactive to vaccine-induced antibodies in horses. Using in silico analyses, we screened coding sequences encoded on pXO2 plasmid, which is absent in the veterinary vaccine strain Sterne 34F2 but present in virulent strains of B. anthracis. Among the 8 selected antigen candidates, capsule biosynthesis protein CapA (GBAA_RS28240) and peptide ABC transporter substrate-binding protein (GBAA_RS28340) were detected by antibodies in infected horse sera. Of these, CapA has not yet been identified as immunoreactive in other studies to the best of our knowledge. Considering the protein solubility and specificity of B. anthracis, we prepared the C-terminus region of CapA, named CapA322, and developed CapA322-ELISA based on a horse model. Comparative analysis of the CapA322-ELISA and PAD1-ELISA (ELISA uses domain one of the PA) showed that CapA322-ELISA could detect anti-CapA antibodies in sera from infected horses but was non-reactive to sera from vaccinated horses. The CapA322-ELISA could contribute to the anthrax surveillance in endemic areas, and two immunoreactive proteins identified in this study could be additives to the improvement of current or future vaccine development.


Subject(s)
Anthrax/immunology , Antibodies, Bacterial/immunology , Bacillus anthracis/immunology , Bacterial Capsules/immunology , Bacterial Proteins/immunology , Enzyme-Linked Immunosorbent Assay/methods , Heat-Shock Proteins/immunology , Animals , Anthrax Vaccines/immunology , Antigens, Bacterial/immunology , Bacterial Proteins/isolation & purification , Heat-Shock Proteins/isolation & purification , Horses , Immunoglobulin G/immunology , Plasmids/metabolism , Sequence Homology, Amino Acid , Spores, Bacterial/immunology
15.
Nat Commun ; 12(1): 5751, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599171

ABSTRACT

While the major virulence factors for Vibrio cholerae, the cause of the devastating diarrheal disease cholera, have been extensively studied, the initial intestinal colonization of the bacterium is not well understood because non-human adult animals are refractory to its colonization. Recent studies suggest the involvement of an interbacterial killing device known as the type VI secretion system (T6SS). Here, we tested the T6SS-dependent interaction of V. cholerae with a selection of human gut commensal isolates. We show that the pathogen efficiently depleted representative genera of the Proteobacteria in vitro, while members of the Enterobacter cloacae complex and several Klebsiella species remained unaffected. We demonstrate that this resistance against T6SS assaults was mediated by the production of superior T6SS machinery or a barrier exerted by group I capsules. Collectively, our data provide new insights into immunity protein-independent T6SS resistance employed by the human microbiota and colonization resistance in general.


Subject(s)
Cholera/microbiology , Enterobacter cloacae/immunology , Gastrointestinal Microbiome/immunology , Klebsiella/immunology , Type VI Secretion Systems/metabolism , Bacterial Capsules/immunology , Bacterial Capsules/metabolism , Cholera/immunology , Disease Resistance/immunology , Enterobacter cloacae/metabolism , Humans , Klebsiella/metabolism , Vibrio cholerae/immunology , Vibrio cholerae/pathogenicity , Virulence Factors/immunology , Virulence Factors/metabolism
16.
mBio ; 12(3): e0080021, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34061603

ABSTRACT

Capsular polysaccharides (CPSs) are major virulence factors that decorate the surfaces of many human bacterial pathogens. In their pure form or as glycoconjugate vaccines, CPSs are extensively used in vaccines deployed in clinical practice worldwide. However, our understanding of the structural requirements for interactions between CPSs and antibodies is limited. A longstanding model based on comprehensive observations of antibody repertoires binding to CPSs is that antibodies expressing heavy chain variable gene family 3 (VH3) predominate in these binding interactions in humans and VH3 homologs in mice. Toward understanding this highly conserved interaction, we generated a panel of mouse monoclonal antibodies (MAb) against Streptococcus pneumoniae serotype 3 CPS, determined an X-ray crystal structure of a protective MAb in complex with a hexasaccharide derived from enzymatic hydrolysis of the polysaccharide, and elucidated the structural requirements for this binding interaction. The crystal structure revealed a binding pocket containing aromatic side chains, suggesting the importance of hydrophobicity in the interaction. Through mutational analysis, we determined the amino acids that are critical in carbohydrate binding. Through elucidating the structural and functional properties of a panel of murine MAbs, we offer an explanation for the predominant use of the human VH3 gene family in antibodies against CPSs with implications in knowledge-based vaccine design. IMPORTANCE Infectious diseases caused by pathogenic bacteria are a major threat to human health. Capsular polysaccharides (CPSs) of many pathogenic bacteria have been used as the main components of glycoconjugate vaccines against bacterial diseases in clinical practice worldwide, with various degrees of success. Immunization with a glycoconjugate vaccine elicits T cell help for B cells that produce IgG antibodies to the CPS. Thus, it is important to develop an in-depth understanding of the interactions of carbohydrate epitopes with the antibodies. Structural characterization of the ligand binding of polysaccharide-specific antibodies laid out in this study may have fundamental biological implications for our comprehension of how the humoral immune system recognizes polysaccharide antigens, and in future knowledge-based vaccine design.


Subject(s)
Antibodies, Bacterial/immunology , Bacterial Capsules/chemistry , Polysaccharides, Bacterial/immunology , Polysaccharides, Bacterial/metabolism , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/immunology , Animals , Antibodies, Monoclonal , Bacterial Capsules/classification , Bacterial Capsules/immunology , Crystallization , Female , Humans , Ligands , Mice , Mice, Inbred BALB C , Models, Structural , Polysaccharides, Bacterial/chemistry , Serogroup , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/pathogenicity , Vaccination
17.
Front Immunol ; 12: 635097, 2021.
Article in English | MEDLINE | ID: mdl-33968026

ABSTRACT

In Glässer's disease outbreaks, Glaesserella (Haemophilus) parasuis has to overcome the non-specific immune system in the lower respiratory tract, the alveolar macrophages. Here we showed that porcine alveolar macrophages (PAMs) were able to recognize and phagocyte G. parasuis with strain-to-strain variability despite the presence of the capsule in virulent (serovar 1, 5, 12) as well in avirulent strains (serovar 6 and 9). The capsule, outer membrane proteins, virulence-associated autotransporters, cytolethal distending toxins and many other proteins have been identified as virulence factors of this bacterium. Therefore, we immunized pigs with the crude capsular extract (cCE) from the virulent G. parasuis CAPM 6475 strain (serovar 5) and evaluated the role of the anti-cCE/post-vaccinal IgG in the immune response of PAMs to in vitro infection with various G. parasuis strains. We demonstrated the specific binding of the antibodies to the cCE by Western-blotting assay and immunoprecipitation as well as the specific binding to the strain CAPM 6475 in transmission electron microscopy. In the cCE, we identified several virulence-associated proteins that were immunoreactive with IgG isolated from sera of immunized pigs. Opsonization of G. parasuis strains by post-vaccinal IgG led to enhanced phagocytosis of G. parasuis by PAMs at the first two hours of infection. Moreover, opsonization increased the oxidative burst and expression/production of both pro- and anti-inflammatory cytokines. The neutralizing effects of these antibodies on the antioxidant mechanisms of G. parasuis may lead to attenuation of its virulence and pathogenicity in vivo. Together with opsonization of bacteria by these antibodies, the host may eliminate G. parasuis in the infection site more efficiently. Based on these results, the crude capsular extract is a vaccine candidate with immunogenic properties.


Subject(s)
Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Bacterial Capsules/immunology , Haemophilus Infections/immunology , Haemophilus parasuis/immunology , Macrophages, Alveolar/immunology , Animals , Antibodies, Bacterial/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibody Specificity , Cells, Cultured , Haemophilus Infections/metabolism , Haemophilus Infections/microbiology , Haemophilus parasuis/pathogenicity , Kinetics , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/microbiology , Phagocytosis , Reactive Oxygen Species/metabolism , Serogroup , Sus scrofa , Virulence
18.
mBio ; 12(3)2021 05 18.
Article in English | MEDLINE | ID: mdl-34006665

ABSTRACT

The polysaccharide capsule is a key virulence factor of Streptococcus pneumoniae There are numerous epidemiologically important pneumococcal capsular serotypes, and recent findings have demonstrated that several of them are commonly found among nonpathogenic commensal species. Here, we describe 9 nonpneumococcal strains carrying close homologs of pneumococcal capsular biosynthetic (cps) loci that were discovered during recent pneumococcal carriage studies of adults in the United States and Kenya. Two distinct Streptococcus infantis strains cross-reactive with pneumococcal serotype 4 and carrying cps4-like capsular biosynthetic (cps) loci were recovered. Opsonophagocytic killing assays employing rabbit antisera raised against S. infantis US67cps4 revealed serotype 4-specific killing of both pneumococcal and nonpneumococcal strains. An S. infantis strain and two Streptococcus oralis strains, all carrying cps9A-like loci, were cross-reactive with pneumococcal serogroup 9 strains in immunodiffusion assays. Antiserum raised against S. infantis US64cps9A specifically promoted killing of serotype 9A and 9V pneumococcal strains as well as S. oralis serotype 9A strains. Serotype-specific PCR of oropharyngeal specimens from a recent adult carriage study in the United States indicated that such nonpneumococcal strains were much more common in this population than serotype 4 and serogroup 9 pneumococci. We also describe S. oralis and S. infantis strains expressing serotypes identical or highly related to serotypes 2, 13, and 23A. This study has expanded the known overlap of pneumococcal capsular serotypes with related commensal species. The frequent occurrence of nonpneumococcal strains in the upper respiratory tract that share vaccine and nonvaccine capsular serotypes with pneumococci could affect population immunity to circulating pneumococcal strains.IMPORTANCE The distributions and frequencies of individual pneumococcal capsular serotypes among nonpneumococcal strains in the upper respiratory tract are unknown and potentially affect pneumococcal serotype distributions among the population and immunity to circulating pneumococcal strains. Repeated demonstration that these nonpneumococcal strains expressing so-called pneumococcal serotypes are readily recovered from current carriage specimens is likely to be relevant to pneumococcal epidemiology, niche biology, and even to potential strategies of employing commensal live vaccines. Here, we describe multiple distinct nonpneumococcal counterparts for each of the pneumococcal conjugate vaccine (PCV) serotypes 4 and 9V. Additional data from contemporary commensal isolates expressing serotypes 2, 13, and 23A further demonstrate the ubiquity of such strains. Increased focus upon this serological overlap between S. pneumoniae and its close relatives may eventually prove that most, or possibly all, pneumococcal serotypes have counterparts expressed by the common upper respiratory tract commensal species Streptococcus mitis, Streptococcus oralis, and Streptococcus infantis.


Subject(s)
Bacterial Capsules/classification , Carrier State/microbiology , Serogroup , Streptococcus/classification , Streptococcus/genetics , Aged , Aged, 80 and over , Animals , Bacterial Capsules/genetics , Bacterial Capsules/immunology , Cross Reactions/immunology , Humans , Rabbits , Streptococcus/immunology , Streptococcus/isolation & purification , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/immunology , Symbiosis , United States
19.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972416

ABSTRACT

Active inflammatory bowel disease (IBD) often coincides with increases of Ruminococcus gnavus, a gut microbe found in nearly everyone. It was not known how, or if, this correlation contributed to disease. We investigated clinical isolates of R. gnavus to identify molecular mechanisms that would link R. gnavus to inflammation. Here, we show that only some isolates of R. gnavus produce a capsular polysaccharide that promotes a tolerogenic immune response, whereas isolates lacking functional capsule biosynthetic genes elicit robust proinflammatory responses in vitro. Germ-free mice colonized with an isolate of R. gnavus lacking a capsule show increased measures of gut inflammation compared to those colonized with an encapsulated isolate in vivo. These observations in the context of our earlier identification of an inflammatory cell-wall polysaccharide reveal how some strains of R. gnavus could drive the inflammatory responses that characterize IBD.


Subject(s)
Bacterial Capsules/immunology , Clostridiales/immunology , Gastrointestinal Microbiome/immunology , Immunity/immunology , Inflammatory Bowel Diseases/immunology , Polysaccharides/immunology , Adult , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Capsules/chemistry , Bacterial Capsules/ultrastructure , Cells, Cultured , Child , Clostridiales/classification , Clostridiales/genetics , Cytokines/immunology , Cytokines/metabolism , Female , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Humans , Ileum/immunology , Ileum/metabolism , Ileum/microbiology , Inflammatory Bowel Diseases/microbiology , Mice, Inbred C57BL , Multigene Family/genetics , Phylogeny
20.
Glycoconj J ; 38(4): 447-457, 2021 08.
Article in English | MEDLINE | ID: mdl-33956253

ABSTRACT

The capsular polysaccharide of the human pathogen Group B Streptococcus is a key virulence factor and vaccine candidate that induces protective antibodies when conjugated to carrier proteins. It consists of long polymeric chains of oligosaccharide repeating units, and each of the ten capsular serotypes described so far presents a unique chemical structure with distinct antigenic properties; therefore, broad protection against this pathogen could be achieved by a combination of ten glycoconjugates. Capsular polysaccharide biosynthesis and assembly follow a polymerase-dependent pathway that is widespread in encapsulated bacteria and is encoded by a polycistronic operon. Here we exploited the sequence similarity between the capsule operons of types V and IX to generate hybrid polysaccharides incorporating epitopes of both serotypes in a single molecule, by co-expressing their specific CpsM, O, I glycosyltransferases in a single isolate. Physicochemical and immunochemical methods confirmed that an engineered strain produced a high molecular weight chimeric polysaccharide, combining antigenic specificities of both type V and IX. By optimizing the copy number of key glycosyltransferase genes, we were able to modulate the ratio between type-specific epitopes. Finally, vaccination with chimeric glycoconjugates significantly decreased the incidence of disease in pups born from immunized mice challenged with either serotype. This study provides proof of concept for a new generation of glycoconjugate vaccines that combine the antigenic specificity of different polysaccharide variants in a single molecule, eliciting a protective immune response against multiple serotype variants.


Subject(s)
Bacterial Capsules/immunology , Polysaccharides, Bacterial/immunology , Streptococcal Vaccines/immunology , Streptococcus agalactiae/immunology , Vaccines, Combined/immunology , Animals , Antibodies, Monoclonal , Bacterial Proteins/immunology , Female , Genetic Engineering , Glycoconjugates , Humans , Immunity, Maternally-Acquired , Mice
SELECTION OF CITATIONS
SEARCH DETAIL