Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.371
Filter
1.
Viruses ; 16(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39339886

ABSTRACT

Highly diverse phages infecting thermophilic bacteria of the Thermus genus have been isolated over the years from hot springs around the world. Many of these phages are unique, rely on highly unusual developmental strategies, and encode novel enzymes. The variety of Thermus phages is clearly undersampled, as evidenced, for example, by a paucity of phage-matching spacers in Thermus CRISPR arrays. Using water samples collected from hot springs in the Kunashir Island from the Kuril archipelago and from the Tsaishi and Nokalakevi districts in the Republic of Georgia, we isolated several distinct phages infecting laboratory strains of Thermus thermophilus. Genomic sequence analysis of 11 phages revealed both close relatives of previously described Thermus phages isolated from geographically distant sites, as well as phages with very limited similarity to earlier isolates. Comparative analysis allowed us to predict several accessory phage genes whose products may be involved in host defense/interviral warfare, including a putative Type V CRISPR-cas system.


Subject(s)
Bacteriophages , Genome, Viral , Hot Springs , Phylogeny , Thermus thermophilus , Thermus thermophilus/virology , Thermus thermophilus/genetics , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Bacteriophages/physiology , Hot Springs/microbiology , Hot Springs/virology , CRISPR-Cas Systems , Georgia (Republic) , Genomics/methods
2.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(9): 1348-1353, 2024 Sep 06.
Article in Chinese | MEDLINE | ID: mdl-39290015

ABSTRACT

Objective: To express and purify the phage depolymerase from hypervirulent Klebsiella pneumoniae (hvKp) serotype K1 and validate its function. Methods: Phage that infected serotype K1-type hvKp was isolated from hospital sewage. The biology and morphology of the phage were determined by plaque assay and transmission electron microscopy. The whole genome of the phage was sequenced by the Illumina HiSeq 2500 platform. The presence of depolymerase was determined by observing the plaque halo. Bioinformatic analysis and prokaryotic protein expression system were further used to predict and identify phage depolymerase. The depolymerase gene fragment was obtained by PCR and cloned into the pET28a expression vector, and the expression and purification of the depolymerase were completed in strain BL21. The depolymerase activities on the capsular polysaccharide of serotype K1-type hvKp clinical isolates were detected by plaque assay and low-speed centrifugation assay. Results: A lytic phage (phiA2) that infected serotype K1-type hvKp clinical isolate was isolated from hospital sewage. It was typical of the Caudovirales order and Autographiviridae family, and its whole genome was 43 526 bp in length and contained 51 coding domain sequences. The phage phiA2-derived depolymerase phiA2-dep was predicted, expressed and purified. The plaque assay and low-speed centrifugation assay indicated that the depolymerase phiA2-dep had good lytic activity on the capsular polysaccharide of serotype K1-type hvKp clinical isolates. Conclusion: Depolymerase phiA2-dep can specifically degrade the capsular polysaccharide of serotype K1-type hvKp, which has potential application value in treating bacterial infection.


Subject(s)
Bacteriophages , Klebsiella pneumoniae , Serogroup , Klebsiella pneumoniae/genetics , Bacteriophages/genetics , Bacteriophages/isolation & purification , Sewage/microbiology , Genome, Viral
3.
Arch Virol ; 169(10): 196, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39256248

ABSTRACT

Vibrio parahaemolyticus is a major seafood-borne zoonotic pathogen that causes gastroenteritis in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. In this study, we isolated and characterized Vibrio phage vB_VpM-pA2SJ1, which infects clinical and AHPND-associated strains of V. parahaemolyticus. The phage genome is a linear dsDNA 51,054 bp in length with a G + C content of 43.7%, and it contains 89 open reading frames. Genome comparisons revealed basal similarity to other Vibrio phages, particularly Vibrio phage vB_VpP_1, with 84.2% identity and 46% coverage. Phylogenetic analysis based on the whole genome, the terminase large subunit, and the major capsid protein revealed that phage vB_VpM-pA2SJ1 did not cluster with other known phage families, thus indicating its uniqueness.


Subject(s)
Bacteriophages , Base Composition , Genome, Viral , Open Reading Frames , Phylogeny , Vibrio parahaemolyticus , Vibrio parahaemolyticus/virology , Vibrio parahaemolyticus/genetics , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Animals , Penaeidae/virology , Penaeidae/microbiology , Vibrio Infections/microbiology , Vibrio Infections/virology , Vibrio Infections/veterinary , Hepatopancreas/virology , Hepatopancreas/microbiology , Hepatopancreas/pathology , DNA, Viral/genetics
4.
BMC Microbiol ; 24(1): 338, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261757

ABSTRACT

Currently, phage biocontrol is increasingly used as a green and natural technology for treating Salmonella and other infections, but phages exhibit instability and activity loss during storage. Therefore, in this study, the effects of lyophilization on the activity and stability of phage cocktails for the control of multidrug-resistant Salmonella in broiler chickens were determined. Eight serotypes of Salmonella were isolated and identified from broiler chicken farms, and bacteriophages against multidrug-resistant Salmonella enterica subsp. enterica serovar Kentucky, Salmonella enterica subsp. enterica serovar Typhimrium and Salmonella enterica subsp. enterica serovar Enteritidis were isolated. The bacteriophage cocktail was prepared and lyophilized, and it was subjected to in vitro and in vivo examinations. A reconstituted lyophilized bacteriophage cocktail was used for the oral treatment of chicks before and after challenge with multidrug-resistant S. Kentucky. The colonization of cecum by S. Kentucky was detected by using real-time PCR, and the serum levels of IgM, IgA and IL-4 and pathological changes in the different groups were detected. Three Caudovirales phages families were identified including Autographiviridae, Straboviridae and Drexlerviridae against multidrug-resistant S. Kentucky, S. Typhimrium and S. Enteritidis. The groups treated with the bacteriophage cocktail showed no clinical signs, no postmortem lesions, and a mortality rate of 0%, which improved the growth performance parameters. Additionally, the estimated serum levels of IgM, IgA and IL-4 were significantly greater in the bacteriophage cocktail-treated groups. Lyophilization effectively preserves the long-term storage stability of phages. Therefore, lyophilized bacteriophage cocktail therapy is a valuable approach for controlling multidrug-resistant Salmonella infections in broiler chickens.


Subject(s)
Chickens , Drug Resistance, Multiple, Bacterial , Freeze Drying , Poultry Diseases , Salmonella Infections, Animal , Salmonella Phages , Salmonella , Animals , Chickens/microbiology , Freeze Drying/methods , Poultry Diseases/microbiology , Poultry Diseases/therapy , Poultry Diseases/virology , Poultry Diseases/prevention & control , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/therapy , Salmonella/virology , Salmonella Phages/physiology , Cecum/microbiology , Cecum/virology , Phage Therapy/methods , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/isolation & purification
5.
Biosens Bioelectron ; 266: 116727, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39232433

ABSTRACT

The isolation and identification of pathogenic bacteria from a variety of samples are critical for controlling bacterial infection-related health problems. The conventional methods, such as plate counting and polymerase chain reaction-based approaches, tend to be time-consuming and reliant on specific instruments, severely limiting the effective identification of these pathogens. In this study, we employed the specificity of the cell wall-binding (CBD) domain of the Staphylococcus aureus bacteriophage 80 alpha (80α) endolysin towards the host bacteria for isolation. Amidase 3-CBD conjugated magnetic beads successfully isolated as few as 1 × 102 CFU/mL of S. aureus cells from milk, blood, and saliva. The cell wall hydrolyzing activity of 80α endolysin promoted the genomic DNA extraction efficiency by 12.7 folds on average, compared to the commercial bacterial genomic DNA extraction kit. Then, recombinase polymerase amplification (RPA) was exploited to amplify the nuc gene of S. aureus from the extracted DNA at 37 °C for 30 min. The RPA product activated Cas12a endonuclease activity to cleave fluorescently labeled ssDNA probes. We then converted the generated signal into a fluorescent readout, detectable by either the naked eye or a portable, self-assembled instrument with ultrasensitivity. The entire procedure, from isolation to identification, can be completed within 2 h. The simplicity and sensitivity of the method developed in this study make it of great application value in S. aureus detection, especially in areas with limited resource supply.


Subject(s)
Biosensing Techniques , Endopeptidases , Staphylococcus aureus , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/virology , Biosensing Techniques/methods , Endopeptidases/chemistry , Endopeptidases/isolation & purification , Endopeptidases/genetics , Bacteriophages/chemistry , Bacteriophages/genetics , Bacteriophages/isolation & purification , Humans , Staphylococcus Phages/genetics , Staphylococcus Phages/chemistry , Staphylococcus Phages/isolation & purification , Animals , Nucleic Acid Amplification Techniques/methods , Staphylococcal Infections/microbiology , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Micrococcal Nuclease/chemistry , Micrococcal Nuclease/metabolism , Micrococcal Nuclease/genetics , Viral Proteins/chemistry , Viral Proteins/metabolism
6.
F1000Res ; 13: 380, 2024.
Article in English | MEDLINE | ID: mdl-39233781

ABSTRACT

Bacteria of the genus Aeromonas, especially A. hydrophila and A. veronii are recognized as important fish pathogens that cause significant economic losses in aquaculture. Environmentally friendly bacteriophage-based solutions for the treatment of fish and for the reduction of colonization by pathogenic bacteria in production facilities are currently in high demand. The bacteriophage Gekk3-15 was isolated during a search for novel phage strains potentially suitable for Aeromonas biocontrol applications. Genome sequencing revealed that this virus is a relatively small myovirus with a 64847 bp long dsDNA genome, which is consistent with virion electron microscopy data. Bacteriophage Gekk3-15 is distinct in its nucleotide and encoded aa sequences from all other sequenced bacteriophage genomes, and may represent a new viral taxon at the genus or subfamily level.


Subject(s)
Aeromonas , Bacteriophages , Genome, Viral , Bacteriophages/genetics , Bacteriophages/isolation & purification , Aeromonas/virology , Aeromonas/genetics , Whole Genome Sequencing/methods
7.
Int J Mol Sci ; 25(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39273543

ABSTRACT

The rise of carbapenem-resistant Klebsiella pneumoniae (CRKP) presents a significant global challenge in clinical and healthcare settings, severely limiting treatment options. This study aimed to utilize a bacteriophage as an alternative therapy against carbapenem-resistant K. pneumoniae. A novel lytic N4-like Klebsiella phage, vB_kpnP_KPYAP-1 (KPYAP-1), was isolated from sewage. It demonstrated efficacy against the K62 serotype polysaccharide capsule of blaOXA-48-producing K. pneumoniae. KPYAP-1 forms small, clear plaques, has a latent period of 20 min, and reaches a growth plateau at 35 min, with a burst size of 473 plaque-forming units (PFUs) per infected cell. Phylogenetic analysis places KPYAP-1 in the Schitoviridae family, Enquatrovirinae subfamily, and Kaypoctavirus genus. KPYAP-1 employs an N4-like direct terminal repeat mechanism for genome packaging and encodes a large virion-encapsulated RNA polymerase. It lacks integrase or repressor genes, antibiotic resistance genes, bacterial virulence factors, and toxins, ensuring its safety for therapeutic use. Comparative genome analysis revealed that the KPYAP-1 genome is most similar to the KP8 genome, yet differs in tail fiber protein, indicating variations in host recognition. In a zebrafish infection model, KPYAP-1 significantly improved the survival rate of infected fish by 92% at a multiplicity of infection (MOI) of 10, demonstrating its potential for in vivo treatment. These results highlight KPYAP-1 as a promising candidate for developing phage-based therapies targeting carbapenemase-producing K. pneumoniae.


Subject(s)
Bacteriophages , Klebsiella Infections , Klebsiella pneumoniae , Zebrafish , Klebsiella pneumoniae/virology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Animals , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/isolation & purification , Klebsiella Infections/therapy , Klebsiella Infections/microbiology , Phylogeny , Genome, Viral , Carbapenems/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Anti-Bacterial Agents/pharmacology , Phage Therapy
8.
Viruses ; 16(9)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39339926

ABSTRACT

Xanthomonas oryzae pv. oryzae (Xoo) is a significant bacterial pathogen responsible for outbreaks of bacterial leaf blight in rice, posing a major threat to rice cultivation worldwide. Effective management of this pathogen is crucial for ensuring rice yield and food security. In this study, we identified and characterized a novel Xoo phage, ZP3, isolated from diseased rice leaves in Zhejiang, China, which may offer new insights into biocontrol strategies against Xoo and contribute to the development of innovative approaches to combat bacterial leaf blight. Transmission electron microscopy indicated that ZP3 had a short, non-contractile tail. Genome sequencing and bioinformatic analysis showed that ZP3 had a double-stranded DNA genome with a length of 44,713 bp, a G + C content of 52.2%, and 59 predicted genes, which was similar to other OP1-type Xoo phages belonging to the genus Xipdecavirus. ZP3's endolysin LysZP was further studied for its bacteriolytic action, and the N-terminal transmembrane domain of LysZP is suggested to be a signal-arrest-release sequence that mediates the translocation of LysZP to the periplasm. Our study contributes to the understanding of phage-Xoo interactions and suggests that phage ZP3 and its endolysin LysZP could be developed into biocontrol agents against this phytopathogen.


Subject(s)
Bacteriophages , Genome, Viral , Oryza , Plant Diseases , Xanthomonas , Xanthomonas/virology , Xanthomonas/drug effects , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/isolation & purification , Oryza/microbiology , Oryza/virology , Plant Diseases/microbiology , Plant Diseases/virology , Endopeptidases/pharmacology , Endopeptidases/genetics , Endopeptidases/chemistry , Endopeptidases/metabolism , Phylogeny , Plant Leaves/virology , Plant Leaves/microbiology , China , Genomics/methods
9.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-39276368

ABSTRACT

Bacteriophages are abundant components of vertebrate gut microbial communities, impacting bacteriome dynamics, evolution, and directly interacting with the superhost. However, knowledge about gut phageomes and their interaction with bacteriomes in vertebrates under natural conditions is limited to humans and non-human primates. Widely used specific-pathogen-free (SPF) mouse models of host-microbiota interactions have altered gut bacteriomes compared to wild mice, and data on phageomes from wild or other non-SPF mice are lacking. We demonstrate divergent gut phageomes and bacteriomes in wild and captive non-SPF mice, with wild mice phageomes exhibiting higher alpha-diversity and interindividual variability. In both groups, phageome and bacteriome structuring mirrored each other, correlating at the individual level. Re-analysis of previous data from phageomes of SPF mice revealed their enrichment in Suoliviridae crAss-like phages compared to our non-SPF mice. Disrupted bacteriomes in mouse models can be treated by transplanting healthy phageomes, but the effects of phageome transplants on healthy adult gut microbiota are still unknown. We show that experimental transplantation of phageomes from wild to captive mice did not cause major shifts in recipient phageomes. However, the convergence of recipient-to-donor phageomes confirmed that wild phages can integrate into recipient communities. The differences in the subset of integrated phages between the two recipient mouse strains illustrate the context-dependent effects of phage transplantation. The transplantation did not impact recipient gut bacteriomes. This resilience of healthy adult gut microbiomes to the intervention has implications for phage allotransplantation safety.


Subject(s)
Bacteriophages , Gastrointestinal Microbiome , Animals , Mice , Bacteriophages/isolation & purification , Bacteriophages/genetics , Bacteriophages/physiology , Bacteria/classification , Bacteria/virology , Bacteria/genetics , Bacteria/isolation & purification , Animals, Wild/microbiology , Specific Pathogen-Free Organisms , Feces/microbiology , Feces/virology , Female , Virome
10.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 3216-3232, 2024 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-39319735

ABSTRACT

We analyzed the biological and genome characteristics of a phage infecting enteroinvasive Escherichia coli (EIEC), aiming to provide resources and a reference for the prevention and treatment of EIEC. With the EIEC preserved in our laboratory as the host bacterium, one strain of phage was isolated from the effluent sample from a chicken farm in Huzhou, Zhejiang and named ΦEP1. The titer, optimal multiplicity of infection, one-step growth curve, temperature, pH value, chloroform and bile salt sensitivity of ΦEP1 were determined by the double-layer agar plate method. The morphology of the phage was observed by transmission electron microscopy. The biocontrol effects of ΦEP1 in different food matrixes and the protective effect of this phage on Caco-2 cells were tested. The phage ΦEP1 showed the optimal multiplicity of infection of 0.1, the titer of 1.3×1010 PFU/mL, strong tolerance to temperature, pH, chloroform, and bile salt, and a broad host spectrum. Furthermore, it expressed lysis activity against multiple strains of multiple antibiotic-resistant pathogenic E. coli and Shigella with different serotypes. Phage ΦEP1 had an incubation period of 10 min, an outbreak period of 80 min, and an outbreak volume of 48 PFU/cell. According to the morphology observed by transmission electron microscopy, phage ΦEP1 belonged to the order of Caudovirales, and it had a good protective effect on Caco-2 cells. Phage ΦEP1 had a genome of 87 182 bp with the GC content of 39.80%, 128 putative open reading frames, and no antibiotic resistance genes or virulence genes. ΦEP1 inhibited the growth of EIEC in artificially contaminated milk and beef and eliminated EIEC in cell protection experiments. It significantly increased the survival rate of Caco-2 cells and down-regulated the expression of interleukin (IL)-6 and IL-1ß to reduce inflammation. We obtained an EIEC-targeting phage ΦEP1 with a high titer and strong tolerance to the environment, which provided a basis for the application of phages in food preservation and other fields.


Subject(s)
Escherichia coli , Escherichia coli/virology , Escherichia coli/genetics , Humans , Caco-2 Cells , Animals , Genome, Viral , Host Specificity , Bacteriophages/genetics , Bacteriophages/isolation & purification , Chickens/microbiology
11.
Front Cell Infect Microbiol ; 14: 1421724, 2024.
Article in English | MEDLINE | ID: mdl-39268483

ABSTRACT

The increase of antibiotic-resistant bacteria has become a global health emergency and the need to explore alternative therapeutic options arises. Phage therapy uses bacteriophages to target specific bacterial strains. Phages are highly specific and can target resistant bacteria. Currently, research in this regard is focused on ensuring reliability and safety to bring this tool into clinical practice. The first step is to conduct comprehensive preclinical research. In this work, we present two novel bacteriophages vB_Kpn_F13 and vB_Kpn_F14 isolated against clinical carbapenem-resistant Klebsiella pneumoniae strains obtained from hospital sewage. Multiple studies in vitro were conducted, such as sequencing, electron microscopy, stability, host range infectivity, planktonic effect and biofilm inhibition in order to discover their ability to be used against carbapenem-resistant K. pneumoniae pathogens causing difficult-to-treat infections.


Subject(s)
Bacteriophages , Biofilms , Carbapenem-Resistant Enterobacteriaceae , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Phage Therapy , Klebsiella pneumoniae/virology , Klebsiella pneumoniae/drug effects , Bacteriophages/isolation & purification , Bacteriophages/physiology , Bacteriophages/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/virology , Klebsiella Infections/microbiology , Klebsiella Infections/therapy , Carbapenems/pharmacology , Biofilms/growth & development , Biofilms/drug effects , Humans , Host Specificity , Sewage/virology , Sewage/microbiology , Anti-Bacterial Agents/pharmacology , Genome, Viral , Microbial Sensitivity Tests
12.
Nat Commun ; 15(1): 7536, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39214976

ABSTRACT

Nucleocytoplasmic large DNA viruses (NCLDVs; also called giant viruses), constituting the phylum Nucleocytoviricota, can infect a wide range of eukaryotes and exchange genetic material with not only their hosts but also prokaryotes and phages. A few NCLDVs were reported to encode genes conferring resistance to beta­lactam, trimethoprim, or pyrimethamine, suggesting that they are potential vehicles for the transmission of antibiotic resistance genes (ARGs) in the biome. However, the incidence of ARGs across the phylum Nucleocytoviricota, their evolutionary characteristics, their dissemination potential, and their association with virulence factors remain unexplored. Here, we systematically investigated ARGs of 1416 NCLDV genomes including those of almost all currently available cultured isolates and high-quality metagenome-assembled genomes from diverse habitats across the globe. We reveal that 39.5% of them carry ARGs, which is approximately 37 times higher than that for phage genomes. A total of 12 ARG types are encoded by NCLDVs. Phylogenies of the three most abundant NCLDV-encoded ARGs hint that NCLDVs acquire ARGs from not only eukaryotes but also prokaryotes and phages. Two NCLDV-encoded trimethoprim resistance genes are demonstrated to confer trimethoprim resistance in Escherichia coli. The presence of ARGs in NCLDV genomes is significantly correlated with mobile genetic elements and virulence factors.


Subject(s)
Genome, Viral , Giant Viruses , Phylogeny , Giant Viruses/genetics , Genome, Viral/genetics , Drug Resistance, Microbial/genetics , Bacteriophages/genetics , Bacteriophages/isolation & purification , Anti-Bacterial Agents/pharmacology , Metagenome/genetics , Gene Transfer, Horizontal , Trimethoprim/pharmacology , Drug Resistance, Bacterial/genetics
13.
Microb Pathog ; 195: 106891, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39214425

ABSTRACT

Aim -To isolate bacteriophages targeting extended-spectrum beta-lactamase-producing K. pneumoniae and evaluate their effectiveness across diverse models, incorporating innovative alternatives in animal testing. METHODS AND RESULTS: vB_kpnS-Kpn15 was isolated from sewage sample from Thane district. It produced a clear plaques on K. pneumoniae ATCC 700603. It has a flexible, non-contractile long tail and an icosahedral head and the Siphoviridae family of viruses in the order Caudovirales matched all of its structural criteria. Sequencing of vB_kpnS-Kpn15 revealed a 48,404 bp genome. The vB_KpnS-Kpn15 genome was found to contain 50 hypothetical proteins, of which 16 were found to possess different functions. The vB_KpnS-Kpn15 was also found to possess enzymes for its DNA synthesis. It was found to be lytic for the planktonic cells of K. pneumoniae and bactericidal for up to 48 h and potentially affected established K. pneumoniae biofilms. It demonstrated a broad host range and caused lytic zones on about 46 % of K. pneumoniae multi-drug resistant strains. In an in vitro wound and burn infection model, phage vB_kpnS-Kpn15 in combination with other phages resulted in successful cell proliferation and wound healing. Based on vB_kpnS-Kpn15's lytic properties, it can be incorporated in a bacteriophage cocktail to combat ESBL strains. CONCLUSIONS: The phages isolated during this research are better candidates for phage therapy, and therefore provide new and exciting options for the successful control of antibiotic-resistant bacterial infections in the future. The utilization of animal alternative models in this study elucidates cellular proliferation and migration, underscoring its significance in screening novel drugs with potential applications in the treatment of wound and burn infections. SIGNIFICANCE AND IMPACT OF THE RESEARCH: The findings of this research have implications for the creation of innovative, promising strategies to treat ESBL K. pneumoniae infections.


Subject(s)
Bacteriophages , Biofilms , Disease Models, Animal , Genome, Viral , Host Specificity , Klebsiella Infections , Klebsiella pneumoniae , Phage Therapy , Sewage , beta-Lactamases , Klebsiella pneumoniae/virology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Animals , Klebsiella Infections/microbiology , Klebsiella Infections/therapy , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/physiology , Biofilms/growth & development , Sewage/microbiology , Sewage/virology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Humans , Mice , Wound Infection/microbiology , Wound Infection/therapy , Caudovirales/genetics , Caudovirales/isolation & purification , Siphoviridae/genetics , Siphoviridae/isolation & purification , Siphoviridae/physiology , Microbial Sensitivity Tests
14.
Eur J Pharm Biopharm ; 203: 114438, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111580

ABSTRACT

The resurgence of phage therapy, once abandoned in the early 20th century in part due to issues related to the purification process and stability, is spurred by the global threat of antibiotic resistance. Engineering advances have enabled more precise separation unit operations, improving overall purification efficiency. The present review discusses the physicochemical properties of impurities commonly found in a phage lysate, e.g., contaminants, phage-related impurities, and propagation-related impurities. Differences in phages and bacterial impurities properties are leveraged to elaborate a four-step phage purification process: clarification, capture and concentration, subsequent purification and polishing. Ultimately, a framework for rationalising the development of a purification process is proposed, considering three operational characteristics, i.e., scalability, transferability to various phages and duration. This guide facilitates the preselection of a sequence of unit operations, which can then be confronted with the expected impurities to validate the theoretical capacity of the process to purify the phage lysate.


Subject(s)
Bacteriophages , Drug Contamination , Bacteriophages/isolation & purification , Drug Contamination/prevention & control , Phage Therapy/methods , Humans , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/isolation & purification
15.
Viruses ; 16(8)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39205200

ABSTRACT

Theobroma cacao plantations are of significant economic importance worldwide, primarily for chocolate production. During the harvest and processing of cocoa beans, they are subjected to fermentation either by microorganisms present in the environment (spontaneous fermentation) or the addition of starter cultures, with different strains directly contributing distinct flavor and color characteristics to the beans. In addition to fungi and bacteria, viruses are ubiquitous and can affect the quality of the fermentation process by infecting fermenting organisms, destabilizing microbial diversity, and consequently affecting fermentation quality. Therefore, in this study, we explored publicly available metatranscriptomic libraries of cocoa bean fermentation in Limon Province, Costa Rica, looking for viruses associated with fermenting microorganisms. Libraries were derived from the same sample at different time points: 7, 20, and 68 h of fermentation, corresponding to yeast- and lactic acid bacteria-driven phases. Using a comprehensive pipeline, we identified 68 viral sequences that could be assigned to 62 new viral species and 6 known viruses distributed among at least nine families, with particular abundance of elements from the Lenarviricota phylum. Interestingly, 44 of these sequences were specifically associated with ssRNA phages (Fiersviridae) and mostly fungi-infecting viral families (Botourmiaviridae, Narnaviridae, and Mitoviridae). Of note, viruses from those families show a complex evolutionary relationship, transitioning from infecting bacteria to infecting fungi. We also identified 10 and 3 viruses classified within the Totiviridae and Nodaviridae families, respectively. The quantification of the virus-derived RNAs shows a general pattern of decline, similar to the dynamic profile of some microorganism genera during the fermentation process. Unexpectedly, we identified narnavirus-related elements that showed similarity to segmented viral species. By exploring the molecular characteristics of these viral sequences and applying Hidden Markov Models, we were capable of associating these additional segments with a specific taxon. In summary, our study elucidates the complex virome associated with the microbial consortia engaged in cocoa bean fermentation that could contribute to organism/strain selection, altering metabolite production and, consequently, affecting the sensory characteristics of cocoa beans.


Subject(s)
Cacao , Fermentation , Virome , Cacao/virology , Cacao/microbiology , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Fungi/virology , Fungi/genetics , Fungi/classification , Phylogeny , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification , Costa Rica , Bacteria/genetics , Bacteria/classification , Bacteria/virology , Metagenomics , Genome, Viral
16.
Viruses ; 16(8)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39205249

ABSTRACT

Enterococcus faecalis (E. faecalis) is a growing cause of nosocomial and antibiotic-resistant infections. Treating drug-resistant E. faecalis requires novel approaches. The use of bacteriophages (phages) against multidrug-resistant (MDR) bacteria has recently garnered global attention. Biofilms play a vital role in E. faecalis pathogenesis as they enhance antibiotic resistance. Phages eliminate biofilms by producing lytic enzymes, including depolymerases. In this study, Enterococcus phage vB_Efs8_KEN04, isolated from a sewage treatment plant in Nairobi, Kenya, was tested against clinical strains of MDR E. faecalis. This phage had a broad host range against 100% (26/26) of MDR E. faecalis clinical isolates and cross-species activity against Enterococcus faecium. It was able to withstand acidic and alkaline conditions, from pH 3 to 11, as well as temperatures between -80 °C and 37 °C. It could inhibit and disrupt the biofilms of MDR E. faecalis. Its linear double-stranded DNA genome of 142,402 bp contains 238 coding sequences with a G + C content and coding gene density of 36.01% and 91.46%, respectively. Genomic analyses showed that phage vB_Efs8_KEN04 belongs to the genus Kochikohdavirus in the family Herelleviridae. It lacked antimicrobial resistance, virulence, and lysogeny genes, and its stability, broad host range, and cross-species lysis indicate strong potential for the treatment of Enterococcus infections.


Subject(s)
Bacteriophages , Biofilms , Drug Resistance, Multiple, Bacterial , Enterococcus faecalis , Genome, Viral , Host Specificity , Biofilms/growth & development , Biofilms/drug effects , Enterococcus faecalis/virology , Enterococcus faecalis/drug effects , Kenya , Bacteriophages/physiology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Humans , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacterial Infections/microbiology , Sewage/virology
17.
Viruses ; 16(8)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39205312

ABSTRACT

Salmonella Typhimurium (S. Typhimurium) contamination poses a significant challenge to breeder egg hatchability and chick health, necessitating the exploration of alternative disinfection methods. This study investigates the potential of phage vB_SPuM_SP02 (SP02) as a novel disinfectant for breeder eggs contaminated with S. Typhimurium SM022. Phage SP02 was isolated from poultry farm effluent and characterized for morphology, biological properties, and genome properties. Experimental groups of specific pathogen-free (SPF) eggs were treated with Salmonella and phage SP02, and efficacy was assessed through hatching rates, chick survival, weight, Salmonella load, immune organ indices, and intestinal flora. Phage treatment effectively eradicated Salmonella contamination on eggshells within 12 h, resulting in increased hatching and survival rates compared to controls. Furthermore, phage treatment mitigated weight loss and tissue Salmonella load in chicks without causing immune organ damage while reducing Salmonella spp. abundance in the intestinal tract. This study demonstrates the potential of phage SP02 as an eco-friendly and efficient disinfectant for S. Typhimurium-contaminated breeder eggs, offering promising prospects for practical application in poultry production.


Subject(s)
Chickens , Eggs , Salmonella Infections, Animal , Salmonella Phages , Salmonella typhimurium , Animals , Salmonella typhimurium/virology , Salmonella Phages/physiology , Salmonella Phages/isolation & purification , Salmonella Infections, Animal/microbiology , Eggs/microbiology , Eggs/virology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Disinfectants/pharmacology , Disinfection/methods , Specific Pathogen-Free Organisms , Bacteriophages/physiology , Bacteriophages/isolation & purification , Egg Shell/microbiology
18.
Viruses ; 16(8)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39205252

ABSTRACT

The last thirty years have seen a meteoric rise in the number of sequenced bacteriophage genomes, spurred on by both the rise and success of groups working to isolate and characterize phages, and the rapid and significant technological improvements and reduced costs associated with sequencing their genomes. Over the course of these decades, the tools used to glean evolutionary insights from these sequences have grown more complex and sophisticated, and we describe here the suite of computational and bioinformatic tools used extensively by the integrated research-education communities such as SEA-PHAGES and PHIRE, which are jointly responsible for 25% of all complete phage genomes in the RefSeq database. These tools are used to integrate and analyze phage genome data from different sources, for identification and precise extraction of prophages from bacterial genomes, computing "phamilies" of related genes, and displaying the complex nucleotide and amino acid level mosaicism of these genomes. While over 50,000 SEA-PHAGES students have primarily benefitted from these tools, they are freely available for the phage community at large.


Subject(s)
Bacteriophages , Computational Biology , Genome, Viral , Genomics , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Computational Biology/methods , Genomics/methods , Software , Prophages/genetics , Databases, Genetic
19.
Int J Mol Sci ; 25(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39201817

ABSTRACT

Vibrio alginolyticus causes substantial economic losses in the aquaculture industry. With the rise of multidrug-resistant Vibrio strains, phages present a promising solution. Here, a novel lytic Vibrio phage, vB_ValC_RH2G (RH2G), that efficiently infects the pathogenic strain V. alginolyticus ATCC 17749T, was isolated from mixed wastewater from an aquatic market in Xiamen, China. Transmission electron microscopy revealed that RH2G has the morphology of Siphoviruses, featuring an icosahedral head (73 ± 2 nm diameter) and long noncontractile tail (142 ± 4 nm). A one-step growth experiment showed that RH2G had a short latent period (10 min) and a burst size of 48 phage particles per infected cell. Additionally, RH2G was highly species-specific and was relatively stable at 4-55 °C and pH 4-10. A genomic analysis showed that RH2G has a 116,749 bp double-stranded DNA genome with 43.76% GC content. The intergenomic similarity between the genome sequence of RH2G and other phages recorded in the GenBank database was below 38.8%, suggesting that RH2G represents a new genus. RH2G did not exhibit any virulence or resistance genes. Its rapid lysis capacity, lytic activity, environmental resilience, and genetic safety suggested that RH2G may be a safe candidate for phage therapy in combatting vibriosis in aquaculture settings.


Subject(s)
Bacteriophages , Genome, Viral , Vibrio alginolyticus , Vibrio alginolyticus/virology , Vibrio alginolyticus/genetics , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/physiology , Bacteriophages/ultrastructure , Phylogeny , Base Composition
20.
Microbiol Spectr ; 12(10): e0025424, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39194291

ABSTRACT

Klebsiella pneumoniae is one of the most threatening multi-drug-resistant pathogens today, with phage therapy being a promising alternative for personalized treatments. However, the intrinsic capsule diversity in Klebsiella spp. poses a substantial barrier to the phage host range, complicating the development of broad-spectrum phage-based treatments. Here, we have isolated and genomically characterized phages capable of infecting each of the acquired 77 reference serotypes of Klebsiella spp., including capsular types widespread among high-risk K. pneumoniae clones causing nosocomial infections. We demonstrated the possibility of isolating phages for all capsular types in the collection, revealing high capsular specificity among taxonomically related phages, in contrast to a few phages that exhibited broad-spectrum infection capabilities. To decipher the determinants of the specificity of these phages, we focused on their receptor-binding proteins, with particular attention to depolymerases. We also explored the possibility of designing a broad-spectrum phage cocktail based on phages isolated in reference capsular-type strains and determining the ability to lyse relevant clinical isolates. A combination of 12 phages capable of infecting 55% of the reference Klebsiella spp. serotypes was tested on a panel of carbapenem-resistant K. pneumoniae clinical isolates. Thirty-one percent of isolates were susceptible to the phage cocktail. However, our results suggest that in a highly variable encapsulated bacterial host, phage hunting must be directed to the specific Klebsiella isolates. This work is a step forward in the understanding of the complexity of phage-host interactions and highlights the importance of implementing precise and phage-specific strategies to treat K. pneumoniae infections worldwide.IMPORTANCEThe emergence of resistant bacteria is a serious global health problem. In the absence of effective treatments, phages are a personalized and effective therapeutic alternative. However, little is still known about phage-host interactions, which are key to implementing effective strategies. Here, we focus on the study of Klebsiella pneumoniae, a highly pathogenic encapsulated bacterium. The complexity and variability of the capsule, where in most cases phage receptors are found, make it difficult for phage-based treatments. Here, we isolated a large collection of Klebsiella phages against all the reference strains and in a cohort of clinical isolates. Our results suggest that clinical isolates represent a challenge, especially high-risk clones. Thus, we propose targeted phage hunting as an effective strategy to implement phage-derived therapies. Our results are a step forward for new phage-based strategies to control K. pneumoniae infections, highlighting the importance of understanding phage-host interactions to design personalized treatments against Klebsiella spp.


Subject(s)
Bacteriophages , Klebsiella Infections , Klebsiella pneumoniae , Phage Therapy , Klebsiella pneumoniae/virology , Klebsiella Infections/microbiology , Klebsiella Infections/therapy , Bacteriophages/physiology , Bacteriophages/isolation & purification , Bacteriophages/genetics , Bacteriophages/classification , Humans , Phage Therapy/methods , Host Specificity , Infection Control/methods , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Serogroup , Bacterial Capsules/metabolism , Cross Infection/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL