Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.863
Filter
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(4): 565-574, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39223021

ABSTRACT

Hymenopteran insect stings are a risk factor that cannot be ignored for the people allergic to hymenopteran venoms.In China,the current diagnostic tools cannot provide accurate information to identify sensitized insects,thus affecting clinical diagnosis and treatment.Honeybee is a common hymenopteran insect.Due to its wide distribution,large number,and complex venom composition,researchers have carried out recombination schemes for the main allergens of honeybee venom,laying a theoretical foundation for the detection of allergens.The development of diagnostic technologies for allergen components can accurately detect bee venom allergens,providing a new set of clinical diagnosis and treatment schemes for the population allergic to bee venom.


Subject(s)
Allergens , Bee Venoms , Bee Venoms/immunology , Allergens/analysis , Allergens/immunology , Animals , Humans , Hypersensitivity/diagnosis , Hypersensitivity/immunology , Bees/immunology
2.
PLoS One ; 19(9): e0301880, 2024.
Article in English | MEDLINE | ID: mdl-39240935

ABSTRACT

Tropilaelaps spp. are invasive mites that cause severe disease in Apis mellifera colonies. The UK has deployed an elaborate surveillance system that seeks to detect these mites early in any invasion to allow the best opportunity to eradicate any incursion. Effective field and laboratory protocols, capable of reliably detecting low numbers of mites, are key to the success of any intervention. Here we compared the efficacy of established field monitoring using brood removal with an uncapping fork, and brood 'bump' methods with novel methods for Tropilaelaps detection modified from Varroa monitoring schemes. In addition, we monitored the efficacy of the laboratory method for screening for mites in hive debris by floating mites in ethanol. Our results clearly indicated that novel methods such as uncapping infested brood with tweezers, catching mite drop using sticky traps and rolling adult bees in icing sugar were all significantly more likely to detect Tropilaelaps than existing methods such as using an uncapping fork on infested brood, or the brood 'bump' method. Existing laboratory protocols that sieved hive debris and then floated the mite containing layer failed to detect Tropilaelaps mites and new efficacious protocols were developed. Our results demonstrated that the national surveillance protocols for Tropilaelaps mite detection required modification to improve the early detection of this damaging invasive mite.


Subject(s)
Mites , Animals , Bees/parasitology
3.
J Pak Med Assoc ; 74(5 (Supple-5)): S36-S38, 2024 May.
Article in English | MEDLINE | ID: mdl-39221796

ABSTRACT

Objectives: To examine the effect of date fruit extract and honey in increasing haemoglobin levels in pregnant women. METHODS: The quasi-experimental study was conducted from July to August 2022 in Rumbai Pesisir Subdistric, Pekanbaru, Indonesia, and comprised anaemic pregnant women with haemoglobin levels <11gm/dl who were not consuming iron tablets or blood boosters. They were given honey and date extracts 2 tablespoons twice daily for two weeks. Haemoglobin level was checked at baseline and then at the end of each week of intervention. Data was analysed using SPSS version 20 and quantitative method by using bivariate analysis. RESULTS: Of the 50 women, 59(98%) were aged 20-35 years, and 1(2%) was aged >35 years. Besides, 21(42%) women were in the second trimester, 17(34%) in third, and 12(24%) in the first trimester of pregnancy. The increase in haemoglobin levels post-intervention was highly significant (p=0.0001). CONCLUSIONS: Date fruit extract and honey increased haemoglobin level of pregnant women.


Subject(s)
Hemoglobins , Honey , Phoeniceae , Plant Extracts , Humans , Female , Pregnancy , Adult , Hemoglobins/analysis , Plant Extracts/therapeutic use , Young Adult , Phoeniceae/chemistry , Bees , Pregnancy Complications, Hematologic/blood , Pregnancy Complications, Hematologic/drug therapy , Indonesia , Animals , Anemia/drug therapy
4.
J Vis Exp ; (210)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39248531

ABSTRACT

Improving understanding of the basic biology and ecology of many insect pollinators, particularly specialist or rare taxa, is a priority for many researchers. As such, there is often a need to temporarily confine field-collected organisms in a non-injurious manner in order to gain information or support additional studies. This protocol represents a thoroughly tested, quick, and inexpensive field method for safely handling bees of conservation concern that can easily be tailored toward specific project needs, including organism identification, pollen removal, marking, and/or collection of non-lethal tissue samples for genetic analysis. This methodology can serve as an additional option in the researcher's toolbox to use when certain scenarios arise. It is anticipated that this methodology can be adapted for use with other insect species as well as used by individuals of varying experience and skill levels. It can be of great value to researchers studying specialist bees or conducting host-specific studies. The data collection made possible by this protocol will be invaluable to help researchers address critical data gaps for many pollinator species, plant-pollinator network structures, and pollinator conservation and management initiatives.


Subject(s)
Pollination , Bees/physiology , Animals , Entomology/methods
5.
PLoS One ; 19(9): e0309000, 2024.
Article in English | MEDLINE | ID: mdl-39231092

ABSTRACT

Planting floral resources is a common strategy for increasing the abundance and diversity of beneficial flower-visiting insects in human-modified systems. However, the context of the local area and surrounding landscape may affect the attractiveness of these floral resource provisioning plots. We compared the relative effects of local floral resources and surrounding urban land-use on the abundance of bees on flowering plants in common gardens in eastern Tennessee, USA. We planted four types of common garden plots at each of five different landscapes representing a variety of surrounding land use: 1) Urban Garden, 2) Forage Grassland, 3) Mixed Agriculture, 4) Forest, and 5) Organic Farm. Each common garden plot type had a fixed plant community representing one of three plant families (Asteraceae, Fabaceae, Lamiaceae) or a mix of all three, and all four common gardens were replicated at all the sites. We concurrently sampled bees in the garden plots and in a 50 m radius (local area) around the garden plots. We found that the size of the floral display (i.e. the visual display size of flowers) and diversity of flowers in the local area did not affect bee abundance or species richness in the garden plots. Although there was a significant positive association between developed land use in a 2 km radius and bee abundance in the gardens, the effect was small, and there was no relationship between land use and bee abundance or species richness in the local area. There were significant differences in the composition of the bee community between the local area and garden plots, but the largest determinants of bee community composition and species richness in the gardens were floral display size and variation in the garden plant species in bloom. This finding is promising for anyone wishing to promote pollinator populations by providing more floral resources.


Subject(s)
Flowers , Bees/physiology , Animals , Gardens , Pollination , Biodiversity , Tennessee , Ecosystem , Agriculture/methods
6.
Sci Rep ; 14(1): 20583, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39232026

ABSTRACT

The conservation of the genetic integrity of Apis mellifera subspecies has emerged as an important objective. In 2019, the Emilia-Romagna region became the first Italian regional authority to issue a law specifically addressing the protection of the native Apis mellifera ligustica subspecies. In this study we analysed a highly informative portion of the mitochondrial DNA (mtDNA), widely used for assessing genetic diversity of honey bee populations. By analysing 1143 honey bees sampled after the introduction of this law, we provided a snapshot of the distribution of mtDNA haplotypes in this region. The two most frequent mtDNA haplotypes were C1 (characteristic of A. m. ligustica) and C2 (characteristic of A. m. carnica), reported in 86.5% and 11.0% of the analysed bees, respectively. About 1.3% and 1.1% of the analysed bees carried mtDNA haplotypes of the A and M lineages (haplotypes A1a, A1e, A4, A26, A65 and two novel ones, A2w and A6a; M3, M3a, M4 and M79). Continued genetic monitoring will be important to assess the impact of this regional law over the coming years. Based on the obtained results, we recommend a more stringent policy to prevent the erosion of the genetic integrity of the native subspecies A. m. ligustica.


Subject(s)
DNA, Mitochondrial , Haplotypes , Animals , Bees/genetics , DNA, Mitochondrial/genetics , Italy , Genetic Variation , Conservation of Natural Resources/legislation & jurisprudence
7.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1968-1978, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39233427

ABSTRACT

Pollination is one of the important ecosystem services related to sustainable development of human society. However, the population diversity and abundance of wild bees, important pollinators, have been significantly reduced by climate change, agricultural intensification, and landscape transformation. Re-establishment of pollinator habitat by planting nectar-producing plants is an important way to maintain pollination service. In this study, we investigated the status of wild bees and the traits of flowering plants in 22 apple orchards during flowering stage in Changping District, Beijing in 2019. We analyzed the response of wild bee diversity to the flowering plant richness, flower color richness, inflorescence type richness, flowering plant coverage, herbaceous layer coverage and different flower color coverage in apple orchards, aiming to provide guidance for the selection of nectar-producing plants to establish the habitat of wild bees. A total of 3517 wild bees were captured during the apple flowering season, representing 49 species, 13 genera, and 5 families. We identified 21 flowering plants species that shared a similar flo-wering period with apple, exhibiting a range of 5 colors and 9 inflorescence types. The Shannon diversity index, evenness index, and social bee richness of wild bee community were positively correlated with flowering plant richness. The total wild bee community richness, social bee richness, underground nesting bee richness were positively correlated with the richness of flowering plant color, but Halictidae bee abundance was negatively correlated with the richness of flowering plant color. The Shannon diversity index and evenness index of wild bee community were positively correlated with the richness of inflorescence types. Megachilidae bee richness was negative correlated with the white flower coverage. Megachilidae bee richness, social bee abundance, and ground nesting bee richness were positively correlated with the purple flower coverage. There was no significant correlation between wild bees and flowering plant richness, flower color richness, inflorescence type richness, flowering plant coverage, herbaceous layer coverage and different flower color coverage in other communities of different families, lifestyles and nesting types. Maintaining diverse ground flowering plants with various traits in orchards is important to improve the diversity of wild bees. In particular, increasing the coverage of purple flower during apple flowering period is helpful to promote the diversity of Megachilidae bee, social bees, and ground nesting bees.


Subject(s)
Biodiversity , Flowers , Malus , Pollination , Bees/physiology , Bees/growth & development , Bees/classification , Malus/growth & development , Malus/classification , Animals , Flowers/growth & development , Ecosystem , China
8.
Food Res Int ; 194: 114872, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232511

ABSTRACT

Apis mellifera ssp. sicula, also known as the Sicilian black honeybee, is a Slow Food Presidium that produces honey with outstanding nutraceutical properties, including high antioxidant capacity. In this study, we used high-resolution proteomics to profile the honey produced by sicula and identify protein classifiers that distinguish it from that made by the more common Italian honeybee (Apis mellifera ssp. ligustica). We profiled the honey proteome of genetically pure sicula and ligustica honeybees bred in the same geographical area, so that chemical differences in their honey only reflected the genetic background of the two subspecies, rather than botanical environment. Differentially abundant proteins were validated in sicula and ligustica honeys of different origin, by using the so-called "rectangular strategy", a proteomic approach commonly used for biomarker discovery in clinical proteomics. Then, machine learning was employed to identify which proteins were the most effective in distinguishing sicula and ligustica honeys. This strategy enabled the identification of two proteins, laccase-5 and venome serine protease 34 isoform X2, that were fully effective in predicting whether honey was made by sicula or ligustica honeybees. In conclusion, we profiled the proteome of sicula honey, identified two protein classifiers of sicula honey in respect to ligustica, and proved that the rectangular strategy can be applied to uncover biomarkers to ascertain food authenticity.


Subject(s)
Honey , Insect Proteins , Machine Learning , Proteomics , Bees , Animals , Honey/analysis , Proteomics/methods , Proteome/analysis
9.
PLoS One ; 19(9): e0292500, 2024.
Article in English | MEDLINE | ID: mdl-39240896

ABSTRACT

Queen honey bees (Apis mellifera) release Queen Mandibular Pheromone (QMP) to regulate traits in the caste of female helpers called workers. QMP signals the queen's presence and suppresses worker reproduction. In the absence of reproduction, young workers take care of the queen and her larvae (nurse tasks), while older workers forage. In nurses, QMP increases lipid stores in abdominal fat tissue (fat body) and protein content in hypopharyngeal glands (HPG). HPG are worker-specific head glands that can synthesize proteinaceous jelly used in colony nourishment. Larger HPG signifies ability to secrete proteinaceous jelly, while shrunken glands characterize foragers that do not make jelly. While it is known that QMP increases abdominal lipid stores, the mechanism is unclear: Does QMP make workers consume more pollen which provides lipids, or does QMP increase lipogenic capacity? Here, we measure abdominal lipogenic capacity as fatty acid synthase (FAS) activity while monitoring abdominal protein content and HPG size in caged workers. Cages allow us to rigorously control worker age, pheromone exposure, and diet. In our 2-factorial design, 3- vs. 8-day-old workers (age factor) were exposed to synthetic QMP or not (pheromone factor) while consuming a lipid deficient diet. We found that QMP did not influence abdominal FAS activity or protein content, but QMP still increased HPG size in the absence of dietary lipids. Our data revealed a positive correlation between abdominal protein content and HPG size. Our findings show that QMP is not a strong modulator of lipogenic capacity in caged worker bees. However, our data may reflect that QMP mobilizes abdominal protein for production of jelly, in line with previous findings on effects of honey bee Brood Pheromone. Overall, our study expands the understanding of how QMP can affect honey bee workers. Such insights are important beyond regulatory biology, as QMP is used in various aspects of beekeeping.


Subject(s)
Lipid Metabolism , Pheromones , Animals , Bees/metabolism , Bees/physiology , Pheromones/metabolism , Lipid Metabolism/drug effects , Female , Hypopharynx/metabolism , Insect Proteins/metabolism , Fatty Acid Synthases/metabolism
10.
Elife ; 132024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235447

ABSTRACT

Odour processing exhibits multiple parallels between vertebrate and invertebrate olfactory systems. Insects, in particular, have emerged as relevant models for olfactory studies because of the tractability of their olfactory circuits. Here, we used fast calcium imaging to track the activity of projection neurons in the honey bee antennal lobe (AL) during olfactory stimulation at high temporal resolution. We observed a heterogeneity of response profiles and an abundance of inhibitory activities, resulting in various response latencies and stimulus-specific post-odour neural signatures. Recorded calcium signals were fed to a mushroom body (MB) model constructed implementing the fundamental features of connectivity between olfactory projection neurons, Kenyon cells (KC), and MB output neurons (MBON). The model accounts for the increase of odorant discrimination in the MB compared to the AL and reveals the recruitment of two distinct KC populations that represent odorants and their aftersmell as two separate but temporally coherent neural objects. Finally, we showed that the learning-induced modulation of KC-to-MBON synapses can explain both the variations in associative learning scores across different conditioning protocols used in bees and the bees' response latency. Thus, it provides a simple explanation of how the time contingency between the stimulus and the reward can be encoded without the need for time tracking. This study broadens our understanding of olfactory coding and learning in honey bees. It demonstrates that a model based on simple MB connectivity rules and fed with real physiological data can explain fundamental aspects of odour processing and associative learning.


Subject(s)
Calcium , Odorants , Smell , Animals , Bees/physiology , Smell/physiology , Calcium/metabolism , Mushroom Bodies/physiology , Olfactory Pathways/physiology , Arthropod Antennae/physiology
11.
Arch Virol ; 169(9): 173, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105883

ABSTRACT

In this study, seven bee viruses of significant importance for bee health in Türkiye were investigated using one-step RT-PCR. For this purpose, larvae from 1183 hives and adult bees from 1196 hives were sampled from 400 apiaries in 40 provinces. The prevalence of viral infections in hives was as follows: acute bee paralysis virus (ABPV), 6.4%; black queen cell virus (BQCV), 77%; chronic bee paralysis virus (CBPV), 3.2%; deformed wing virus (DWV), 63.8%; Israel acute bee paralysis virus (IAPV), 7%; Kashmir bee virus (KBV), 2.7%; sacbrood virus (SBV), 49.7%. Moreover, 50 different combinations of viral infections were identified in the hives. While dual infections (36.1%) were the most common in hives, triple infections with BQCV, DWV, and SBV were found to have the highest prevalence (22.1%). At least one viral infection was detected in all of the apiaries tested. Phylogenetic analysis showed that the isolates from this study generally exhibited the highest similarity to previously reported Turkish isolates. When similarity ratios and the locations and types of amino acid mutations were analyzed, it was observed that the isolates from our study exhibited high similarity to isolates from various countries, including China, the United Kingdom, Syria, and Germany.


Subject(s)
Insect Viruses , Phylogeny , RNA Viruses , Animals , Bees/virology , Insect Viruses/genetics , Insect Viruses/isolation & purification , Insect Viruses/classification , Prevalence , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , Larva/virology , Coinfection/virology , Coinfection/epidemiology , Dicistroviridae/genetics , Dicistroviridae/isolation & purification , Dicistroviridae/classification
12.
Bioinspir Biomim ; 19(5)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39094623

ABSTRACT

Nature abounds with examples of ultra-sensitive perception and agile body transformation for highly efficient predation as well as extraordinary adaptation to complex environments. Flytraps, as a representative example, could effectively detect the most minute physical stimulation of insects and respond instantly, inspiring numerous robotic designs and applications. However, current robotic flytraps face challenges in reproducing the ultra-sensitive insect-touch perception. In addition, fast and fully-covered capture of live insects with robotic flytraps remains elusive. Here we report a novel design of a robotic flytrap with an ultra-sensitive 'trichome' and bistable fast-response 'lobes'. Our results show that the 'trichome' of the proposed robotic flytrap could detect and respond to both the external stimulation of 0.45 mN and a tiny touch of a flying bee with a weight of 0.12 g. Besides, once the 'trichome' is triggered, the bistable 'lobes' could instantly close themselves in 0.2 s to form a fully-covered cage to trap the bees, and reopen to set them free after the tests. We introduce the design, modeling, optimization, and verification of the robotic flytrap, and envision broader applications of this technology in ultra-sensitive perception, fast-response grasping, and biomedical engineering studies.


Subject(s)
Flight, Animal , Robotics , Robotics/instrumentation , Robotics/methods , Animals , Flight, Animal/physiology , Touch/physiology , Equipment Design , Bees/physiology , Biomimetics/methods
13.
Compr Rev Food Sci Food Saf ; 23(5): e13404, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39136999

ABSTRACT

These days, a growing consumer demand and scientific interest can be observed for nutraceuticals of natural origin, including apiculture products. Due to the growing emphasis on environmental protection, extensive research has been conducted on the pesticide and heavy metal contamination of bee products; however, less attention is devoted on other food safety aspects. In our review, scientific information on the less-researched food safety hazards of honey, bee bread, royal jelly, propolis, and beeswax are summarized. Bee products originating from certain plants may inherently contain phytotoxins, like pyrrolizidine alkaloids, tropane alkaloids, matrine alkaloids, grayanotoxins, gelsemium alkaloids, or tutin. Several case studies evidence that bee products can induce allergic responses to sensitive individuals, varying from mild to severe symptoms, including the potentially lethal anaphylaxis. Exposure to high temperature or long storage may lead to the formation of the potentially toxic 5-hydroxymethylfurfural. Persistent organic pollutants, radionuclides, and microplastics can potentially be transferred to bee products from contaminated environmental sources. And lastly, inappropriate beekeeping practices can lead to the contamination of beekeeping products with harmful microorganisms and mycotoxins. Our review demonstrates the necessity of applying good beekeeping practices in order to protect honeybees and consumers of their products. An important aim of our work is to identify key knowledge gaps regarding the food safety of apiculture products.


Subject(s)
Beekeeping , Food Safety , Honey , Bees/drug effects , Honey/analysis , Animals , Food Contamination/analysis , Propolis/adverse effects , Propolis/chemistry , Waxes/adverse effects , Waxes/chemistry , Fatty Acids
14.
Arch Insect Biochem Physiol ; 116(4): e22099, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39137216

ABSTRACT

Nosema ceranae is a microsporidian parasite that threatens current apiculture. N. ceranae-infected honey bees (Apis mellifera) exhibit morbid physiological impairments and reduced honey production, malnutrition, shorter life span, and higher mortality than healthy honey bees. In this study, we found that dimethyl sulfoxide (DMSO) could enhance the survival rate of N. ceranae-infected honey bees. Therefore, we investigated the effect of DMSO on N. ceranae-infected honey bees using comparative RNA sequencing analysis. Our results revealed that DMSO was able to affect several biochemical pathways, especially the metabolic-related pathways in N. ceranae-infected honey bees. Based on these findings, we conclude that DMSO may be a useful alternative for treating N. ceranae infection in apiculture.


Subject(s)
Dimethyl Sulfoxide , Nosema , Animals , Nosema/drug effects , Nosema/physiology , Bees/microbiology , Dimethyl Sulfoxide/pharmacology , Microsporidiosis/veterinary
15.
Sci Data ; 11(1): 860, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122730

ABSTRACT

We present a one-year-long multi-sensor dataset collected from honey bee colonies (Apis mellifera) with rich phenotypic measurements. Data were collected non-stop from April 2020 to April 2021 from 53 hives located at two apiaries in Québec, Canada. The sensor data included audio features, temperature, and relative humidity. The phenotypic measurements contained beehive population, number of brood cells (eggs, larva and pupa), Varroa destructor infestation levels, defensive and hygienic behaviors, honey yield, and winter mortality. Our study is amongst the first to combine a wide variety of phenotypic trait measurements annotated by apicultural science experts with multi-sensor data, which facilitate a broader scope of analysis. We first summarize the data collection procedure, sensor data pre-processing steps, and data composition. We then provide an overview of the phenotypic data distribution as well as a visualization of the sensor data patterns. Lastly, we showcase several hive monitoring applications based on sensor data analysis and machine learning, such as winter mortality prediction, hive population estimation, and the presence of an active and laying queen.


Subject(s)
Phenotype , Bees , Animals , Varroidae , Honey , Quebec , Machine Learning , Seasons
16.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39126278

ABSTRACT

World food supplies rely on pollination, making this plant-animal relationship a highly valued ecosystem service. Bees pollinate flowering plants in rangelands that constitute up to half of global terrestrial vegetation. Livestock grazing is the most widespread rangeland use and can affect insect pollinators through herbivory. We examined management effects on bee abundance and other insect pollinators on grazed and idle sagebrush rangelands in central Montana, USA. From 2016 to 2018, we sampled pollinators on lands enrolled in rest-rotation grazing, unenrolled grazing lands, and geographically separate idle lands without grazing for over a decade. Bare ground covered twice as much area (15% vs. 7) with half the litter (12% vs. 24) on grazed than idle regardless of enrollment. Bee pollinators were 2-3 times more prevalent in grazed than idle in 2016-2017. In 2018, bees were similar among grazed and idled during an unseasonably wet and cool summer that depressed pollinator catches; captures of secondary pollinators was similar among treatments 2 of 3 study years. Ground-nesting bees (94.6% of total bee abundance) were driven by periodic grazing that maintained bare ground and kept litter accumulations in check. In contrast, idle provided fewer nesting opportunities for bees that were mostly solitary, ground-nesting genera requiring unvegetated spaces for reproduction. Managed lands supported higher bee abundance that evolved with bison grazing on the eastern edge of the sagebrush ecosystem. Our findings suggest that periodic disturbance may enhance pollinator habitat, and that rangelands may benefit from periodic grazing by livestock.


Subject(s)
Artemisia , Conservation of Natural Resources , Ecosystem , Pollination , Animals , Bees/physiology , Artemisia/physiology , Montana , Herbivory , Livestock
17.
Virology ; 598: 110191, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098182

ABSTRACT

Chronic bee paralysis virus (CBPV) is a Apis mellifera viral infectious disease, exhibiting dark and hairless abdomen in workers with tremors and ataxita. Clinical signs are also typically linked to adverse weather conditions and overcrowding in the hive. The disease occurs in spring but recently it has been observed cases increase and seasonality loss of the disease incidence. This study analyses the evolution of CBPV in Italy, through data collected from 2009 to 2023 within three monitoring projects comprising nationwide extended detection networks, aimed to investigate the evolution of the CBPV spatial distribution, identifying high-risk areas for the virus spread. This study highlights an increased risk over years. Prevalence increased from 4.3% during 2009-2010 to 84.7% during 2021-2023 monitoring years. CBPV outbreaks were irregular between investigated seasons, highlighting Spring and Autumn as the most susceptible seasons. Risk of CBPV infection has increased, reaching high-risk in last years of monitoring. Sequence analysis showed a high similarity to other isolated Italian CBPVs. The study offers an epidemiological insight into the aetiology of this disease. CBPV distribution is a prerequisite to predict its future spread and factors involved in its propagation not only in honey bees but also in other pollinators and environments.


Subject(s)
Insect Viruses , Seasons , Bees/virology , Animals , Italy/epidemiology , Insect Viruses/genetics , Insect Viruses/classification , Insect Viruses/isolation & purification , Phylogeny , Spatio-Temporal Analysis , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , Prevalence , Disease Outbreaks/veterinary
18.
Sci Rep ; 14(1): 18263, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107328

ABSTRACT

The targeted pollination strategy has shown positive results in directing honey bees to crop flowers offering nectar along with pollen as reward. Kiwifruit is a functionally dioecious species, which relies on bees to transport pollen from staminate to pistillate nectarless flowers. Following the targeted pollination procedures recently validated, we first developed a mimic odor (KM) based on kiwifruit floral volatiles for which bees showed the highest level of generalization to the natural floral scent, although the response towards pistillate flowers was higher than towards staminate flowers. Then, in the field, feeding colonies KM-scented sucrose solution resulted in higher amounts of kiwifruit pollen collected by honey bees compared to control colonies fed unscented sucrose solution. Our results support the hypothesis that olfactory conditioning bees biases their foraging preferences in a nectarless crop, given the higher visitation to target flowers despite having provided the mimic odor paired with a sugar reward.


Subject(s)
Flowers , Odorants , Plant Nectar , Pollination , Animals , Bees/physiology , Odorants/analysis , Sugars/analysis , Sugars/metabolism , Pollen/chemistry , Feeding Behavior/physiology , Actinidia , Sucrose/metabolism , Volatile Organic Compounds/analysis
19.
Sci Rep ; 14(1): 18274, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107404

ABSTRACT

Nursing honeybees produce brood food with millimolar concentrations of acetylcholine (ACh), which is synthesized through head gland secretions mixed with honey stomach contents. While we previously demonstrated the necessity of ACh for proper larval development, the dynamics of ACh levels throughout ontogenesis and their seasonal variations have remained unclear until now. Our HPLC analysis reveals dependencies of choline and ACh levels on larval development days (LDDs), influenced by seasonal (April-September) variations. Median ACh concentrations peak on LDD 2, declining significantly toward cell capping, while choline levels are lowest during the initial LDDs, rising markedly toward cell capping. Seasonal patterns show peak ACh levels from April to June and a low in August, paralleling choline's peak in July and low in August. This seasonality holds consistently across multiple years (2020-2022) and colonies, despite potential variations in colony performance and environmental conditions. Our analysis found no correlation between temperature, sunshine, precipitation, or favourable foraging days and ACh/choline levels, suggesting the involvement of additional factors. These findings underscore the seasonal fluctuation of ACh levels and its potential implications for the genetic programs governing winter bee development.


Subject(s)
Acetylcholine , Choline , Seasons , Animals , Bees/metabolism , Bees/physiology , Choline/metabolism , Choline/analysis , Acetylcholine/metabolism , Acetylcholine/analysis , Larva/metabolism , Honey/analysis , Age Factors
20.
Sci Rep ; 14(1): 19343, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164401

ABSTRACT

The insect wing is one of the most important characteristics that allowed insects to occupy most of the habitats on the planet. Honeybee wings has been the subject of studies on the venation abnormalities. A total of 424 honeybees from 14 locations were collected and all four wings were removed and examined for 19 abnormalities on the forewings and 6 abnormalities on the hindwings. In general, supernumerary veins were the most common abnormalities seen and abnormalities no. 23, 2, 6, 1, 5, 21, 10, 13 had the highest and abnormalities no. 11, 17, 18, 19, 20, and 25 had the lowest frequencies. All of the abnormalities had similar frequencies in the right and left wings in the population. In terms of correlation between 25 abnormalities, abnormality pairs AB3-AB13, AB6-AB7, AB7-AB8, AB10-AB12, AB16-AB17 on the forewing and AB2-AB23, AB12-AB20, AB12-AB24, AB13-AB21, AB16-AB25, and AB17-AB25 between the forewing and hindwing show significant positive correlations and abnormality pairs AB4-AB5, AB7-AB15 and AB8-AB9 on the forewing show significant negative correlations with each other. In terms of the differential occurrence of abnormalities , a few locations differed significantly from other locations. This study provides some insights into the nature of these abnormalities on the honeybee wings.


Subject(s)
Wings, Animal , Animals , Bees , Wings, Animal/anatomy & histology , Wings, Animal/abnormalities , Iran , Veins/abnormalities
SELECTION OF CITATIONS
SEARCH DETAIL