Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 442
Filter
1.
Front Immunol ; 15: 1437413, 2024.
Article in English | MEDLINE | ID: mdl-39359723

ABSTRACT

Envenoming resulting from Apis honeybee stings pose a neglected public health concern, with clinical complications ranging from mild local reactions to severe systemic manifestations. This review explores the mechanisms underlying envenoming by honeybee sting, discusses diagnostic approaches, and reviews current pharmacological interventions. This section explores the diverse clinical presentations of honeybee envenoming, including allergic and non-allergic reactions, emphasizing the need for accurate diagnosis to guide appropriate medical management. Mechanistic insights into the honeybee venom's impact on physiological systems, including the immune and cardiovascular systems, are provided to enhance understanding of the complexities of honeybee sting envenoming. Additionally, the article evaluates emerging diagnostic technologies and therapeutic strategies, providing a critical analysis of their potential contributions to improved patient outcomes. This article aims to provide current knowledge for healthcare professionals to effectively manage honeybee sting envenoming, thereby improving patient care and treatment outcomes.


Subject(s)
Bee Venoms , Insect Bites and Stings , Bees/immunology , Animals , Insect Bites and Stings/immunology , Insect Bites and Stings/diagnosis , Insect Bites and Stings/therapy , Humans , Bee Venoms/immunology , Bee Venoms/adverse effects
2.
PLoS One ; 19(10): e0311415, 2024.
Article in English | MEDLINE | ID: mdl-39365765

ABSTRACT

The honey bee, Apis mellifera L., is one of the main pollinators worldwide. In a temperate climate, seasonality affects the life span, behavior, physiology, and immunity of honey bees. In consequence, it impacts their interaction with pathogens and parasites. In this study, we used Bayesian statistics and modeling to examine the immune response dynamics of summer and winter honey bee workers after injection with the heat-killed bacteria Serratia marcescens, an opportunistic honey bee pathogen. We investigated the humoral and cellular immune response at the transcriptional and functional levels using qPCR of selected immune genes, antimicrobial activity assay, and flow cytometric analysis of hemocyte concentration. Our data demonstrate increased antimicrobial activity at transcriptional and functional levels in summer and winter workers after injection, with a stronger immune response in winter bees. On the other hand, an increase in hemocyte concentration was observed only in the summer bee population. Our results indicate that the summer population mounts a cellular response when challenged with heat-killed S. marcescens, while winter honey bees predominantly rely on humoral immune reactions. We created a model describing the honey bee immune response dynamics to bacteria-derived components by applying Bayesian statistics to our data. This model can be employed in further research and facilitate the investigating of the honey bee immune system and its response to pathogens.


Subject(s)
Seasons , Serratia marcescens , Bees/immunology , Bees/microbiology , Animals , Serratia marcescens/immunology , Bayes Theorem , Hemocytes/immunology , Hot Temperature , Immunity, Cellular , Immunity, Humoral
3.
J Insect Sci ; 24(5)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39382172

ABSTRACT

Dietary supplementation has been proposed as a sustainable way to improve the health and resilience of honey bees (Apis mellifera, L.), as the decline in their numbers in recent decades has raised scientific, environmental, and economic concerns. Spermidine, a natural polyamine, has been shown to be a promising substance for honey bee supplementation, as its health-promoting effects have been demonstrated in numerous studies and in different organisms. As already shown, supplementation with spermidine at a certain concentration prolonged lifespan, reduced oxidative stress, and increased antioxidative capacity in honey bees. The aim of the present study was to investigate whether spermidine supplementation affects gene expression and/or enzyme activity of antioxidative and detoxification enzymes and immune response markers in honey bee workers. The different gene expression and enzyme activity patterns observed in abdominal and head tissues in response to spermidine supplementation suggest tissue-specific and concentration-dependent effects. In addition, the immune response markers suggest that spermidine has the ability to boost honey bee immunity. The observed changes make a valuable contribution to understanding the molecular mechanisms by which spermidine may exert its beneficial effects on the bee's health and lifespan. These results support the idea of the use of spermidine supplementation to promote bee health and resilience to environmental stressors, emphasizing that the dose must be carefully chosen to achieve a balance between the pro- and antioxidant effects of spermidine.


Subject(s)
Dietary Supplements , Spermidine , Animals , Bees/drug effects , Bees/immunology , Spermidine/pharmacology , Dietary Supplements/analysis , Antioxidants/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics
4.
PeerJ ; 12: e17978, 2024.
Article in English | MEDLINE | ID: mdl-39285925

ABSTRACT

There is growing concern that some managed and wild insect pollinator populations are in decline, potentially threatening biodiversity and sustainable food production on a global scale. In recent years, there has been increasing evidence that sub-lethal exposure to neurotoxic, neonicotinoid pesticides can negatively affect pollinator immunocompetence and could amplify the effects of diseases, likely contributing to pollinator declines. However, a direct pathway connecting neonicotinoids and immune functions remains elusive. In this study we show that haemocytes and non-neural tissues of the honeybee Apis mellifera express the building blocks of the nicotinic acetylcholine receptors that are the target of neonicotinoids. In addition, we demonstrate that the haemocytes, which form the cellular arm of the innate immune system, actively express choline acetyltransferase, a key enzyme necessary to synthesize acetylcholine. In a last step, we show that the expression of this key enzyme is affected by field-realistic doses of clothianidin, a widely used neonicotinoid. These results support a potential mechanistic framework to explain the effects of sub-lethal doses of neonicotinoids on the immune function of pollinators.


Subject(s)
Acetylcholine , Guanidines , Hemocytes , Insecticides , Neonicotinoids , Animals , Bees/drug effects , Bees/immunology , Insecticides/toxicity , Neonicotinoids/toxicity , Acetylcholine/metabolism , Hemocytes/drug effects , Hemocytes/immunology , Hemocytes/metabolism , Guanidines/toxicity , Thiazoles , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/drug effects , Choline O-Acetyltransferase/metabolism
5.
Article in English | MEDLINE | ID: mdl-39233113

ABSTRACT

The honey bee (Apis mellifera L.), as an eusocial insect species, is an important model organism in research focusing on ageing and longevity, due to prominent seasonal lifespan plasticity within the worker caste (summer and winter worker bees). In this study, we employed a screening approach to evaluate several molecular parameters, providing comprehensive insights into the antioxidative (superoxide dismutase and catalase activity, reduced glutathione and sulfhydryl group content, total antioxidative capacity), detoxifying (glutathione S-transferase and acetylcholinesterase activity), and immune (phenol oxidase and glucose oxidase activity) status, as well as vitellogenin content, in the summer and winter generation of honey bees, across ageing stages and in two body compartments: the whole abdomen and the head. Summer worker bees were collected weekly for six weeks, while winter bees were collected monthly for five months. The results of our study clearly indicate a reduced overall antioxidative capacity of older groups of worker bees from both generations, while the parameters of immune responsiveness mostly contributed to the separation between the two generations based on season rather than age categories. Detoxification ability appeared to be more susceptible to environmental factors. An age-dependent increase in vitellogenin content was recorded in the abdomen, but without seasonal differences. These findings provide an excellent starting point for further investigations into age-related changes, particularly within the context of honey bee sociality.


Subject(s)
Aging , Oxidative Stress , Vitellogenins , Animals , Bees/immunology , Bees/physiology , Vitellogenins/metabolism , Antioxidants/metabolism , Seasons , Glutathione Transferase/metabolism , Inactivation, Metabolic , Catalase/metabolism , Glutathione/metabolism , Superoxide Dismutase/metabolism , Oxidation-Reduction
6.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(4): 565-574, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39223021

ABSTRACT

Hymenopteran insect stings are a risk factor that cannot be ignored for the people allergic to hymenopteran venoms.In China,the current diagnostic tools cannot provide accurate information to identify sensitized insects,thus affecting clinical diagnosis and treatment.Honeybee is a common hymenopteran insect.Due to its wide distribution,large number,and complex venom composition,researchers have carried out recombination schemes for the main allergens of honeybee venom,laying a theoretical foundation for the detection of allergens.The development of diagnostic technologies for allergen components can accurately detect bee venom allergens,providing a new set of clinical diagnosis and treatment schemes for the population allergic to bee venom.


Subject(s)
Allergens , Bee Venoms , Bee Venoms/immunology , Allergens/analysis , Allergens/immunology , Animals , Humans , Hypersensitivity/diagnosis , Hypersensitivity/immunology , Bees/immunology
7.
J Hazard Mater ; 479: 135650, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39216249

ABSTRACT

Emerging nanopesticides are gradually gaining widespread application in agriculture due to their excellent properties, but their potential risks to pollinating insects are not fully understood. In this study, lambda-cyhalothrin nanocapsules (LC-NCs) were constructed by electrostatic self-assembly method with iron mineralization optimization, and their effects on bee gut microbial communities and host immune-related factors were investigated. Microbiome sequencing revealed that LC-NCs increase the diversity of gut microbial communities and reduce the complexity of network features, disrupting the overall structure of the microbial communities. In addition, LC-NCs also had systemic effects on the immune response of bees, including increased activity of SOD and CAT enzymes and expression of their genes, as well as downregulation of Defensin1. Furthermore, we noticed that the immune system of the host was activated simultaneously with a rise in the abundance of beneficial bacteria in the gut. Our research emphasizes the importance of both the host and gut microbiota of holobiont in revealing the potential risks of LC-NCs to environmental indicators of honey bees, and provides references for exploring the interactions between host-microbiota systems under exogenous stress. At the same time, we hope that more research can focus on the potential impacts of nanopesticides on the ecological environment.


Subject(s)
Gastrointestinal Microbiome , Insecticides , Nanocapsules , Nitriles , Pyrethrins , Animals , Bees/drug effects , Bees/microbiology , Bees/immunology , Pyrethrins/toxicity , Gastrointestinal Microbiome/drug effects , Nitriles/toxicity , Insecticides/toxicity , Nanocapsules/toxicity , Superoxide Dismutase/metabolism , Catalase/metabolism
8.
Sci Rep ; 14(1): 17285, 2024 07 27.
Article in English | MEDLINE | ID: mdl-39068210

ABSTRACT

With their long lives and extreme reproductive output, social insect queens have escaped the classic trade-off between fecundity and lifespan, but evidence for a trade-off between fecundity and immunity has been inconclusive. This is in part because pathogenic effects are seldom decoupled from effects of immune induction. We conducted parallel, blind virus infection experiments in the laboratory and in the field to interrogate the idea of a reproductive immunity trade-off in honey bee (Apis mellifera) queens and to better understand how these ubiquitous stressors affect honey bee queen health. We found that queens injected with infectious virus had smaller ovaries and were less likely to recommence egg-laying than controls, while queens injected with UV-inactivated virus displayed an intermediate phenotype. In the field, heavily infected queens had smaller ovaries and infection was a meaningful predictor of whether supersedure cells were observed in the colony. Immune responses in queens receiving live virus were similar to queens receiving inactivated virus, and several of the same immune proteins were negatively associated with ovary mass in the field. This work supports the hypothesized relationship between virus infection and symptoms associated with queen failure and suggests that a reproductive-immunity trade-off is partially, but not wholly responsible for these effects.


Subject(s)
Ovary , Virus Diseases , Animals , Bees/virology , Bees/physiology , Bees/immunology , Female , Ovary/virology , Virus Diseases/immunology , Reproduction , Oviposition , Fertility
9.
J Invertebr Pathol ; 205: 108124, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729295

ABSTRACT

The most common viral diseases affecting honey bees (Apis mellifera) in Israel include deformed wing viruses (DWV-A and DWV-B) and acute paralysis viruses (ABPV and IAPV). These viruses are transmitted within and between colonies, both horizontally and vertically. All members of the colony contribute to this transmission, on the other hand individual and social immunity, particularly hygienic behaviour, may affect the outcome of the process. In this study, we evaluated the ontogeny of natural infections of DWV-A, DWV-B, ABPV and IAPV, their prevalence and loads, in workers and drones from high (H) and low (L) hygienic colonies. In parallel, we evaluated the expression of two immune genes: peptidoglycan recognition protein S2(PGRP-S2) and hymenoptaecin. The prevalence of DWV-B and IAPV increased with age and was higher in workers than in drones. ABPV was not detected in drones. The expression of both immune genes was significantly affected by age and sex. Drones from H colonies had higher expression of these genes. The increased expression of immune genes with drones' age, particularly in hygienic colonies, suggest additional value of honey bee breeding for hygienic behaviour for sustainable beekeeping.


Subject(s)
Insect Proteins , Bees/virology , Bees/immunology , Animals , Insect Proteins/genetics , Dicistroviridae , RNA Viruses , Carrier Proteins/genetics , Female , Antimicrobial Cationic Peptides , Male
10.
J Invertebr Pathol ; 204: 108109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631557

ABSTRACT

Varroa destructor is one of the most destructive enemies of the honey bee, Apis mellifera all around the world. Several control methods are known to control V. destructor, but the efficacy of several alternative control methods remains unexplored. Irradiation can be one of these unknown solutions but before practical application, the effectiveness, and the physiological effects of ionizing radiation on the host and the parasite are waiting to be tested. Therefore, the objective of our study was to investigate the effects of different doses (15, 50, 100, and 150 Gy) of high-energy X-ray irradiation through mortality rates and hemocyte composition changes in A. mellifera workers and record the mortality rates of the parasite. The mortality rate was recorded during short-term (12, 24, and 48 h) and long-term periods (3, 6, 12, 18, and 24d). The sensitivity of the host and the parasite in case of the higher doses of radiation tested (50, 100, and 150 Gy) been demonstrated by total mortality of the host and 90 % of its parasite has been observed on the 18th day after the irradiation. V. destructor showed higher sensitivity (1.52-times higher than the adult honey bee workers) at the lowest dose (15 Gy). A. mellifera hemocytes were influenced significantly by radiation dosage and the elapsed time after treatment. The higher radiation doses increased plasmatocyte numbers in parallel with the decrease in prohemocyte numbers. On the contrary, the numbers of granulocytes and oencoytes increased in the treated samples, but the putative effects of the different dosages on the recorded number of these hemocyte types could not be statistically proven. In summary, based on the outcome of our study X-ray irradiation can be deemed an effective tool for controlling phoretic V. destructor. However, further research is needed to understand the physiological response of the affected organisms.


Subject(s)
Hemocytes , Hemolymph , Varroidae , Animals , Bees/parasitology , Bees/radiation effects , Bees/immunology , Varroidae/radiation effects , X-Rays , Hemolymph/radiation effects , Hemolymph/parasitology , Hemocytes/radiation effects , Hemocytes/immunology , Host-Parasite Interactions/radiation effects
11.
J Insect Sci ; 23(6)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38055943

ABSTRACT

Managed populations of honey bees (Apis mellifera Linnaeus; Hymenoptera: Apidae) are regularly exposed to infectious diseases. Good hive management including the occasional application of antibiotics can help mitigate infectious outbreaks, but new beekeeping tools and techniques that bolster immunity and help control disease transmission are welcome. In this review, we focus on the applications of beneficial microbes for disease management as well as to support hive health and sustainability within the apicultural industry. We draw attention to the latest advances in probiotic approaches as well as the integration of fermented foods (such as water kefir) with disease-fighting properties that might ultimately be delivered to hives as an alternative or partial antidote to antibiotics. There is substantial evidence from in vitro laboratory studies that suggest beneficial microbes could be an effective method for improving disease resistance in honey bees. However, colony level evidence is lacking and there is urgent need for further validation via controlled field trials experimentally designed to test defined microbial compositions against specific diseases of interest.


Subject(s)
Beekeeping , Bees , Fermentation , Gastrointestinal Microbiome , Probiotics , Animals , Anti-Bacterial Agents/immunology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Beekeeping/methods , Bees/drug effects , Bees/immunology , Bees/microbiology , Fermentation/immunology , Gastrointestinal Microbiome/immunology , Probiotics/pharmacology , Probiotics/therapeutic use
12.
Proc Natl Acad Sci U S A ; 120(33): e2219634120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37556501

ABSTRACT

Host specificity is observed in gut symbionts of diverse animal lineages. But how hosts maintain symbionts while rejecting their close relatives remains elusive. We use eusocial bees and their codiversified gut bacteria to understand host regulation driving symbiotic specificity. The cross-inoculation of bumblebee Gilliamella induced higher prostaglandin in the honeybee gut, promoting a pronounced host response through immune deficiency (IMD) and Toll pathways. Gene silencing and vitamin C treatments indicate that reactive oxygen species (ROS), not antimicrobial peptides, acts as the effector in inhibiting the non-native strain. Quantitative PCR and RNAi further reveal a regulatory function of the IMD and Toll pathways, in which Relish and dorsal-1 may regulate Dual Oxidase (Duox) for ROS production. Therefore, the honeybee maintains symbiotic specificity by creating a hostile gut environment to exotic bacteria, through differential regulation of its immune system, reflecting a co-opting of existing machinery evolved to combat pathogens.


Subject(s)
Bees , Host Specificity , Immunologic Deficiency Syndromes , Toll-Like Receptors , Animals , Bacteria , Bees/immunology , Bees/microbiology , Dual Oxidases , Immunity , Reactive Oxygen Species , Toll-Like Receptors/metabolism
13.
Int J Mol Sci ; 24(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36674732

ABSTRACT

MiRNAs are critical regulators of numerous physiological and pathological processes. Ascosphaera apis exclusively infects bee larvae and causes chalkbrood disease. However, the function and mechanism of miRNAs in the bee larval response to A. apis infection is poorly understood. Here, ame-miR-34, a previously predicted miRNA involved in the response of Apis mellifera larvae to A. apis invasion, was subjected to molecular validation, and overexpression and knockdown were then conducted to explore the regulatory functions of ame-miR-34 in larval body weight and immune response. Stem-loop RT-PCR and Sanger sequencing confirmed the authenticity of ame-miR-34 in the larval gut of A. mellifera. RT-qPCR results demonstrated that compared with that in the uninfected larval guts, the expression level of ame-miR-34 was significantly downregulated (p < 0.001) in the guts of A. apis-infected 4-, 5-, and 6-day-old larvae, indicative of the remarkable suppression of host ame-miR-34 due to A. apis infection. In comparison with the corresponding negative control (NC) groups, the expression level of ame-miR-34 in the larval guts in the mimic-miR-34 group was significantly upregulated (p < 0.001), while that in the inhibitor-miR-34 group was significantly downregulated (p < 0.01). Similarly, effective overexpression and knockdown of ame-miR-34 were achieved. In addition, the body weights of 5- and 6-day-old larvae were significantly increased compared with those in the mimic-NC group; the weights of 5-day-old larvae in the inhibitor-miR-34 group were significantly decreased in comparison with those in the inhibitor-NC group, while the weights of 4- and 6-day-old larvae in the inhibitor-miR-34 group were significantly increased, indicating the involvement of ame-miR-34 in modulating larval body weight. Furthermore, the expression levels of both hsp and abct in the guts of A. apis-infected 4-, 5-, and 6-day-old larvae were significantly upregulated after ame-miR-34 overexpression. In contrast, after ame-miR-34 knockdown, the expression levels of the aforementioned two key genes in the A. apis-infected 4-, 5-, and 6-day-old larval guts were significantly downregulated. Together, the results demonstrated that effective overexpression and knockdown of ame-miR-34 in both noninfected and A. apis-infected A. mellifera larval guts could be achieved by the feeding method, and ame-miR-34 exerted a regulatory function in the host immune response to A. apis invasion through positive regulation of the expression of hsp and abct. Our findings not only provide a valuable reference for the functional investigation of bee larval miRNAs but also reveal the regulatory role of ame-miR-34 in A. mellifera larval weight and immune response. Additionally, the results of this study may provide a promising molecular target for the treatment of chalkbrood disease.


Subject(s)
Arthrodermataceae , Bees , MicroRNAs , Animals , Bees/genetics , Bees/immunology , Bees/microbiology , Body Weight , Immunity , Larva/immunology , MicroRNAs/genetics , MicroRNAs/metabolism , Arthrodermataceae/physiology
14.
J Insect Sci ; 22(2)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35303101

ABSTRACT

Laboratory experiments have advanced our understanding of honey bee (Apis mellifera) responses to environmental factors, but removal from the hive environment may also impact physiology. To examine whether the laboratory environment alters the honey bee gut bacterial community and immune responses, we compared bacterial community structure (based on amplicon sequence variant relative abundance), total bacterial abundance, and immune enzyme (phenoloxidase and glucose oxidase) activity of cohort honey bee workers kept under laboratory and hive conditions. Workers housed in the laboratory showed differences in the relative abundance of their core gut taxa, an increase in total gut bacterial abundance, and reduced phenoloxidase activity, compared to bees housed in hives.


Subject(s)
Bees , Gastrointestinal Microbiome , Animals , Bacteria , Bees/immunology , Bees/microbiology , Immunity
15.
J Insect Sci ; 22(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35137131

ABSTRACT

Transgenerational immune priming is the process of increased resistance to infection in offspring due to parental pathogen exposure. Honey bees (Apis mellifera L. (Hymenoptera: Apidae)) are hosts to multiple pathogens, and this complex immune function could help protect against overwhelming infection. Honey bees have demonstrated transgenerational immune priming for the bacterial pathogen Paenibacillus larvae; however, evidence for viral transgenerational immune priming is lacking across insects in general. Here we test for the presence of transgenerational immune priming in honey bees with Deformed wing virus (DWV) by injecting pupae from DWV-exposed queens and measuring virus titer and immune gene expression. Our data suggest that there is evidence for viral transgenerational immune priming in honey bees, but it is highly context-dependent based on route of maternal exposure and potentially host genetics or epigenetic factors.


Subject(s)
Bees , Insect Viruses , RNA Viruses , Animals , Bees/immunology , Bees/virology , Female , Maternal Exposure , Pupa , Viral Load
16.
J Insect Sci ; 22(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35137136

ABSTRACT

The effects of honey bee management, such as intensive migratory beekeeping, are part of the ongoing debate concerning causes of colony health problems. Even though comparisons of disease and pathogen loads among differently managed colonies indicate some effects, the direct impact of migratory practices on honey bee pathogens is poorly understood. To test long- and short-term impacts of managed migration on pathogen loads and immunity, experimental honey bee colonies were maintained with or without migratory movement. Individuals that experienced migration as juveniles (e.g., larval and pupal development), as adults, or both were compared to control colonies that remained stationary and therefore did not experience migratory relocation. Samples at different ages and life-history stages (hive bees or foragers), taken at the beginning and end of the active season, were analyzed for pathogen loads and physiological markers of health. Bees exposed to migratory management during adulthood had increased levels of the AKI virus complex (Acute bee paralysis, Kashmir bee, and Israeli acute bee paralysis viruses) and decreased levels of antiviral gene expression (dicer-like). However, those in stationary management as adults had elevated gut parasites (i.e. trypanosomes). Effects of environment during juvenile development were more complex and interacted with life-history stage and season. Age at collection, life-history stage, and season all influenced numerous factors from viral load to immune gene expression. Although the factors that we examined are not independent, the results illuminate potential factors in both migratory and nonmigratory beekeeping that are likely to contribute to colony stress, and also indicate potential mitigation measures.


Subject(s)
Beekeeping/methods , Bees , Seasons , Animals , Bees/genetics , Bees/immunology , Bees/virology , Gene Expression
17.
J Insect Sci ; 22(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35137137

ABSTRACT

Honey bees are eusocial animals that exhibit both individual and social immune responses, which influence colony health. This is especially well-studied regarding the mite Varroa destructor Anderson and Trueman (Parasitiformes: Varroidae), a parasite of honey bee brood and disease vector. Varroa was introduced relatively recently to Apis mellifera L. (Hymenoptera: Apidae) and is a major driver of the catastrophic die-off of honey bee colonies in the last decade. In contrast, the original host species, Apis cerana Fabricius (Hymenoptera: Apidae) is able to survive mite infestations with little effect on colony health and survival. This resilience is due in part to a newly identified social immune response expressed by developing worker brood. Varroa infested female A. cerana brood experience delayed development and eventually die in a process called 'social apoptosis'. Here, an individual's susceptibility to Varroa results in colony level resistance. We tested for the presence of the social apoptosis trait in two Varroa resistant stocks of A. mellifera (Pol-line and Russian) with different selection histories and compared them to a known Varroa-susceptible stock (Italian). We assessed the survival and development of worker brood reared in either highly or lightly infested host colonies, then receiving one of three treatments: uninfested, experimentally inoculated with a Varroa mite, or wounded to simulate Varroa damage. We found that response to treatment was only differentiated in brood reared in lightly infested host colonies, where experimentally infested Russian honey bees had decreased survival relative to the mite-susceptible Italian stock. This is the first evidence that social apoptosis can exist in Western honey bee populations.


Subject(s)
Bees/parasitology , Disease Resistance , Varroidae , Animals , Bees/immunology , Female , Host Specificity , Mite Infestations/veterinary
18.
Microbiol Spectr ; 10(1): e0189621, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34985299

ABSTRACT

Honeybee gut microbiota plays an important role in host physiology and metabolism. Recent studies have shown that the influence of the resident microorganisms in the regulation of honeybee immune system is profound, which protects against the pathogen Serratia marcescens. However, only few of the core gut members in the regulation of immune functions have been studied. Here, we explored how different bee gut bacterial species aided in the clearance of the pathogenic Hafnia alvei, which causes bee septicemia with a high mortality rate. We found that both Gilliamella apicola W8136 and Lactobacillus apis W8172 protect honeybees from the opportunistic pathogen, while two other strains from Gilliamella and Lactobacillus did not affect the invasion of H. alvei. Transcriptomic analysis revealed that gut species induced different expression profiles in the gut. Specifically, two regulator genes from the Toll pathway, PGRP-S3 recognizing Gram-positive and Spätzle that bind to the Toll protein for the downstream signal transduction, were elevated by L. apis. Correspondingly, multiple genes encoding antibacterial proteins were also stimulated by L. apis. Interestingly, we found an increased expression of apidaecin, which also exhibited a high in vitro inhibitory effect on H. alvei. To elucidate the difference of strains in the host's immune regulation, comparative genomic analyses indicate that the S-layer proteins unique to L. apis are potentially involved in honeybee Toll signaling and the activation of antibacterial protein production. IMPORTANCE Honeybees are essential pollinators supporting global agricultural economies and food supplies. Recent honeybee decline has been linked to several factors, while pathogen infection is considered one of the most significant contributing factors. Although a limited number of bacterial pathogens have been identified, Hafnia alvei is one of the pathogens causing septicemia in adult bees. In this study, we showed that two bee gut members, Gilliamella and Lactobacillus, can clear H. alvei from invasion. Mono-colonization of specific strains can stimulate the host Toll signaling pathway and the downstream expression of AMPs. Specifically, apidaecin upregulated by the gut symbionts is more effective against the pathogen. Moreover, our genomic analysis suggests that the surface-layer proteins specific to Lactobacillus strains are an important driver of Toll signaling, highlighting the variation of bee gut strains in regulating the host immune system.


Subject(s)
Bees/immunology , Bees/microbiology , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract/microbiology , Immune System , Lactobacillus/physiology , Animals , Antimicrobial Cationic Peptides , Bacteria/classification , Gammaproteobacteria , Gastrointestinal Microbiome/physiology , Genomics , Hafnia alvei , Immunity, Innate , Symbiosis , Tetracycline
19.
J Therm Biol ; 101: 103082, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34879910

ABSTRACT

Changes in temperature resulting from climate change can impact the distribution and survival of species, including bees, where temperature may also affect their immune system. Evaluation of immune system activity is often performed by the total count of circulating hemocytes in the hemolymph. However, there are few studies on bees examining the relationship between the amount of circulating hemocytes and temperature. This study evaluated changes of circulating hemocytes in Apis mellifera hemolymph at different temperatures and development stages. Total hemocytes of bees were determined at - 8, 16, 24, and 32 °C - and at different development stages - in vivo larvae, in vitro larvae, newly emerged, and forager bees. A. mellifera larvae had a greater number of circulating hemocytes compared to the other development stages (newly emerged and foragers). Additionally, temperature was an important factor explaining variation of circulating hemocytes in the hemolymph, according to principal component analyses (PCA), as the number of circulating hemocytes was greater at higher temperatures. Therefore, extreme events arising from climate change, such as variation in temperature, can directly impact the immune system of bees, both individually and at the colony level, threatening the distribution and survival of several species.


Subject(s)
Bees/immunology , Temperature , Animals , Hemocytes/immunology , Hemolymph/immunology , Larva/immunology
20.
Front Immunol ; 12: 747848, 2021.
Article in English | MEDLINE | ID: mdl-34804032

ABSTRACT

Western honey bees (Apis mellifera) are ecologically, agriculturally, and economically important plant pollinators. High average annual losses of honey bee colonies in the US have been partially attributed to agrochemical exposure and virus infections. To examine the potential negative synergistic impacts of agrochemical exposure and virus infection, as well as the potential promise of phytochemicals to ameliorate the impact of pathogenic infections on honey bees, we infected bees with a panel of viruses (i.e., Flock House virus, deformed wing virus, or Sindbis virus) and exposed to one of three chemical compounds. Specifically, honey bees were fed sucrose syrup containing: (1) thyme oil, a phytochemical and putative immune stimulant, (2) fumagillin, a beekeeper applied fungicide, or (3) clothianidin, a grower-applied insecticide. We determined that virus abundance was lower in honey bees fed 0.16 ppm thyme oil augmented sucrose syrup, compared to bees fed sucrose syrup alone. Parallel analysis of honey bee gene expression revealed that honey bees fed thyme oil augmented sucrose syrup had higher expression of key RNAi genes (argonaute-2 and dicer-like), antimicrobial peptide expressing genes (abaecin and hymenoptaecin), and vitellogenin, a putative honey bee health and age indicator, compared to bees fed only sucrose syrup. Virus abundance was higher in bees fed fumagillin (25 ppm or 75 ppm) or 1 ppb clothianidin containing sucrose syrup relative to levels in bees fed only sucrose syrup. Whereas, honey bees fed 10 ppb clothianidin had lower virus levels, likely because consuming a near lethal dose of insecticide made them poor hosts for virus infection. The negative impact of fumagillin and clothianidin on honey bee health was indicated by the lower expression of argonaute-2, dicer-like, abaecin, and hymenoptaecin, and vitellogenin. Together, these results indicate that chemical stimulants and stressors impact the outcome of virus infection and immune gene expression in honey bees.


Subject(s)
Bees/drug effects , Bees/immunology , Bees/virology , Pesticides/toxicity , Virus Diseases/immunology , Animals , Cyclohexanes/pharmacology , Fatty Acids, Unsaturated/pharmacology , Gene Expression/drug effects , Guanidines/pharmacology , Neonicotinoids/pharmacology , Plant Oils/pharmacology , Sesquiterpenes/pharmacology , Thiazoles/pharmacology , Thymol/pharmacology , Thymus Plant
SELECTION OF CITATIONS
SEARCH DETAIL