Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Rev Bras Parasitol Vet ; 33(3): e001824, 2024.
Article in English | MEDLINE | ID: mdl-39292065

ABSTRACT

Toxoplasma gondii is a coccidian protozoan of zoonotic importance that causes toxoplasmosis. Although the current treatments for toxoplasmosis may be associated with adverse effects and limited efficacy for different biological forms of the parasite, evidence suggests that alkaloid molecules such as harmaline and piperine exhibit antiparasitic effects against protozoa parasites. This investigation aimed to evaluate the in vitro effect of harmaline and piperine against T. gondii tachyzoites in infected Vero cell cultures. After 24 hours of host cell infection, the cultures were treated with harmaline or piperine (0.49 to 15.63 µg/mL). Negative and positive controls were RPMI/DMSO (0.1%) and sulfadiazine (200 µg/mL). Harmaline significantly reduced parasite multiplication by 20% compared to the negative control, while piperine decreased between 55.56% and 88.89% in a dose-dependent manner. According to an intracellular parasite proportion scale, it was observed that the Vero cells with low or moderate parasitic proliferation were more prevalent after the alkaloid treatment. The study demonstrated that the alkaloids had antiparasitic effects on T. gondii, with piperine being the most effective. Additional studies must be carried out to clarify other aspects of the action of the alkaloids on parasites.


Subject(s)
Alkaloids , Benzodioxoles , Harmaline , Piperidines , Polyunsaturated Alkamides , Toxoplasma , Benzodioxoles/pharmacology , Polyunsaturated Alkamides/pharmacology , Alkaloids/pharmacology , Toxoplasma/drug effects , Piperidines/pharmacology , Animals , Chlorocebus aethiops , Vero Cells , Harmaline/pharmacology , Parasitic Sensitivity Tests
2.
J Pediatr ; 274: 114176, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38945446

ABSTRACT

OBJECTIVE: The objective of this study was to describe reported adverse events (AEs) associated with elexacaftor/tezacaftor/ivacaftor (ETI) in a pediatric sample with cystic fibrosis (CF) aged 6-18 years, with at least one F508del variant, followed at multiple Italian CF centers. STUDY DESIGN: This was a retrospective, multicenter, observational study. All children receiving ETI therapy from October 2019 to December 2023 were included. We assessed the prevalence and type of any reported potential drug-related AEs, regardless of discontinuation necessity. Persistent AEs were defined as those continuing at the end of the observation period. RESULTS: Among 608 patients on ETI, 109 (17.9%) reported at least 1 AE. The majority (n = 85, 77.9%) were temporary, with a median duration of 11 days (range 1-441 days). Only 7 (1.1%) patients permanently discontinued treatment, suggesting good overall safety of ETI. The most common AEs leading to discontinuation were transaminase elevations (temporary 14.1%, persistent 25.9%) and urticaria (temporary 41.2%, persistent 7.4%). Creatinine phosphokinase elevation was uncommon. No significant differences in AEs were observed based on sex, age groups (6-11 vs 12-18 years), or genotype. Pre-existing CF-related liver disease was associated with an increased risk of transaminase elevations. We identified significant variability in the percentage of reported AEs (ANOVA P value .026). CONCLUSIONS: This real-world study highlights significant variability in reported AEs. Our findings suggest that ETI is a safe and well-tolerated therapy in children and adolescents with CF. However, further long-term safety and effectiveness investigations are warranted.


Subject(s)
Aminophenols , Benzodioxoles , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Drug Combinations , Indoles , Quinolones , Humans , Adolescent , Child , Male , Female , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Retrospective Studies , Benzodioxoles/adverse effects , Benzodioxoles/therapeutic use , Aminophenols/adverse effects , Aminophenols/therapeutic use , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Indoles/adverse effects , Quinolones/adverse effects , Quinolones/therapeutic use , Pyridines/adverse effects , Pyrazoles/adverse effects , Pyrroles/adverse effects , Alleles , Italy , Pyrrolidines
3.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891950

ABSTRACT

Piperine, an active plant alkaloid from black pepper (Piper nigrum), has several pharmacological effects, namely antioxidant, anti-inflammatory and immunomodulatory effects, which involve inhibiting molecular events associated with various stages of cancer development. The aim of this study was to investigate the molecular mechanisms of action of piperine in relation to its potential anticancer effect on head and neck cancer cells. Parameters related to neoplastic potential and cytokine, protein and gene expression were investigated in head and neck cancer cell lines (HEp-2 and SCC-25) treated with piperine. The results of the tests indicated that piperine modified morphology and inhibited viability and the formation of cell colonies. Piperine promoted genotoxicity by triggering apoptosis and cell cycle arrest in the G2/M and S phases. A decrease in cell migration was also observed, and there was decreased expression of MMP2/9 genes. Piperine also reduced the expression of inflammatory molecules (PTGS2 and PTGER4), regulated the secretion of cytokines (IFN-γ and IL-8) and modulated the expression of ERK and p38. These results suggest that piperine exerts anticancer effects on tumor cells by regulating signaling pathways associated with head and neck cancer.


Subject(s)
Alkaloids , Apoptosis , Benzodioxoles , Head and Neck Neoplasms , Inflammation , Piperidines , Polyunsaturated Alkamides , Signal Transduction , Polyunsaturated Alkamides/pharmacology , Benzodioxoles/pharmacology , Piperidines/pharmacology , Piperidines/therapeutic use , Alkaloids/pharmacology , Humans , Cell Line, Tumor , Signal Transduction/drug effects , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/genetics , Apoptosis/drug effects , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Cytokines/metabolism , Cell Survival/drug effects , Cell Proliferation/drug effects
4.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791458

ABSTRACT

Amblyomma sculptum is a species of tick in the family Ixodidae, with equids and capybaras among its preferred hosts. In this study, the acaricidal activity of the essential oil (EO) from Piper aduncum and its main component, Dillapiole, were evaluated against larvae of A. sculptum to establish lethal concentration values and assess the effects of these compounds on tick enzymes. Dillapiole exhibited slightly greater activity (LC50 = 3.38 mg/mL; 95% CI = 3.24 to 3.54) than P. aduncum EO (LC50 = 3.49 mg/mL; 95% CI = 3.36 to 3.62) against ticks. The activities of α-esterase (α-EST), ß-esterase (ß-EST), and glutathione-S-transferase (GST) enzymes in A. sculptum larvae treated with Dillapiole showed a significant increase compared to the control at all concentrations (LC5, LC25, LC50 and LC75), similar results were obtained with P. aduncum EO, except for α-EST, which did not differ from the control at the highest concentration (LC75). The results of the acetylcholinesterase (AChE) activity show an increase in enzyme activity at the two lower concentrations (LC5 and LC25) and a reduction in activity at the two higher, lethal concentrations (LC50 and LC75) compared to the control. These results suggest potential mechanisms of action for these natural acaricides and can provide guidance for the future development of potential plant-derived formulations.


Subject(s)
Acaricides , Acetylcholinesterase , Amblyomma , Oils, Volatile , Piper , Animals , Acaricides/pharmacology , Acetylcholinesterase/metabolism , Allyl Compounds , Amblyomma/drug effects , Amblyomma/growth & development , Benzodioxoles/pharmacology , Cholinesterase Inhibitors/pharmacology , Dioxoles , Esterases/metabolism , Glutathione Transferase/metabolism , Inactivation, Metabolic , Larva/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Piper/chemistry
6.
Parasitol Res ; 123(4): 185, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632113

ABSTRACT

Leishmania braziliensis (L. braziliensis) causes cutaneous leishmaniasis (CL) in the New World. The costs and the side effects of current treatments render imperative the development of new therapies that are affordable and easy to administer. Topical treatment would be the ideal option for the treatment of CL. This underscores the urgent need for affordable and effective treatments, with natural compounds being explored as potential solutions. The alkaloid piperine (PIP), the polyphenol curcumin (CUR), and the flavonoid quercetin (QUE), known for their diverse biological properties, are promising candidates to address these parasitic diseases. Initially, the in vitro cytotoxicity activity of the compounds was evaluated using U-937 cells, followed by the assessment of the leishmanicidal activity of these compounds against amastigotes of L. braziliensis. Subsequently, a golden hamster model with stationary-phase L. braziliensis promastigote infections was employed. Once the ulcer appeared, hamsters were treated with QUE, PIP, or CUR formulations and compared to the control group treated with meglumine antimoniate administered intralesionally. We observed that the three organic compounds showed high in vitro leishmanicidal activity with effective concentrations of less than 50 mM, with PIP having the highest activity at a concentration of 8 mM. None of the compounds showed cytotoxic activity for U937 macrophages with values between 500 and 700 mM. In vivo, topical treatment with QUE daily for 15 days produced cured in 100% of hamsters while the effectiveness of CUR and PIP was 83% and 67%, respectively. No failures were observed with QUE. Collectively, our data suggest that topical formulations mainly for QUE but also for CUR and PIP could be a promising topical treatment for CL. Not only the ease of obtaining or synthesizing the organic compounds evaluated in this work but also their commercial availability eliminates one of the most important barriers or bottlenecks in drug development, thus facilitating the roadmap for the development of a topical drug for the management of CL caused by L. braziliensis.


Subject(s)
Alkaloids , Antiprotozoal Agents , Benzodioxoles , Curcumin , Leishmania braziliensis , Leishmaniasis, Cutaneous , Piperidines , Polyunsaturated Alkamides , Cricetinae , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Curcumin/pharmacology , Leishmaniasis, Cutaneous/parasitology , Alkaloids/pharmacology , Alkaloids/therapeutic use , Mesocricetus , Antiprotozoal Agents/pharmacology
7.
J Bras Pneumol ; 49(6): e20230187, 2024.
Article in English, Portuguese | MEDLINE | ID: mdl-38198345

ABSTRACT

OBJECTIVE: To evaluate the effect of treatment with the combination of three cystic fibrosis transmembrane conductance regulator (CFTR) modulators-elexacaftor+tezacaftor+ivacaftor (ETI)-on important clinical endpoints in individuals with cystic fibrosis. METHODS: This was a systematic review and meta-analysis of randomized clinical trials that compared the use of ETI in individuals with CF and at least one F508del allele with that of placebo or with an active comparator such as other combinations of CFTR modulators, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations and the Patients of interest, Intervention to be studied, Comparison of interventions, and Outcome of interest (PICO) methodology. We searched the following databases: MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov from their inception to December 26th, 2022. The risk of bias was assessed using the Cochrane risk-of-bias tool, and the quality of evidence was based on the Grading of Recommendations Assessment, Development and Evaluation (GRADE). RESULTS: We retrieved 54 studies in the primary search. Of these, 6 met the inclusion criteria and were analyzed (1,127 patients; 577 and 550 in the intervention and control groups, respectively). The meta-analysis revealed that the use of ETI increased FEV1% [risk difference (RD), +10.47%; 95% CI, 6.88-14.06], reduced the number of acute pulmonary exacerbations (RD, -0.16; 95% CI, -0.28 to -0.04), and improved quality of life (RD, +14.93; 95% CI, 9.98-19.89) and BMI (RD, +1.07 kg/m2; 95% CI, 0.90-1.25). Adverse events did not differ between groups (RD, -0.03; 95% CI, -0.08 to 0.01), and none of the studies reported deaths. CONCLUSIONS: Our findings demonstrate that ETI treatment substantially improves clinically significant, patient-centered outcomes.


Subject(s)
Aminophenols , Benzodioxoles , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Indoles , Pyrazoles , Pyridines , Pyrrolidines , Quinolones , Humans , Alleles , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Quality of Life
8.
J Toxicol Environ Health A ; 87(7): 294-309, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38279841

ABSTRACT

Piperlongumine (PLN) is a biologically active alkaloid/amide derived from Piper longum, with known promising anticancer activity. The aim of this study was to compare the antiproliferative activity of PLN in human breast MCF-7 adenocarcinoma cell line with effects in HB4a normal mammary epithelial non-tumor cell line. The parameters examined were cell growth, viability, reactive oxygen species (ROS) levels and DNA damage, as well as the effects on the modulating targets responsible through regulation of these pathways. PLN increased ROS levels and expression of the SOD1 antioxidant enzyme. PLN inhibited the expression of the antioxidant enzymes catalase, TRx1, and PRx2. The ability of PLN to inhibit antioxidant enzyme expression was associated with the oxidative stress response. PLN induced genotoxicity in both cell lines and upregulated the levels of GADD45A mRNA and p21 protein. The DNA damage response ATR protein was downregulated in both cell lines and contributed to an enhanced PLN genotoxicity. In HB4a cells, Chk1 protein, and mRNA levels were also decreased. In response to elevated ROS levels and DNA damage induction, the cells were arrested at the G2/M phase, probably in an attempt to promote cell survival. Although cell viability was reduced in both cell lines, only HB4a cells underwent apoptotic cell death, whereas other types of cellular death may be involved in MCF-7 cells. Taken together, these data provide insight into the anticancer mechanisms attributed to PLN effects, which acts as an inhibitor of DNA damage response (DDR) proteins and antioxidant enzymes.


Subject(s)
Antioxidants , Benzodioxoles , DNA Damage , Humans , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , MCF-7 Cells , Apoptosis , Cell Cycle , Cell Cycle Checkpoints , RNA, Messenger , Cell Line, Tumor
9.
Future Microbiol ; 18: 1279-1299, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37882762

ABSTRACT

Aim: To review in vitro, in vivo, and in silico studies examining the antibacterial and immunomodulatory properties of piperine (PPN). Methods: This systematic review followed PRISMA guidelines, and five databases were searched. Results: A total of 40 articles were included in this study. Six aspects of PPN activity were identified, including antibacterial spectrum, association with antibiotics, efflux pump inhibition, biofilm effects, protein target binding, and modulation of immune functions/virulence factors. Most studies focused on Mycobacterium spp. and Staphylococcus aureus. Cell lineages and in vivo models were employed to study PPN antibacterial effects. Conclusion: We highlight PPN as a potential adjuvant in the treatment of bacterial infections. PPN possesses several antibacterial properties that need further exploration to determine the mechanisms behind its pharmacological activity.


Subject(s)
Alkaloids , Anti-Bacterial Agents , Anti-Bacterial Agents/chemistry , Alkaloids/pharmacology , Benzodioxoles/pharmacology , Piperidines/pharmacology , Microbial Sensitivity Tests
10.
Pediatr Pulmonol ; 58(12): 3560-3565, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37712606

ABSTRACT

INTRODUCTION: Cystic fibrosis (CF) is the most frequent recessive autosomal disorder in the Caucasian population. It is caused by mutations that result in a deficient or dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) protein activity. Among CFTR modulators, potentiator compounds increase channel opening, whereas corrector compounds increase CFTR quantity in the cell surface. OBJECTIVE: To report real-life effects of a generic formulation of lumacaftor-ivacaftor use in patients with CF homozygous for the Phe508del CFTR mutation. PATIENTS AND METHODS: Clinical variables (body mass index [BMI], pulmonary exacerbations, sweat test, and pulmonary function) were analyzed in 30 CF patients homozygous for the Phe508del CFTR mutation, treated with lumacaftor-ivacaftor for 12 months, at the Respiratory Center of Hospital de Niños Ricardo Gutiérrez. These clinical variables were compared with those before the use of modulators. RESULTS: A total of 30 patients with CF homozygous for the Phe508del CFTR mutation receiving lumacaftor-ivacaftor therapy were included in this study. The median (interquartile range [IQR]) age at the start of treatment was 10.79 (7.08-14.05) years. Nineteen patients were male. Before treatment, median (IQR) sweat chloride concentration was 80 (72-92) mEq/L, and it had decreased to 74 (68-78) mEq/L (p = .05) 12 months after treatment. Median (IQR) BMI z-score improved from -0.33 (-0.86 to 0.21) to -0.13 (-0.66 to 0.54) (p = .003). A spirometry was performed in 28 of 30 patients. Median (IQR) ppFEV1 was 83.5 (71-91) before treatment and 86.5 (67-103) after treatment (p = .38), 73.3% of patients referred decreased sputum production and 40% reported improvement in their dyspnea at 12 months. Severe pulmonary exacerbations significantly decreased from 60% in the year before treatment, to 30% at 12 months after treatment (p = .037); 13 patients showed an improvement in their exacerbation rates, 2 showed an increased rate, and 15 showed no change. CONCLUSIONS: The use of a generic formulation of lumacaftor-ivacaftor in patients homozygous for the Phe508del CFTR mutation was associated with improvement in nutritional status and respiratory symptoms, and a significant reduction in severe pulmonary exacerbations.


Subject(s)
Cystic Fibrosis , Humans , Male , Child , Adolescent , Female , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/therapeutic use , Drug Combinations , Aminophenols , Aminopyridines , Benzodioxoles/adverse effects , Mutation
11.
Neurotox Res ; 41(6): 514-525, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37458923

ABSTRACT

Inhibition of enzymes responsible for endocannabinoid hydrolysis represents an invaluable emerging tool for the potential treatment of neurodegenerative disorders. Monoacylglycerol lipase (MAGL) is the enzyme responsible for degrading 2-arachydonoylglycerol (2-AG), the most abundant endocannabinoid in the central nervous system (CNS). Here, we tested the effects of the selective MAGL inhibitor JZL184 on the 3-nitropropinic acid (3-NP)-induced short-term loss of mitochondrial reductive capacity/viability and oxidative damage in rat brain synaptosomal/mitochondrial fractions and cortical slices. In synaptosomes, while 3-NP decreased mitochondrial function and increased lipid peroxidation, JZL184 attenuated both markers. The protective effects evoked by JZL184 on the 3-NP-induced mitochondrial dysfunction were primarily mediated by activation of cannabinoid receptor 2 (CB2R), as evidenced by their inhibition by the selective CB2R inverse agonist JTE907. The cannabinoid receptor 1 (CB1R) also participated in this effect in a lesser extent, as evidenced by the CB1R antagonist/inverse agonist AM281. In contrast, activation of CB1R, but not CB2R, was responsible for the protective effects of JZL184 on the 3-NP-iduced lipid peroxidation. Protective effects of JZL184 were confirmed in other toxic models involving excitotoxicity and oxidative damage as internal controls. In cortical slices, JZL184 ameliorated the 3-NP-induced loss of mitochondrial function, the increase in lipid peroxidation, and the inhibition of succinate dehydrogenase (mitochondrial complex II) activity, and these effects were independent on CB1R and CB2R, as evidenced by the lack of effects of AM281 and JTE907, respectively. Our novel results provide experimental evidence that the differential protective effects exerted by JZL184 on the early toxic effects induced by 3-NP in brain synaptosomes and cortical slices involve MAGL inhibition, and possibly the subsequent accumulation of 2-AG. These effects involve pro-energetic and redox modulatory mechanisms that may be either dependent or independent of cannabinoid receptors' activation.


Subject(s)
Endocannabinoids , Synaptosomes , Rats , Animals , Synaptosomes/metabolism , Monoacylglycerol Lipases/metabolism , Receptors, Cannabinoid , Drug Inverse Agonism , Brain/metabolism , Oxidative Stress , Benzodioxoles/pharmacology , Receptor, Cannabinoid, CB1
12.
Molecules ; 28(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37513459

ABSTRACT

Gastric cancer is one of the most frequent types of neoplasms worldwide, usually presenting as aggressive and difficult-to-manage tumors. The search for new structures with anticancer potential encompasses a vast research field in which natural products arise as promising alternatives. In this scenario, piperine, an alkaloid of the Piper species, has received attention due to its biological activity, including anticancer attributes. The present work proposes three heating-independent, reliable, low-cost, and selective methods for obtaining piperine from Piper nigrum L. (Black pepper). Electronic (SEM) and optical microscopies, X-ray diffraction, nuclear magnetic resonance spectroscopies (13C and 1H NMR), and optical spectroscopies (UV-Vis, photoluminescence, and FTIR) confirm the obtention of piperine crystals. The MTT assay reveals that the piperine samples exhibit good cytotoxic activity against primary and metastasis models of gastric cancer cell lines from the Brazilian Amazon. The samples showed selective cytotoxicity on the evaluated models, revealing higher effectiveness in cells bearing a higher degree of aggressiveness. Moreover, the investigated piperine crystals demonstrated the ability to act as a good cytotoxicity enhancer when combined with traditional chemotherapeutics (5-FU and GEM), allowing the drugs to achieve the same cytotoxic effect in cells employing lower concentrations. These results establish piperine as a promising molecule for therapy investigations in aggressive gastric cancer, both in its isolated form or as a bioenhancer.


Subject(s)
Alkaloids , Antineoplastic Agents , Piper nigrum , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Alkaloids/chemistry , Benzodioxoles/chemistry , Piperidines/chemistry , Polyunsaturated Alkamides/chemistry , Piper nigrum/chemistry , Antineoplastic Agents/pharmacology
13.
Neumol. pediátr. (En línea) ; 18(1): 14-15, 2023.
Article in Spanish | LILACS | ID: biblio-1442721

ABSTRACT

El uso de moduladores de CFTR en pacientes con fibrosis quística post trasplante pulmonar es un tema todavía controversial. Varias publicaciones reportan los beneficios del modulador elexacaftor/tezacaftor/ivacaftor en los síntomas extrapulmonares de la fibrosis quística, especialmente enfermedad sinusal, síntomas gastrointestinales y diabetes. Un número alto de pacientes debe discontinuar el tratamiento por mala tolerancia, sin embargo, no se describen interacciones de importancia con el tratamiento inmunosupresor. Se debe considerar para su uso los riesgos versus beneficios en forma individual en cada paciente.


The use of CFTR modulators in patients with cystic fibrosis after lung transplantation is still a controversial issue. Several publications report the benefits of the use of the modulator elexacaftor/tezacaftor/ivacaftor on extrapulmonary symptoms of cystic fibrosis, especially sinus disease, gastrointestinal symptoms and diabetes. A high number of patients must discontinue treatment due to poor tolerance; however, no significant interactions with immunosuppressive treatment have been described. The individual risk-benefit of each patient should be considered for its use.


Subject(s)
Humans , Cystic Fibrosis/drug therapy , Pyrazoles/therapeutic use , Pyridines/therapeutic use , Quinolines/therapeutic use , Lung Transplantation , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis/surgery , Drug Combinations , Benzodioxoles/therapeutic use , Aminophenols/therapeutic use , Indoles/therapeutic use
14.
Int J Mol Sci ; 23(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35887341

ABSTRACT

Herein, we elucidate the biophysical aspects of the interaction of an important protein, Interleukin-6 (IL6), which is involved in cytokine storm syndrome, with a natural product with anti-inflammatory activity, piperine. Despite the role of piperine in the inhibition of the transcriptional protein NF-κB pathway responsible for activation of IL6 gene expression, there are no studies to the best of our knowledge regarding the characterisation of the molecular interaction of the IL6-piperine complex. In this context, the characterisation was performed with spectroscopic experiments aided by molecular modelling. Fluorescence spectroscopy alongside van't Hoff analyses showed that the complexation event is a spontaneous process driven by non-specific interactions. Circular dichroism aided by molecular dynamics revealed that piperine caused local α-helix reduction. Molecular docking and molecular dynamics disclosed the microenvironment of interaction as non-polar amino acid residues. Although piperine has three available hydrogen bond acceptors, only one hydrogen-bond was formed during our simulation experiments, reinforcing the major role of non-specific interactions that we observed experimentally. Root mean square deviation (RMSD) and hydrodynamic radii revealed that the IL6-piperine complex was stable during 800 ns of simulation. Taken together, these results can support ongoing IL6 drug discovery efforts.


Subject(s)
Interleukin-6 , Polyunsaturated Alkamides , Alkaloids , Benzodioxoles/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Piperidines , Polyunsaturated Alkamides/metabolism
15.
Food Chem ; 390: 133148, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35551027

ABSTRACT

This study aimed to evaluate the piperine content, essential oil composition, and multi-elemental composition of black pepper samples according to different drying methods and harvest season. Differences in essential oil composition and B, Ca, K, Mg, and S were noted according to sampling campaign, indicating secondary metabolism plant alterations. Mechanical drying resulted in essential oil composition changes due to high temperature exposure during processing. Increases in Fe and Cr contents when employing mechanical dryers with direct heating were also observed, due to direct contact with metallic structures and particulate material from the burning process. The As and Pb contents of several samples were higher than the maximum permissible limits, reaching 0.46 and 0.56 mg kg-1, respectively, thus surpassing legislation safety limitations for human consumption.


Subject(s)
Oils, Volatile , Piper nigrum , Alkaloids , Benzodioxoles , Humans , Oils, Volatile/chemistry , Piper nigrum/chemistry , Piperidines , Polyunsaturated Alkamides/chemistry , Seasons
16.
AAPS PharmSciTech ; 23(5): 127, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35474407

ABSTRACT

Piperine (PIP) was evaluated as a natural coformer in the preparation of multicomponent organic materials for enhancing solubility and dissolution rate of the poorly water-soluble drugs: curcumin (CUR), lovastatin (LOV), and irbesartan (IBS). A screening based on liquid assisted grinding technique was performed using 1:1 drug-PIP molar ratio mixtures, followed by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) analyses. Three eutectic mixtures (EMs) composed of CUR-PIP, LOV-PIP, and IBS-PIP were obtained. Therefore, binary phase and Tamman's diagrams were constructed for each system to obtain the exact eutectic composition, which was 0.41:0.59, 0.29:0.71, and 0.31:0.69 for CUR-PIP, LOV-PIP, and IBS-PIP, respectively. Further, bulk materials of each system were prepared to characterize them through DSC, PXRD fully, Fourier transform infrared spectroscopy (FT-IR), and solution-state nuclear magnetic resonance (NMR) spectroscopy. In addition, the contact angle, solubility, and dissolution rate of each system were evaluated. The preserved characteristic in the PXRD patterns and FT-IR spectra of the bulk material of each system confirmed the formation of EM mixture without molecular interaction in solid-state. The formation of EM resulted in improved aqueous solubility and dissolution rate associated with the increased wettability observed by the decrease in contact angle. In addition, solution NMR analyses of CUR-PIP, LOV-PIP, and IBS-PIP suggested no significant intermolecular interactions in solution between the components of the EM. Hence, this study concludes that PIP could be an effective coformer to improve the solubility and dissolution rate of CUR, LOV, and IBS.


Subject(s)
Curcumin , Irbesartan , Lovastatin , Piperidines , Alkaloids , Benzodioxoles , Cardiovascular Diseases , Curcumin/chemistry , Irbesartan/chemistry , Piperidines/chemistry , Polyunsaturated Alkamides/chemistry , Powders/chemistry , Spectroscopy, Fourier Transform Infrared , Lovastatin/chemistry
17.
J Cyst Fibros ; 21(4): 637-643, 2022 07.
Article in English | MEDLINE | ID: mdl-35248469

ABSTRACT

BACKGROUND: A decrease in the lumacaftor-mediated increase in F508del-CFTR function and expression upon prolonged exposure to ivacaftor (VX-770) has previously been described. However, the efficacy observed with ivacaftor-containing CFTR modulator therapies in vivo is in conflict with these reports. We hypothesized that a portion of the apparent decrease in CFTR function observed after prolonged ivacaftor exposure in vitro was due to an increase in constitutive CFTR-mediated ion transport. METHODS: Human nasal epithelial (HNE) cells were obtained by brushings from three CF individuals homozygous for the F508del CFTR mutation. Differentiated epithelia were pre-treated with prolonged (24 h) exposure to either lumacaftor (VX-809; 3 µM), tezacaftor (VX-661; 3 µM), elexacaftor (VX-445; 3 µM), and/or ivacaftor (0.1-6.4 µM) or DMSO (vehicle control), and CFTR function was assayed by Ussing chamber electrophysiology. RESULTS: In cells treated with lumacaftor, constitutive CFTR activity was not increased at any concentration of co-treatment with ivacaftor. Constitutive CFTR activity was also unchanged in cells treated with the combination of tezacaftor and elexacaftor. An increase in constitutive CFTR activity above the DMSO controls was only observed in cells treated with the combination of tezacaftor and elexacaftor and co-treated with at least 0.1 µM ivacaftor. CONCLUSIONS: These results demonstrate that ivacaftor is a critical component in the triple combination therapy along with tezacaftor and elexacaftor to increase constitutive CFTR function. This work further elucidates the mechanism of action of the effective triple combination therapeutic that is now the primary clinical tool in treating CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Aminophenols , Benzodioxoles , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Dimethyl Sulfoxide/therapeutic use , Drug Combinations , Humans , Indoles , Mutation , Pyrazoles , Pyridines , Pyrrolidines , Quinolones
18.
Acta Trop ; 230: 106395, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35278367

ABSTRACT

Piperine is an alkaloid extracted from the seed of Piper spp., which has demonstrated a larvicidal effect against Ae. aegypti. The incorporation of piperine into nanostructured systems can increase the effectiveness of this natural product in the control of Ae. aegypti larvae. In this study, we evaluated the effectiveness of piperine loaded or not into two nanostructured systems (named NS-A and NS-B) prepared by the nanoprecipitation method. The Ae. aegypti larvae were exposed to different concentrations of piperine loaded or not (2 to 16 ppm) and the mortality was investigated after 24, 48, and 72 hours. The nanostructures prepared were spherical in shape with narrow size distribution and great encapsulation efficiency. The lethal concentration 50 (LC50) for non-loaded piperine were 13.015 ppm (24 hours), 8.098 ppm (48 hours), and 7.248 ppm (72 hours). The LC50 values found for NS-A were 35.378 ppm (24 hours), 12.091 ppm (48 hours), and 8.011 ppm (72 hours), whereas the values found for NS-B were 21.267 ppm (24 hours), 12.091 ppm (48 hours), and 8.011 ppm (72 hours). Collectively, these findings suggested that non-loaded piperine caused higher larval mortality in the first hours of exposure while the nanostructured systems promoted the slow release of piperine and thereby increased the larvicidal activity over time. Therefore, loading piperine into nanostructured systems might be an effective tool to improve the larval control of vector Ae. aegypti.


Subject(s)
Aedes , Alkaloids , Insecticides , Nanostructures , Alkaloids/pharmacology , Animals , Benzodioxoles , Insecticides/pharmacology , Larva , Mosquito Vectors , Piperidines , Plant Extracts/chemistry , Polymers , Polyunsaturated Alkamides
19.
Metab Brain Dis ; 37(3): 607-617, 2022 03.
Article in English | MEDLINE | ID: mdl-35000053

ABSTRACT

Mitochondria are a primary source and a target of reactive oxygen species (ROS). Increased mitochondrial production of ROS is associated with bioenergetics decline, cell death, and inflammation. Here we investigated whether a pretreatment (for 24 h) with sesamol (SES; at 12.5-50 µM) would be efficient in preventing the mitochondrial collapse induced by hydrogen peroxide (H2O2, at 300 µM) in the human neuroblastoma SH-SY5Y cell line. We have found that a pretreatment with SES at 25 µM decreased the effects of H2O2 on lipid peroxidation, protein carbonylation, and protein nitration in membranes obtained from the mitochondria isolated from the SH-SY5Y cells. In this regard, SES pretreatment decreased the production of superoxide anion radical (O2-•) by the mitochondria of H2O2-treated cells. SES also prevented the mitochondrial dysfunction induced by H2O2, as assessed by analyzing the activity of the complexes I and V. The H2O2-induced reduction in the production of adenosine triphosphate (ATP) was also prevented by SES. The levels of the pro-inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), as well as the activity of the transcription factor nuclear factor-κB (NF-κB) were downregulated by the SES pretreatment in the H2O2-challenged cells. Silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor abolished the protection induced by SES regarding mitochondrial function and inflammation. Thus, SES depends on Nrf2 to promote mitochondrial protection in cells facing redox impairment.


Subject(s)
NF-E2-Related Factor 2 , Neuroblastoma , Benzodioxoles , Cell Line, Tumor , Cell Survival , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/toxicity , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Neuroblastoma/metabolism , Phenols , Reactive Oxygen Species/metabolism
20.
Nat Prod Res ; 36(18): 4696-4703, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34736364

ABSTRACT

This work aimed to synthesize poly (D, L-lactic-co-glycolic acid) (PLGA) microparticles containing hinokinin (HNK) and to evaluate their cytotoxic activity against tumoral SiHa cells and non-tumoral HaCaT cells. Hinokinin was incorporated into PLGA (PLGA-HNK) with an encapsulation efficiency of 84.18 ± 2.32%. PLGA and PLGA-HNK were characterized by SEM microscopy and showed spherical morphology with an average size of ∼3.33. Encapsulation efficiency was determined by a calibration curve using UV-vis spectroscopy. PLGA-HNK more active inhibiting proliferation of SiHa cells (IC50 = 14.68 µM) than free HNK (IC50 = 225.5 µM). In relation to HaCaT cells, PLGA-HNK showed no significant difference compared to the negative control. These results led to an increase in HNK bioavailability and thereby, biological activity. In silico prediction analysis suggests that HNK is cytotoxic against SiHa cells with E6 and MDM2 inhibition as possible main mechanism of action.


Subject(s)
Antineoplastic Agents , Nanoparticles , 4-Butyrolactone/analogs & derivatives , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzodioxoles , Lactic Acid/chemistry , Lignans , Nanoparticles/chemistry , Particle Size , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer
SELECTION OF CITATIONS
SEARCH DETAIL