Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.233
Filter
1.
Medicine (Baltimore) ; 103(32): e39243, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121267

ABSTRACT

BACKGROUND: Allergic rhinitis (AR) or seasonal allergy characterized by sneezing, nasal congestion, nasal itching, and nasal discharge, triggered by immune reactions to environmental allergens. Present day customers also monitor the personal improvements in the area of Evidence-Based natural medicines/supplements. METHODS: A randomized, double-blind, placebo-controlled study was conducted on 65 participants aged 18 to 60 years having 2 or more allergic symptoms like sneezing, rhinorrhoea, nasal obstruction, and nasal itching for a cumulative period greater than 1 hour per day. The study participants received a capsule of NSO (250 mg) with 2.5 mg piperine (BioPerine) as a bioavailability enhancer or a placebo, twice a day, after food for 15 days. The primary objectives were evaluated by mean change in Total Nasal Symptom Score and the duration of AR symptoms per day from baseline to Day 15. Secondary endpoints were changes in Total Ocular Symptoms Score, AR symptom frequency and severity, serum Immunoglobulin E levels, and Patient Global Impression of Change scale. Adverse events were monitored throughout the study. RESULTS: Sixty-five patients were enrolled and all of them completed the study, N = 33 in NSO and N = 32 in placebo. A significant reduction in Total Nasal Symptom Score and Total Ocular Symptoms Score was observed in the NSO group compared to the placebo, highlighting the potential of NSO in alleviating AR symptoms. The episodes of AR symptoms per day and the frequency of symptoms in 24 hours reduced significantly in 15 days in both groups, but the extent of improvement was significantly higher in NSO compared to placebo. Improvement in Patient Global Impression of Change was also significantly better in NSO compared to the placebo. Serum Immunoglobulin E levels decreased in NSO but were not significantly different from placebo. No clinically significant changes were observed in vital signs, liver and renal function, lipid profile, hematology, fasting blood sugar, or urine analysis at the end of the study. CONCLUSION: The result of the study demonstrates that NSO 250 mg with 2.5 mg piperine is an effective and well-tolerated supplement for the management of AR symptoms.


Subject(s)
Benzoquinones , Plant Oils , Rhinitis, Allergic, Seasonal , Humans , Double-Blind Method , Adult , Male , Female , Middle Aged , Plant Oils/therapeutic use , Plant Oils/administration & dosage , Benzoquinones/therapeutic use , Benzoquinones/administration & dosage , Benzoquinones/pharmacology , Rhinitis, Allergic, Seasonal/drug therapy , Young Adult , Adolescent , Piperidines/therapeutic use , Piperidines/administration & dosage , Treatment Outcome , Immunoglobulin E/blood , Polyunsaturated Alkamides/therapeutic use , Alkaloids , Carum , Nigella sativa , Benzodioxoles
2.
Chem Biol Drug Des ; 104(2): e14587, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39175102

ABSTRACT

Natural compounds such as thymoquinone (TQ) have recently gained increasing attention in treating glioblastoma (GBM). However, the effects of TQ in reversing drug resistance are not completely understood. Therefore, we aimed to examine TQ impacts on GBM cells with doxorubicin (DOX) resistance and the involvement of the PI3K/Akt/mTOR pathway. GBM cancer U87 and U87/DOX (resistant cells) cells were exposed to DOX and TQ, and cell proliferation was assessed by the MTT assay. ELISA was applied to evaluate cell apoptosis. The expression of apoptotic mediators such as Caspase-3, Bax, Bcl-2 and PI3K, Akt, mTOR, P-gp, and PTEN was assessed via qRT-PCR and western blot. We found that a combination of TQ and DOX suppressed dose-dependent cell growth capacity in cells and increased the cytotoxic effects of DOX in resistant cells. In addition, TQ treatment increased DOX-mediated apoptosis in U87/DOX cell lines via modulating the pro- and anti-apoptotic markers. A combination of TQ and DOX upregulated PTEN and downregulated PI3K, Akt, and mTOR, suppressing this signal transduction in resistant cells. In conclusion, we showed TQ potentiated doxorubicin-mediated antiproliferative and pro apoptotic function DOX-resistant glioblastoma cells, which is mediated by targeting and suppressing PI3K/Akt/mTOR signal transduction.


Subject(s)
Apoptosis , Benzoquinones , Doxorubicin , Drug Resistance, Neoplasm , Glioblastoma , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Doxorubicin/pharmacology , TOR Serine-Threonine Kinases/metabolism , Benzoquinones/pharmacology , Benzoquinones/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Signal Transduction/drug effects , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects
3.
In Vivo ; 38(5): 2228-2238, 2024.
Article in English | MEDLINE | ID: mdl-39187325

ABSTRACT

BACKGROUND/AIM: Breast cancer is the most predominant type of cancer affecting women worldwide and the current therapeutic treatment for breast cancer patients is not adequately effective. This study aimed to investigate the mechanism of 17-AAG, a heat shock protein (HSP90) inhibitor, as a treatment for inducing breast cancer cell apoptosis. MATERIALS AND METHODS: The pharmacology network was employed to examine the correlation of 17-AAG with the gene expression profiles of breast cancer, obtained by Gene Expression Profiling Interactive Analysis (GEPIA). MTT and flow cytometry were utilized to investigate cell proliferation and cell apoptosis, respectively. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay and western blot analysis were employed to examine the correlation between cellular oxidant levels and protein expression. Immunofluorescence staining was utilized to confirm the protein localization and assess DNA damage. RESULTS: The pharmacological network analysis revealed that HSP90 serves as the common target connecting 17-AAG and breast cancer genes. Treatment with 17-AAG significantly increased cell apoptosis. Moreover, the treatment resulted in up-regulation of cellular oxidant levels and PERK/eIF2α expression. In line with these, protein localization after treatment revealed an increase in DNA damage, correlating with higher ER stress levels. Furthermore, GEPIA demonstrated that PERK and eIF2α expression were significantly higher in breast invasive carcinoma compared to other tumor types. CONCLUSION: HSP90 emerges as a potential target for inducing apoptosis in breast cancer cells by disrupting protein homeostasis in the endoplasmic reticulum, possibly through PERK/eIF2α up-regulation. 17-AAG, an HSP90 inhibitor, may therefore potentially hold an alternative therapeutic strategy for breast cancer treatment.


Subject(s)
Apoptosis , Benzoquinones , Breast Neoplasms , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2 , Lactams, Macrocyclic , eIF-2 Kinase , Humans , Benzoquinones/pharmacology , Lactams, Macrocyclic/pharmacology , Apoptosis/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Endoplasmic Reticulum Stress/drug effects , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Cell Line, Tumor , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Up-Regulation/drug effects
4.
Front Immunol ; 15: 1416842, 2024.
Article in English | MEDLINE | ID: mdl-39188726

ABSTRACT

Psoriasis, a persistent immune-mediated inflammatory skin condition, affects approximately 2-3% of the global population. Current treatments for psoriasis are fraught with limitations, including adverse effects, high costs, and diminishing efficacy over time. Thymoquinone (TQ), derived from Nigella sativa seeds, exhibits promising anti-inflammatory, antioxidant, and immunomodulatory properties that could prove beneficial in managing psoriasis. However, TQ's hydrophobic nature and poor bioavailability have hindered its usefulness as a therapeutic agent. Recent research has strategically addressed these challenges by developing nano-thymoquinone (nano-TQ) formulations to enhance delivery and efficacy in treating psoriasis. Preclinical studies employing mouse models have demonstrated that nano-TQ effectively mitigates inflammation, erythema, scaling, epidermal thickness, and cytokine levels in psoriatic lesions. Various nano-TQ formulations, including nanoemulsions, lipid vesicles, nanostructured lipid carriers, and ethosomes, have been explored to improve solubility, facilitate skin penetration, ensure sustained release, and achieve site-specific targeting. Although clinical trials are currently scarce, the outcomes from in vitro and animal models are promising. The potential co-delivery of nano-TQ with other anti-psoriatic agents also presents avenues for further investigation.


Subject(s)
Benzoquinones , Psoriasis , Benzoquinones/administration & dosage , Benzoquinones/chemistry , Benzoquinones/therapeutic use , Humans , Animals , Psoriasis/drug therapy , Psoriasis/immunology , Nanoparticles/chemistry , Drug Compounding , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/administration & dosage , Nigella sativa/chemistry
5.
Biomed Res Int ; 2024: 6231095, 2024.
Article in English | MEDLINE | ID: mdl-39015603

ABSTRACT

Background: Studies have concentrated on the therapeutic potential of thymoquinone (TQ), a natural polyphenol, in diverse malignancies, such as colorectal cancer. Nevertheless, the precise mechanisms of TQ-mediated anticancer properties are not yet fully elucidated. Objective: The present study has been designed to scrutinize the impact of TQ on 5-fluorouracil (5-FU)-mediated apoptosis in SW-480 cells. Materials and Methods: SW-480 cells were treated with TQ, 5-FU, and a combination of TQ + 5-FU. MTT assay was employed to assess cell viability. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to evaluate apoptotic markers comprising Bcl-2, Bax, and caspase-9 expression levels. The γ-H2AX protein expression was assessed by western blotting, and Annexin V flow cytometry was implemented to determine the apoptosis rate. Results: 5-FU significantly reversed the cell proliferation in a dose-dependent circumstance. The concurrent administration of TQ and 5-FU led to a substantial inhibition of cell growth in comparison to single treatments (p < 0.05). TQ also facilitated apoptosis via upregulating Bax and caspase-9 proapoptotic markers and suppressing antiapoptotic mediators, like Bcl-2. In addition, TQ augmented 5-FU-induced apoptosis in SW-480 cells. 5-FU, combined with TQ, increased the protein expression of γ-H2AX in SW-480 cells compared with groups treated with TQ and 5-FU alone. Conclusion: The present study's findings unveil the significance of TQ as a potential therapeutic substance in colorectal cancer, particularly through enhancing 5-FU-induced apoptosis.


Subject(s)
Apoptosis , Benzoquinones , Cell Proliferation , Colonic Neoplasms , Fluorouracil , Humans , Fluorouracil/pharmacology , Benzoquinones/pharmacology , Cell Line, Tumor , Apoptosis/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cell Proliferation/drug effects , bcl-2-Associated X Protein/metabolism , Cell Survival/drug effects , Caspase 9/metabolism , Caspase 9/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Histones/metabolism
6.
Int Immunopharmacol ; 139: 112672, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39032469

ABSTRACT

The resistance of osteosarcoma (OS) to ionizing radiation (IR) is an obstacle for effective patient treatment. Apurinic/apyrimidinic endonuclease-reduction/oxidation factor 1 (APE1/Ref-1) is a multifunctional protein with DNA repair and reduction/oxidation (redox) activities. We previously revealed the role of APE1 in OS radioresistance; however, whether the redox activity of APE1 is involved in OS radioresistance is unclear. APE1 regulates the activation of ataxia-telangiectasia mutated (ATM), an initiator of DNA damage response that mediates radioresistance in other cancers. The role of APE1 redox activity and ATM activation in OS radioresistance is unknown. Our study revealed that IR increased APE1 expression and ATM activation in OS cells, and APE1 directly regulated ATM activation by its redox activity. The combined use of an APE1 redox inhibitor and ATM inhibitor effectively sensitized OS cells to IR in vitro and in vivo. Mechanistically, the increased radiosensitization of OS cells by the combined use of the two inhibitors was mediated by increased ferroptosis. Co-treatment with the two inhibitors significantly decreased expression of the common targeted transcription factor P53 compared with single inhibitor treatment. Collectively, APE1 redox activity, ATM activation and their crosstalk play important roles in the resistance of OS to irradiation. Synergetic inhibition of APE1 redox activity and ATM activation sensitized OS cells to IR by inducing ferroptosis, which provides a promising strategy for OS radiotherapy.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Bone Neoplasms , DNA-(Apurinic or Apyrimidinic Site) Lyase , Ferroptosis , Osteosarcoma , Oxidation-Reduction , Radiation, Ionizing , Osteosarcoma/radiotherapy , Osteosarcoma/metabolism , Osteosarcoma/drug therapy , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Humans , Ferroptosis/drug effects , Cell Line, Tumor , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/radiotherapy , Radiation Tolerance/drug effects , Mice , Mice, Nude , Xenograft Model Antitumor Assays , Propionates , Benzoquinones
7.
Biomed Pharmacother ; 177: 117123, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39004062

ABSTRACT

Sphingosine-1-phosphate (S1P) formed via catalytic actions of sphingosine kinase 1 (SphK1) behaves as a pro-survival substance and activates downstream target molecules associated with various pathologies, including initiation, inflammation, and progression of cancer. Here, we aimed to investigate the SphK1 inhibitory potentials of thymoquinone (TQ), Artemisinin (AR), and Thymol (TM) for the therapeutic management of lung cancer. We implemented docking, molecular dynamics (MD) simulations, enzyme inhibition assay, and fluorescence measurement studies to estimate binding affinity and SphK1 inhibitory potential of TQ, AR, and TM. We further investigated the anti-cancer potential of these compounds on non-small cell lung cancer (NSCLC) cell lines (H1299 and A549), followed by estimation of mitochondrial ROS, mitochondrial membrane potential depolarization, and cleavage of DNA by comet assay. Enzyme activity and fluorescence binding studies suggest that TQ, AR, and TM significantly inhibit the activity of SphK1 with IC50 values of 35.52 µM, 42.81 µM, and 53.68 µM, respectively, and have an excellent binding affinity. TQ shows cytotoxic effect and anti-proliferative potentials on H1299 and A549 with an IC50 value of 27.96 µM and 54.43 µM, respectively. Detection of mitochondrial ROS and mitochondrial membrane potential depolarization shows promising TQ-induced oxidative stress on H1299 and A549 cell lines. Comet assay shows promising TQ-induced oxidative DNA damage. In conclusion, TQ, AR, and TM act as potential inhibitors for SphK1, with a strong binding affinity. In addition, the cytotoxicity of TQ is linked to oxidative stress due to mitochondrial ROS generation. Overall, our study suggests that TQ is a promising inhibitor of SphK1 targeting lung cancer therapy.


Subject(s)
Artemisinins , Benzoquinones , Cell Proliferation , Lung Neoplasms , Phosphotransferases (Alcohol Group Acceptor) , Thymol , Humans , A549 Cells , Antineoplastic Agents/pharmacology , Artemisinins/pharmacology , Benzoquinones/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Membrane Potential, Mitochondrial/drug effects , Molecular Docking Simulation , Molecular Dynamics Simulation , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Reactive Oxygen Species/metabolism , Thymol/pharmacology
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1024-1032, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977331

ABSTRACT

OBJECTIVE: To investigate the mechanism of 2, 6-dimethoxy-1, 4-benzoquinone (DMQ), an active ingredients in fermented wheat germ extract, for inhibiting NLRP3 inflammasome activation and alleviating septic shock in mice. METHODS: Cultured murine bone marrow-derived macrophages (BMDM) stimulated with lipopolysaccharide (LPS) were treated with DMQ, followed by treatment with Nigericin, ATP, and MSU for activating the canonical NLRP3 inflammasome; the noncanonical NLRP3 inflammasome was activated by intracellular transfection of LPS, and AIM2 inflammasome was activated using Poly A: T.In human monocytic THP-1 cells, the effect of Nigericin on inflammasome activation products was examined using Western blotting and ELISA.Co-immunoprecipitation was performed to explore the mechanism of DMQ-induced blocking of NLRP3 inflammasome activation.In a male C57BL/6J mouse model of LPS-induced septic shock treated with 20 and 40 mg/kg DMQ, the levels of IL-1ß and TNF-α in the serum and peritoneal lavage fluid were determined using ELISA, and the survival time of the mice within 36 h was observed. RESULTS: Treatment with DMQ effectively inhibited LPS-induced activation of canonical NLRP3 inflammasome in mouse BMDM and human THP-1 cells and also inhibited non-canonical NLRP3 inflammasome activation in mouse BMDM, but produced no significant effect on AIM2 inflammasome activation.DMQ significantly blocked the binding between ASC and NLRP3.In the mouse models of septic shock, DMQ treatment significantly reduced the levels of IL-1ß in the serum and peritoneal fluid and obviously prolonged survival time of the mice. CONCLUSION: DMQ can effectively block ASC-NLRP3 interaction to inhibit NLRP3 inflammasome activation and alleviate LPSinduced septic shock in mice.


Subject(s)
Benzoquinones , Inflammasomes , Interleukin-1beta , Lipopolysaccharides , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Shock, Septic , Animals , Shock, Septic/drug therapy , Shock, Septic/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Inflammasomes/metabolism , Male , Humans , Benzoquinones/pharmacology , Benzoquinones/therapeutic use , Interleukin-1beta/metabolism , Macrophages/metabolism , Macrophages/drug effects , Tumor Necrosis Factor-alpha/metabolism , THP-1 Cells , Disease Models, Animal
9.
Sci Rep ; 14(1): 16483, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39013998

ABSTRACT

The drug efflux pump is a crucial mechanism implicated in resistance to multiple antimicrobials. Thymoquinone (TQ) has evidently demonstrated multiple activities, antibacterial being the most effective. Knowledge about TQ activity against multidrug-resistant Staphylococcus aureus is very scarce. Therefore, the present study was conducted to investigate TQ resistance modulation in ciprofloxacin (CIP) and doxycycline (DO) multidrug-resistant S. aureus. Forty-seven samples were collected from different sources, and S. aureus was isolated and identified. Then, S. aureus resistance profiles to antimicrobials, N. sativa essential oil, and TQ; the correlation between TQ-MIC readings and disc diffusion; cartwheel and ethidium bromide (EtBr) accumulation assays; and norA gene expression were all described within silico molecular docking for TQ interactions with norA efflux pump protein. TQ-MICs ranged from 5-320 µg/ml. TQ down-regulated norA gene expression, resulting in a drop in efflux pump activity of 77.5-90.6% in the examined strains, comparable to that observed with verapamil. Exposure of S. aureus strains to CIP and DO raises the initial basal efflux pumping expression to 34.2 and 22.9 times, respectively. This induced efflux pumping overexpression was substantially reduced by 97.7% when TQ was combined with CIP or DO. There was a significant reduction of MICs of CIP and DO MICs by 2-15 and 2-4 folds, respectively, after treatment with 0.5XMIC-TQ in resistance modulation assays. These results refer to TQ ligand inhibitory interactions with NorA protein in molecular docking. Interpretations of inhibition zone diameters (IZDs) of disc diffusion and TQ-MICs exhibit independence of MICs from IZDs, as indicated by invalid linear regression analysis. TQ significantly reduced efflux pumping S. aureus induced by CIP and DO, but further investigations are needed to improve TQ-pharmacokinetics to restore CIP and DO activity and suppress fluoroquinolone and doxycycline-resistant S. aureus selection in clinical and animal settings.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Benzoquinones , Ciprofloxacin , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins , Staphylococcus aureus , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Benzoquinones/pharmacology , Benzoquinones/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Doxycycline/pharmacology , Gene Expression Regulation, Bacterial/drug effects
10.
Chem Biol Interact ; 399: 111151, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39025287

ABSTRACT

Colorectal cancer (CRC), the third most prevalent cancer globally, presents formidable hurdles in treatment owing to factors such as therapeutic resistance and genetic mutations affecting primary drug targets. 2-methoxy-6-undecyl-1,4-benzoquinone (BQ), derived from Ardisia crispa roots, has emerged as a potent anti-inflammatory and anti-angiogenic compound with substantial potential, as evidenced by previous studies. This study aimed to explore the potential of BQ in suppressing angiogenesis and metastasis in the human CRC cell lines LoVo and HCT116. Various in vitro and in silico studies have been conducted to elucidate the potential pathway(s) of BQ. BQ was highly cytotoxic, with an IC50 of 7.01 ± 0.6 µM in HCT116 and 9.58 ± 0.8 µM in LoVo cells. Moreover, BQ induced notable apoptotic activity and suppressed migration, invasion, and adhesion in both cell lines. The inhibition of MMP-2 suggests the potential of BQ to impede extracellular matrix degradation and CRC cell metastasis. BQ inhibits the expression of key proteins involved in angiogenesis and metastasis, including VEGF-A, VEGF-C, BRAF, ERK, KRAS, PI3K, and AKT. Molecular docking simulations illustrated the robust binding of BQ to CRC protein receptors. BQ holds promise in impeding CRC progression by targeting angiogenesis and metastasis, particularly through inhibition of the KRAS/BRAF/ERK and KRAS/PI3K/AKT signaling pathways.


Subject(s)
Benzoquinones , Cell Movement , Colorectal Neoplasms , Molecular Docking Simulation , Neovascularization, Pathologic , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Benzoquinones/pharmacology , Benzoquinones/chemistry , Signal Transduction/drug effects , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Cell Movement/drug effects , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Apoptosis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Neoplasm Metastasis , Matrix Metalloproteinase 2/metabolism , Cell Adhesion/drug effects , Angiogenesis
11.
Anal Chim Acta ; 1312: 342755, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834267

ABSTRACT

BACKGROUND: Identifying drug-binding targets and their corresponding sites is crucial for drug discovery and mechanism studies. Limited proteolysis-coupled mass spectrometry (LiP-MS) is a sophisticated method used for the detection of compound and protein interactions. However, in some cases, LiP-MS cannot identify the target proteins due to the small structure changes or the lack of enrichment of low-abundant protein. To overcome this drawback, we developed a thermostability-assisted limited proteolysis-coupled mass spectrometry (TALiP-MS) approach for efficient drug target discovery. RESULTS: We proved that the novel strategy, TALiP-MS, could efficiently identify target proteins of various ligands, including cyclosporin A (a calcineurin inhibitor), geldanamycin (an HSP90 inhibitor), and staurosporine (a kinase inhibitor), with accurately recognizing drug-binding domains. The TALiP protocol increased the number of target peptides detected in LiP-MS experiments by 2- to 8-fold. Meanwhile, the TALiP-MS approach can not only identify both ligand-binding stability and destabilization proteins but also shows high complementarity with the thermal proteome profiling (TPP) and machine learning-based limited proteolysis (LiP-Quant) methods. The developed TALiP-MS approach was applied to identify the target proteins of celastrol (CEL), a natural product known for its strong antioxidant and anti-cancer angiogenesis effect. Among them, four proteins, MTHFD1, UBA1, ACLY, and SND1 were further validated for their strong affinity to CEL by using cellular thermal shift assay. Additionally, the destabilized proteins induced by CEL such as TAGLN2 and CFL1 were also validated. SIGNIFICANCE: Collectively, these findings underscore the efficacy of the TALiP-MS method for identifying drug targets, elucidating binding sites, and even detecting drug-induced conformational changes in target proteins in complex proteomes.


Subject(s)
Proteolysis , Humans , Mass Spectrometry/methods , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/chemistry , Benzoquinones/chemistry , Benzoquinones/pharmacology , Temperature , Pentacyclic Triterpenes/chemistry , Cyclosporine/pharmacology , Cyclosporine/chemistry , Cyclosporine/metabolism , Staurosporine/pharmacology , Staurosporine/metabolism , Ligands , Drug Discovery , Binding Sites
12.
Chem Pharm Bull (Tokyo) ; 72(6): 566-569, 2024.
Article in English | MEDLINE | ID: mdl-38897954

ABSTRACT

Dihydrobenzofuran is an important skeleton for bioactive compounds and natural products. Hydroquinones can be easily modified into substituted hydroquinones, which effectively undergo oxidation to produce the corresponding benzoquinone derivatives. Benzoquinones are reactive electrophiles that are frequently utilized in coupling with olefins to dihydrobenzofurans. Herein, we report the one-pot oxidative coupling of hydroquinones bearing an electron-withdrawing group at the C2 position with olefins to dihydrobenzofurans in the presence of the Lewis acidic FeCl3 and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) oxidant. Furthermore, this method was applied to the oxidative coupling of N-electron-withdrawing group-substituted 4-aminophenol.


Subject(s)
Alkenes , Benzofurans , Hydroquinones , Hydroquinones/chemistry , Hydroquinones/chemical synthesis , Benzofurans/chemistry , Benzofurans/chemical synthesis , Alkenes/chemistry , Molecular Structure , Oxidative Coupling , Ferric Compounds/chemistry , Oxidation-Reduction , Chlorides/chemistry , Benzoquinones/chemistry , Benzoquinones/chemical synthesis
13.
Molecules ; 29(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38930920

ABSTRACT

A promising method was established for the determination of nine halobenzoquinones (HBQs) in potable water by membrane solid-phase extraction (MSPE) pretreatment and the liquid chromatography-mass spectrometry (LC-MS) method. A 500 mL water sample was taken for enrichment by the SDB-RPS membrane, which was previously activated by methanol and ultrapure water. The sample was eluted with methanol and re-dissolved with the initial mobile phase after nitrogen blowing. Then, it was detected in negative ion mode using the working curve, and HBQs were quantified by the external standard method. The linearity was satisfactory in the concentration range of 4-1000 ng/L, with correlation coefficients of 0.9963~0.9994. The recoveries were 73.5~126.6% at three spiked levels, with relative standard deviations (RSDs) of 6.8~15.5%. The limits of detection (LOD, S/N = 3) values were 0.1~0.7 ng/L. The results demonstrate that the MSPE-LC-MS method is reliable, rapid, and sensitive for the simultaneous analysis of nine HBPs in potable water.


Subject(s)
Benzoquinones , Drinking Water , Solid Phase Extraction , Solid Phase Extraction/methods , Chromatography, Liquid/methods , Benzoquinones/chemistry , Benzoquinones/analysis , Drinking Water/analysis , Drinking Water/chemistry , Mass Spectrometry/methods , Limit of Detection , Water Pollutants, Chemical/analysis , Liquid Chromatography-Mass Spectrometry
14.
Viruses ; 16(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38932215

ABSTRACT

BACKGROUND: Lipids, as a fundamental cell component, play an regulating role in controlling the different cellular biological processes involved in viral infections. A notable feature of coronavirus disease 2019 (COVID-19) is impaired lipid metabolism. The function of lipophagy-related genes in COVID-19 is unknown. The present study aimed to investigate biomarkers and drug targets associated with lipophagy and lipophagy-based therapeutic agents for COVID-19 through bioinformatics analysis. METHODS: Lipophagy-related biomarkers for COVID-19 were identified using machine learning algorithms such as random forest, Support Vector Machine-Recursive Feature Elimination, Generalized Linear Model, and Extreme Gradient Boosting in three COVID-19-associated GEO datasets: scRNA-seq (GSE145926) and bulk RNA-seq (GSE183533 and GSE190496). The cMAP database was searched for potential COVID-19 medications. RESULTS: The lipophagy pathway was downregulated, and the lipid droplet formation pathway was upregulated, resulting in impaired lipid metabolism. Seven lipophagy-related genes, including ACADVL, HYOU1, DAP, AUP1, PRXAB2, LSS, and PLIN2, were used as biomarkers and drug targets for COVID-19. Moreover, lipophagy may play a role in COVID-19 pathogenesis. As prospective drugs for treating COVID-19, seven potential downregulators (phenoxybenzamine, helveticoside, lanatoside C, geldanamycin, loperamide, pioglitazone, and trichostatin A) were discovered. These medication candidates showed remarkable binding energies against the seven biomarkers. CONCLUSIONS: The lipophagy-related genes ACADVL, HYOU1, DAP, AUP1, PRXAB2, LSS, and PLIN2 can be used as biomarkers and drug targets for COVID-19. Seven potential downregulators of these seven biomarkers may have therapeutic effects for treating COVID-19.


Subject(s)
Antiviral Agents , Biomarkers , COVID-19 Drug Treatment , COVID-19 , Lipid Metabolism , SARS-CoV-2 , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , SARS-CoV-2/genetics , COVID-19/virology , Lipid Metabolism/drug effects , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Computational Biology/methods , Machine Learning , Lactams, Macrocyclic/therapeutic use , Hydroxamic Acids/therapeutic use , Hydroxamic Acids/pharmacology , Benzoquinones/pharmacology , Benzoquinones/therapeutic use
15.
J Enzyme Inhib Med Chem ; 39(1): 2339901, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38864175

ABSTRACT

The spices and aromatic herbs were used not only in cooking to add flavour and smell to dishes but also for medicinal use. Nigella sativa, also called black cumin, is one of the species that contains an important bioactive component, thymoquinone (TQ), which has antioxidant, anti-inflammatory, antimicrobial, and antidiabetic effects. Curcuma longa, which also includes curcumin, has numerous anti-cancer properties. However, the bioavailability of curcumin is lower than that of its analogs. An analog of curcumin (EF-24), which has better bioavailability than curcumin, is capable of exerting a high anti-cancer effect. In our study, we determined the effects of PON1 enzyme activity on the proliferation and aggressiveness of glioblastoma cancer treated with TQ and EF-24 from lysates of the glioblastoma cell line U87MG. The results were determined as increased PON1 activity after treatment with TQ and EF-24 in the U87MG cell line (p < 0.0001).


Subject(s)
Aryldialkylphosphatase , Benzoquinones , Cell Proliferation , Curcumin , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glioblastoma , Humans , Aryldialkylphosphatase/metabolism , Aryldialkylphosphatase/antagonists & inhibitors , Glioblastoma/drug therapy , Glioblastoma/pathology , Benzoquinones/pharmacology , Benzoquinones/chemistry , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Tumor Cells, Cultured
16.
Cell ; 187(14): 3563-3584.e26, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38889727

ABSTRACT

How evolution at the cellular level potentiates macroevolutionary change is central to understanding biological diversification. The >66,000 rove beetle species (Staphylinidae) form the largest metazoan family. Combining genomic and cell type transcriptomic insights spanning the largest clade, Aleocharinae, we retrace evolution of two cell types comprising a defensive gland-a putative catalyst behind staphylinid megadiversity. We identify molecular evolutionary steps leading to benzoquinone production by one cell type via a mechanism convergent with plant toxin release systems, and synthesis by the second cell type of a solvent that weaponizes the total secretion. This cooperative system has been conserved since the Early Cretaceous as Aleocharinae radiated into tens of thousands of lineages. Reprogramming each cell type yielded biochemical novelties enabling ecological specialization-most dramatically in symbionts that infiltrate social insect colonies via host-manipulating secretions. Our findings uncover cell type evolutionary processes underlying the origin and evolvability of a beetle chemical innovation.


Subject(s)
Coleoptera , Animals , Coleoptera/genetics , Coleoptera/metabolism , Evolution, Molecular , Benzoquinones/metabolism , Phylogeny , Genomics , Symbiosis/genetics , Transcriptome , Genome, Insect
17.
World J Gastroenterol ; 30(21): 2793-2816, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38899332

ABSTRACT

BACKGROUND: Pancreatic cancer (PC) is associated with some of the worst prognoses of all major cancers. Thymoquinone (TQ) has a long history in traditional medical practice and is known for its anti-cancer, anti-inflammatory, anti-fibrosis and antioxidant pharmacological activities. Recent studies on hypoxia-inducible factor-1α (HIF-1α) and PC have shown that HIF-1α affects the occurrence and development of PC in many aspects. In addition, TQ could inhibit the development of renal cancer by decreasing the expression of HIF-1α. Therefore, we speculate whether TQ affects HIF-1α expression in PC cells and explore the mechanism. AIM: To elucidate the effect of TQ in PC cells and the regulatory mechanism of HIF-1α expression. METHODS: Cell counting kit-8 assay, Transwell assay and flow cytometry were performed to detect the effects of TQ on the proliferative activity, migration and invasion ability and apoptosis of PANC-1 cells and normal pancreatic duct epithelial (hTERT-HPNE) cells. Quantitative real-time polymerase chain reaction and western blot assay were performed to detect the expression of HIF-1α mRNA and protein in PC cells. The effects of TQ on the HIF-1α protein initial expression pathway and ubiquitination degradation in PANC-1 cells were examined by western blot assay and co-immunoprecipitation. RESULTS: TQ significantly inhibited proliferative activity, migration, and invasion ability and promoted apoptosis of PANC-1 cells; however, no significant effects on hTERT-HPNE cells were observed. TQ significantly reduced the mRNA and protein expression levels of HIF-1α in PANC-1, AsPC-1, and BxPC-3 cells. TQ significantly inhibited the expression of the HIF-1α initial expression pathway (PI3K/AKT/mTOR) related proteins, and promoted the ubiquitination degradation of the HIF-1α protein in PANC-1 cells. TQ had no effect on the hydroxylation and von Hippel Lindau protein mediated ubiquitination degradation of the HIF-1α protein but affected the stability of the HIF-1α protein by inhibiting the interaction between HIF-1α and HSP90, thus promoting its ubiquitination degradation. CONCLUSION: The regulatory mechanism of TQ on HIF-1α protein expression in PC cells was mainly to promote the ubiquitination degradation of the HIF-1α protein by inhibiting the interaction between HIF-1α and HSP90; Secondly, TQ reduced the initial expression of HIF-1α protein by inhibiting the PI3K/AKT/mTOR pathway.


Subject(s)
Apoptosis , Benzoquinones , Cell Movement , Cell Proliferation , HSP90 Heat-Shock Proteins , Hypoxia-Inducible Factor 1, alpha Subunit , Pancreatic Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Benzoquinones/pharmacology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , HSP90 Heat-Shock Proteins/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Signal Transduction/drug effects , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Movement/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Invasiveness
18.
Signal Transduct Target Ther ; 9(1): 159, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937432

ABSTRACT

The ORF9b protein, derived from the nucleocapsid's open-reading frame in both SARS-CoV and SARS-CoV-2, serves as an accessory protein crucial for viral immune evasion by inhibiting the innate immune response. Despite its significance, the precise regulatory mechanisms underlying its function remain elusive. In the present study, we unveil that the ORF9b protein of SARS-CoV-2, including emerging mutant strains like Delta and Omicron, can undergo ubiquitination at the K67 site and subsequent degradation via the proteasome pathway, despite certain mutations present among these strains. Moreover, our investigation further uncovers the pivotal role of the translocase of the outer mitochondrial membrane 70 (TOM70) as a substrate receptor, bridging ORF9b with heat shock protein 90 alpha (HSP90α) and Cullin 5 (CUL5) to form a complex. Within this complex, CUL5 triggers the ubiquitination and degradation of ORF9b, acting as a host antiviral factor, while HSP90α functions to stabilize it. Notably, treatment with HSP90 inhibitors such as GA or 17-AAG accelerates the degradation of ORF9b, leading to a pronounced inhibition of SARS-CoV-2 replication. Single-cell sequencing data revealed an up-regulation of HSP90α in lung epithelial cells from COVID-19 patients, suggesting a potential mechanism by which SARS-CoV-2 may exploit HSP90α to evade the host immunity. Our study identifies the CUL5-TOM70-HSP90α complex as a critical regulator of ORF9b protein stability, shedding light on the intricate host-virus immune response dynamics and offering promising avenues for drug development against SARS-CoV-2 in clinical settings.


Subject(s)
COVID-19 , Cullin Proteins , HSP90 Heat-Shock Proteins , SARS-CoV-2 , Ubiquitination , Virus Replication , Humans , Cullin Proteins/genetics , Cullin Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/drug effects , Virus Replication/drug effects , Virus Replication/genetics , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , COVID-19/virology , COVID-19/genetics , COVID-19/metabolism , COVID-19/immunology , Ubiquitination/genetics , HEK293 Cells , Benzoquinones/pharmacology , Protein Stability , Vero Cells , Viral Proteins/genetics , Viral Proteins/metabolism , Lactams, Macrocyclic
19.
ACS Nano ; 18(26): 17145-17161, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38906828

ABSTRACT

The induction of heat stress response (HSR) mediated by the generation of heat shock proteins (HSPs) on exposure to magnetic hyperthermia-mediated cancer therapy (MHCT) decreases the efficacy of localized heat treatment at the tumor site, and thus therapy remains a significant challenge. Hence, the present study examined differential HSR elicited in glioma cells post-MHCT under different tumor microenvironment conditions (2D monolayers, 3D monoculture, and coculture spheroids) to recognize target genes that, when downregulated, could enhance the therapeutic effect of MHCT. Gene expression analysis following MHCT revealed that HSP90 was upregulated as compared to HSP70. Hence, to enhance the efficacy of the treatment, a combinatorial strategy using 17-DMAG as an inhibitor of HSP90 following MHCT was investigated. The effects of combinatorial therapy in terms of cell viability, HSP levels by immunofluorescence and gene expression analysis, oxidative stress generation, and alterations in cellular integrity were evaluated, where combinatorial therapy demonstrated an enhanced therapeutic outcome with maximum glioma cell death. Further, in the murine glioma model, a rapid tumor inhibition of 65 and 53% was observed within 8 days at the primary and secondary tumor sites, respectively, in the MCHT + 17-DMAG group, with abscopal effect-mediated complete tumor inhibition at both the tumor sites within 20 days of MHCT. The extracellularly released HSP90 from dying tumor cells further suggested the induction of immune response supported by the upregulation of IFN-γ and calreticulin genes in the MHCT + 17-DMAG group. Overall, our findings indicate that MHCT activates host immune systems and efficiently cooperates with the HSP90 blockade to inhibit the growth of distant metastatic tumors.


Subject(s)
Benzoquinones , Glioma , HSP90 Heat-Shock Proteins , Hyperthermia, Induced , Lactams, Macrocyclic , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Glioma/therapy , Glioma/pathology , Glioma/immunology , Glioma/drug therapy , Animals , Mice , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/chemistry , Humans , Benzoquinones/pharmacology , Benzoquinones/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Tumor Microenvironment/drug effects
20.
Mol Biol Rep ; 51(1): 769, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886257

ABSTRACT

BACKGROUND: Sleep and stress interact bidirectionally by acting on brain circuits that affect metabolism. Sleep and its alterations have impact on blood leptin levels, metabolic hormone that regulates appetite. Brain expresses the receptors for the peptide hormone leptin produced from adipocytes. The hypothalamic orexin neurons are low during sleep and active when awake, influenced by a complex interaction with leptin. Thymoquinone was found to be the major bioactive component of Nigella sativa. The aim of this study was to study the role of thymoquinone on sleep restriction and its mitigating effect on leptin-mediated signaling pathway in rat brain. METHODS AND RESULTS: 30 adult male Wistar rats were divided into 5 groups with 6 animals in each group: Control; Thymoquinone (TQ); Corn oil; Chronic Sleep restriction (CSR); and CSR + TQ. After 30 days, behavioral analysis, antioxidant, lipid profile, glucose level, liver and kidney function test, neurotransmitters, neuropeptides, and mRNA expression in in vivo studies were also assessed and pharmacokinetic and docking were done for thymoquinone. Thymoquinone has also shown good binding affinity to the target proteins. CSR has induced oxidative stress in the discrete brain regions and plasma. Current study has shown many evidences that sleep restriction has altered the neurobehavioral, antioxidant status, lipid profile, neurotransmitters, neuropeptide levels, and feeding behavior which damage the Orexin-leptin system which regulates the sleep and feeding that leads to metabolic dysfunction. CONCLUSION: The potentiality of Thymoquinone was revealed in in silico studies, and its action in in vivo studies has proved its effectiveness. The study concludes that Thymoquinone has exhibited its effect by diminishing the metabolic dysfunction by its neuroprotective, antioxidant, and hypolipidemic properties.


Subject(s)
Benzoquinones , Brain , Leptin , Rats, Wistar , Signal Transduction , Sleep Deprivation , Animals , Benzoquinones/pharmacology , Male , Leptin/metabolism , Leptin/blood , Rats , Signal Transduction/drug effects , Brain/metabolism , Brain/drug effects , Sleep Deprivation/metabolism , Sleep Deprivation/drug therapy , Oxidative Stress/drug effects , Molecular Docking Simulation , Sleep/drug effects , Sleep/physiology , Nigella sativa/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL