Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.674
Filter
1.
J Biochem Mol Toxicol ; 38(8): e23779, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39108083

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer in the world. Despite considerable improvements in the treatment of this cancer, further research to discover novel and more effective agents is ongoing. In this study, possible cytotoxic and apoptotic properties of six benzothiazolopyrimidine derivatives were studied. To assess the IC50 values of these agents, MTT assay was performed on HCT 116, CT26, and NIH/3T3 cells. Moreover, cell death mechanism induced by studied compounds was evaluated by PI/annexin V staining. Then, based on molecular docking results and in vitro experiments, the compounds with the highest anticancer properties were further analyzed in vivo in a mouse model of CRC. MTT results indicated that BTP(1) and BTP(4) had the highest selective cytotoxicity on colorectal cancer cells. Furthermore, flow cytometry results demonstrated a considerable increase in the percentage of the early apoptotic cells in BTP(1)- and BTP(4)-treated groups. In vivo studies confirmed the antitumor properties of the two compounds by a significant regression in tumor size of BTP(1)- and BTP(4)-treated mice compared to control groups. Histopathological examination of tumor tissues showed an increased number of apoptotic cells in these two groups compared to the control animals. Additionally, hematoxylin and eosin staining of the spleen and liver of treated mice did not exhibit considerable tissue damage. Thus, BTP(1) and BTP(4) can be considered promising agents in the treatment of colorectal cancer, although further experiments are required to assess their mechanism of action before their application in clinical studies.


Subject(s)
Antineoplastic Agents , Apoptosis , Colonic Neoplasms , Pyrimidines , Animals , Mice , Humans , Pyrimidines/pharmacology , Pyrimidines/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Molecular Docking Simulation , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , HCT116 Cells , NIH 3T3 Cells , Mice, Inbred BALB C , Cell Line, Tumor
2.
J Agric Food Chem ; 72(32): 17802-17812, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39092526

ABSTRACT

Succinate dehydrogenase (SDH) has been considered an ideal target for discovering fungicides. To develop novel SDH inhibitors, in this work, 31 novel benzothiazol-2-ylthiophenylpyrazole-4-carboxamides were designed and synthesized using active fragment exchange and a link approach as promising SDH inhibitors. The findings from the tests on antifungal activity indicated that most of the synthesized compounds displayed remarkable inhibition against the fungi tested. Compound Ig N-(2-(((5-chlorobenzo[d]thiazol-2-yl)thio)methyl)phenyl)-3-(difluoromethyl)-1-methyl-1H-yrazole-4-carboxamide, with EC50 values against four kinds of fungi tested below 10 µg/mL and against Cercospora arachidicola even below 2 µg/mL, showed superior antifungal activity than that of commercial fungicide thifluzamide, and specifically compounds Ig and Im were found to show preventative potency of 90.6% and 81.3% against Rhizoctonia solani Kühn, respectively, similar to the positive fungicide thifluzamide. The molecular simulation studies suggested that hydrophobic interactions were the main driving forces between ligands and SDH. Encouragingly, we found that compound Ig can effectively promote the wheat seedlings and the growth of Arabidopsis thaliana. Our further studies indicated that compound Ig could stimulate nitrate reductase activity in planta and increase the biomass of plants.


Subject(s)
Enzyme Inhibitors , Fungicides, Industrial , Pyrazoles , Succinate Dehydrogenase , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Rhizoctonia/drug effects , Rhizoctonia/growth & development , Molecular Docking Simulation , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Ascomycota/drug effects , Ascomycota/enzymology , Molecular Structure
3.
Nat Commun ; 15(1): 7154, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168984

ABSTRACT

Roberts syndrome (RBS) is an autosomal recessive disorder with profound growth deficiency and limb reduction caused by ESCO2 loss-of-function variants. Here, we elucidate the pathogenesis of limb reduction in an Esco2fl/fl;Prrx1-CreTg/0 mouse model using bulk- and single-cell-RNA-seq and gene co-expression network analyses during embryogenesis. Our results reveal morphological and vascular defects culminating in hemorrhage of mutant limbs at E12.5. Underlying this abnormal developmental progression is a pre-apoptotic, mesenchymal cell population specific to mutant limb buds enriched for p53-related signaling beginning at E9.5. We then characterize these p53-related processes of cell cycle arrest, DNA damage, cell death, and the inflammatory leukotriene signaling pathway in vivo. In utero treatment with pifithrin-α, a p53 inhibitor, rescued the hemorrhage in mutant limbs. Lastly, significant enrichments were identified among genes associated with RBS, thalidomide embryopathy, and other genetic limb reduction disorders, suggesting a common vascular etiology among these conditions.


Subject(s)
Apoptosis , Chromosomal Proteins, Non-Histone , Cohesins , Disease Models, Animal , Limb Deformities, Congenital , Tumor Suppressor Protein p53 , Animals , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Apoptosis/genetics , Mice , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/pathology , Limb Deformities, Congenital/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Female , Toluene/analogs & derivatives , Toluene/pharmacology , Ectromelia/genetics , Ectromelia/metabolism , Ectromelia/pathology , Benzothiazoles/pharmacology , Signal Transduction , Male , DNA Damage , Cell Cycle Checkpoints/genetics , Cell Cycle Checkpoints/drug effects , Limb Buds/metabolism , Hemorrhage/pathology , Hemorrhage/genetics , Hypertelorism , Homeodomain Proteins , Craniofacial Abnormalities
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124918, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39096675

ABSTRACT

The higher viscosity and lower pH in lysosomes of cancer cells highlight their potential as biomarkers for cancer. Therefore, the development of acid-activated viscosity fluorescent probes is significant for the early diagnosis and treatment of cancer. Based on this, we have designed and synthesized a near-infrared fluorescent probe based on the 2-(2-hydroxyphenyl)benzothiazole (HBT) group, namely HBTH, to monitor the viscosity changes within lysosomes. It has been demonstrated that HBTH was extremely sensitive to viscosity, with a strong linear relationship between fluorescence intensity and log(viscosity) within the range of (logη) = 0-3.06 (a correlation coefficient of 0.98), proving its capability for quantitative viscosity measurement. In particular, the most obvious fluorescence enhancement of HBTH was only efficiently triggered by the combined effect of low pH and high viscosity. Furthermore, HBTH can rapidly localize to lysosomes by wash-free procedure at a low concentration (100 nM) and achieve high-fidelity imaging within 20 s. It can also monitor the dynamic processes of lysosomes in cells, viscosity changes under drug stimuli, and lysosomal behavior during mitophagy. Importantly, HBTH is capable of identifying tumors in tumor-bearing nude mice through in vivo imaging. These features make HBTH a powerful tool for the early diagnosis and treatment of cancer.


Subject(s)
Fluorescent Dyes , Lysosomes , Mice, Nude , Neoplasms , Lysosomes/metabolism , Lysosomes/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Viscosity , Humans , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/pathology , Mice , Hydrogen-Ion Concentration , Cell Line, Tumor , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Mice, Inbred BALB C , Optical Imaging , Mitophagy/drug effects
5.
Dalton Trans ; 53(34): 14258-14264, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39129539

ABSTRACT

The aggregation of amyloid ß (Aß) peptides is a significant hallmark of Alzheimer's disease (AD), and the detection of Aß aggregates and the inhibition of their formation are important for the diagnosis and treatment of AD, respectively. Herein, we report a series of benzothiazole-based Ir(III) complexes HN-1 to HN-8 that exhibit appreciable inhibition of Aß aggregation in vitro and in living cells. These Ir(III) complexes can induce a significant fluorescence increase when binding to Aß fibrils and Aß oligomers, while their measured log D values suggest these compounds could have enhanced blood-brain barrier (BBB) permeability. In vivo studies show that HN-1, HN-2, HN-3, and HN-8 successfully penetrate the BBB and stain the amyloid plaques in AD mouse brains after a 10-day treatment, suggesting that these Ir(III) complexes could act as lead compounds for AD therapeutic and diagnostic agent development.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Benzothiazoles , Coordination Complexes , Iridium , Protein Aggregates , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Iridium/chemistry , Iridium/pharmacology , Animals , Mice , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Humans , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/diagnosis , Protein Aggregates/drug effects , Blood-Brain Barrier/metabolism , Brain/metabolism , Thiazoles
6.
CNS Neurosci Ther ; 30(8): e14883, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39097919

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, which promotes a sustained inflammatory environment in the central nervous system. Regulatory T cells (Tregs) play an important role in the control of inflammation and might play a neuroprotective role. Indeed, a decrease in Treg number and function has been reported in PD. In this context, pramipexole, a dopaminergic receptor agonist used to treat PD symptoms, has been shown to increase peripheral levels of Treg cells and improve their suppressive function. The aim of this work was to determine the effect of pramipexole on immunoregulatory Treg cells and its possible neuroprotective effect on human dopaminergic neurons differentiated from human embryonic stem cells. METHODS: Treg cells were sorted from white blood cells of healthy human donors. Assays were performed with CD3/CD28-activated and non-activated Treg cells treated with pramipexole at concentrations of 2 or 200 ng/mL. These regulatory cells were co-cultured with in vitro-differentiated human dopaminergic neurons in a cytotoxicity assay with 6-hydroxydopamine (6-OHDA). The role of interleukin-10 (IL-10) was investigated by co-culturing activated IL-10-producing Treg cells with neurons. To further investigate the effect of treatment on Tregs, gene expression in pramipexole-treated, CD3/CD28-activated Treg cells was determined by Fluidigm analysis. RESULTS: Pramipexole-treated CD3/CD28-activated Treg cells showed significant protective effects on dopaminergic neurons when challenged with 6-OHDA. Pramipexole-treated activated Treg cells showed neuroprotective capacity through mechanisms involving IL-10 release and the activation of genes associated with regulation and neuroprotection. CONCLUSION: Anti-CD3/CD28-activated Treg cells protect dopaminergic neurons against 6-OHDA-induced damage. In addition, activated, IL-10-producing, pramipexole-treated Tregs also induced a neuroprotective effect, and the supernatants of these co-cultures promoted axonal growth. Pramipexole-treated, activated Tregs altered their gene expression in a concentration-dependent manner, and enhanced TGFß-related dopamine receptor regulation and immune-related pathways. These findings open new perspectives for the development of immunomodulatory therapies for the treatment of PD.


Subject(s)
Benzothiazoles , Dopaminergic Neurons , Oxidopamine , Pramipexole , T-Lymphocytes, Regulatory , Humans , Pramipexole/pharmacology , T-Lymphocytes, Regulatory/drug effects , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Oxidopamine/toxicity , Benzothiazoles/pharmacology , Coculture Techniques , Interleukin-10/metabolism , Cells, Cultured , Neuroprotective Agents/pharmacology , Dopamine Agonists/pharmacology
7.
Sci Rep ; 14(1): 18782, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138327

ABSTRACT

Infections caused by pathogenic Escherichia coli are a serious threat to human health, while conventional antibiotic susceptibility tests (AST) have a long turn-around time, and rapid antibiotic susceptibility methods are urgently needed to save lives in the clinic, reduce antibiotic misuse and prevent emergence of antibiotic-resistant bacteria. We optimized and validated the feasibility of a novel rapid AST based on SYBR Green I and Propidium Iodide (SGPI-AST) for E. coli drug susceptibility test. A total of 112 clinical isolates of E. coli were collected and four antibiotics (ceftriaxone, cefoxitin, imipenem, meropenem) were selected for testing. Bacterial survival rate of E. coli was remarkably linearly correlated with S value at different OD600 values. After optimizing the antibiotic concentrations, the sensitivity and specificity of SGPI-AST reached 100%/100%, 97.8%/100%, 100%/100% and 98.4%/99% for ceftriaxone, cefoxitin, imipenem and meropenem, respectively, and the corresponding concordances of the SGPI-AST with conventional AST were 1.000, 0.980, 1.000 and 0.979, respectively. The SGPI-AST can rapidly and accurately determine the susceptibility of E. coli clinical isolates to multiple antibiotics in 60 min, and has the potential to be applied to guide the precise selection of antibiotics for clinical management of infections caused by pathogenic E. coli.


Subject(s)
Anti-Bacterial Agents , Benzothiazoles , Diamines , Escherichia coli , Microbial Sensitivity Tests , Organic Chemicals , Propidium , Quinolines , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Microbial Sensitivity Tests/methods , Benzothiazoles/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Quinolines/pharmacology , Organic Chemicals/pharmacology , Diamines/pharmacology , Propidium/analogs & derivatives , Propidium/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy
8.
Chem Biol Drug Des ; 104(1): e14585, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39013834

ABSTRACT

Leishmaniasis is a disease caused by protozoa Leishmania spp., considered as a significant and urgent public health problem mainly in developing countries. In the absence of an effective vaccine, the treatment of infected people is one of the most commonly prophylactic measures used to control this disease. However, the therapeutic arsenal is reduced to a few drugs, with serious side effects and variability in efficacy. Attempting to this problem, in this work, a series of benzothiazole derivatives was synthetized and assayed against promastigotes and intracellular amastigotes of L. amazonensis, as well as the toxicity on macrophages. In addition, studies about the mechanism of action were also performed. Among the synthesized molecules, the substitution at position 4 of the aromatic ring appears to be critical for activity. The best compound exhibited IC50 values of 28.86 and 7.70 µM, against promastigotes and amastigotes of L. amazonensis, respectively, being more active than miltefosine, used as reference drug. The in silico analysis of physicochemical and pharmacokinetic (ADMET) properties of this compound suggested a good profile of oral bioavailability and safety. In conclusion, the strategy of using benzothiazole nucleous in the search for new antileishmanial agents was advantageous and preliminar data provide information about the mechanism of action as well as in silico parameters suggest a good profile for preclinical studies.


Subject(s)
Antiprotozoal Agents , Benzothiazoles , Hydrazones , Leishmania , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Benzothiazoles/chemical synthesis , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Animals , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Mice , Leishmania/drug effects , Macrophages/drug effects , Macrophages/parasitology , Structure-Activity Relationship , Humans
9.
An Acad Bras Cienc ; 96(suppl 1): e20230423, 2024.
Article in English | MEDLINE | ID: mdl-39016356

ABSTRACT

Benzothiazole compounds are known as an important bicyclic ring system with multiple applications. These compounds have a wide range of biological activities, including anticancer, antimicrobial, anti-inflammatory and antiviral activities. In this study, benzothiazole compounds were synthesized and their various biological activities were examined. The synthesized benzothiazoles were evaluated for their antimicrobial properties against various bacterial and fungal strains. The compound 6e is most active ligand in the series against bacteria and fungi as compared to standard antibiotics. Especially, this compound significant effect against Staphylococcus aureus (32.00 ± 1.73 mm). These compounds exhibited potent anticancer activity against gastrointestinal cancer cells, demonstrating their potential as therapeutic agents. The lowest antiproliferative response after administration of the compounds was observed in HCT116 cells, while the most effective antiproliferative response was observed in AGS cells (> 10 µg/mL). In all cell lines, 40 and 100 µg/mL application values of the selected compounds showed significant increases in the expression of caspase-3, 8 and 9. We also utilized a computational docking approach to investigate the interaction of these benzothiazoles with VEGFR-2 kinase. Our docking studies showed that compounds 6a and 6d may be promising therapeutic agents against gastrointestinal system cancers due to their ability to bind to VEGFR-2 kinase.


Subject(s)
Antineoplastic Agents , Benzothiazoles , Microwaves , Molecular Docking Simulation , Humans , Benzothiazoles/pharmacology , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Microbial Sensitivity Tests , Green Chemistry Technology , Cell Proliferation/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemical synthesis
10.
J Psychopharmacol ; 38(7): 581-596, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39041250

ABSTRACT

Pramipexole, a D2/D3 dopamine receptor agonist, is used to treat the motor symptoms of Parkinson's disease, caused by degeneration of the dopaminergic nigrostriatal pathway. There are three paradoxes associated with its mode of action. Firstly, stimulation of D2/D3 receptors leads to neuronal inhibition, although pramipexole does not inhibit but promotes some dopamine-modulated functions, such as locomotion and reinforcement. Secondly, another dopamine-modulated function, arousal, is not promoted but inhibited by pramipexole, leading to sedation. Thirdly, pramipexole-evoked sedation is associated with an increase in pupil diameter, although sedation is expected to cause pupil constriction. To resolve these paradoxes, the path from stimulation of D2/D3 receptors to the modification of dopamine-modulated functions has been tracked. The functions considered are modulated by midbrain dopaminergic nuclei: locomotion - substantia nigra pars compacta (SNc), reinforcement/motivation - ventral tegmental area (VTA), sympathetic activity (as reflected in pupil function) - VTA; arousal - ventral periaqueductal grey (vPAG), with contributions from VTA and SNc. The application of genetics-based molecular techniques (optogenetics and chemogenetics) has enabled tracing the chains of neurones from the dopaminergic nuclei to their final targets executing the functions. The functional neuronal circuits linked to the D2/D3 receptors in the dorsal and ventral striata, stimulated by inputs from SNc and VTA, respectively, may explain how neuronal inhibition induced by pramipexole is translated into the promotion of locomotion, reinforcement/motivation and sympathetic activity. As the vPAG may increase arousal mainly by stimulating cortical D1 dopamine receptors, pramipexole would stimulate only presynaptic D2/D3 receptors on vPAG neurones, curtailing their activity and leading to sedation.


Subject(s)
Dopamine Agonists , Dopamine , Pramipexole , Receptors, Dopamine D2 , Receptors, Dopamine D3 , Pramipexole/pharmacology , Animals , Humans , Dopamine Agonists/pharmacology , Receptors, Dopamine D3/metabolism , Receptors, Dopamine D3/agonists , Receptors, Dopamine D3/drug effects , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/drug effects , Dopamine/metabolism , Benzothiazoles/pharmacology , Locomotion/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Arousal/drug effects
11.
Eur J Med Chem ; 275: 116622, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38959727

ABSTRACT

Blockade of the programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway is an attractive strategy for immunotherapy, but the clinical application of small molecule PD-1/PD-L1 inhibitors remains unclear. In this work, based on BMS-202 and our previous work YLW-106, a series of compounds with benzo[d]isothiazol structure as scaffold were designed and synthesized. Their inhibitory activity against PD-1/PD-L1 interaction was evaluated by a homogeneous time-resolved fluorescence (HTRF) assay. Among them, LLW-018 (27c) exhibited the most potent inhibitory activity with an IC50 value of 2.61 nM. The cellular level assays demonstrated that LLW-018 exhibited low cytotoxicity against Jurkat T and MDA-MB-231. Further cell-based PD-1/PD-L1 blockade bioassays based on PD-1 NFAT-Luc Jurkat cells and PD-L1 TCR Activator CHO cells indicated that LLW-018 could interrupt PD-1/PD-L1 interaction with an IC50 value of 0.88 µM. Multi-computational methods, including molecular docking, molecular dynamics, MM/GBSA, MM/PBSA, Metadynamics, and QM/MM MD were utilized on PD-L1 dimer complexes, which revealed the binding modes and dissociation process of LLW-018 and C2-symmetric small molecule inhibitor LCH1307. These results suggested that LLW-018 exhibited promising potency as a PD-1/PD-L1 inhibitor for further investigation.


Subject(s)
B7-H1 Antigen , Drug Design , Programmed Cell Death 1 Receptor , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Jurkat Cells , Molecular Docking Simulation , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/chemical synthesis , Animals , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Benzothiazoles/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry
12.
Bioorg Chem ; 150: 107586, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38955001

ABSTRACT

Compounds with sulfhydryl substituents and azole compounds exhibit potent anti-tyrosinase potency. 2-Thiobenzothiazole (2-TBT), a hybrid structure of sulfhydryl and azole, exists in two tautomeric forms, with the thione form being predominant according to several studies. 2-TBT derivatives were synthesized as potential tyrosinase inhibitors as the thione tautomeric form has the same N-CS moiety as phenylthiourea (PTU), which is suitable for chelation with the copper ions present in the tyrosinase active site. Eight of the ten 2-TBT derivatives inhibited the monophenolase and diphenolase activities of mushroom tyrosinase, with IC50 values of 0.02-0.83 µM. Kinetic studies and molecular dynamics simulations were performed to determine their mode of action and confirm that the 2-TBT derivatives bind to the tyrosinase active site with high stability. Derivatives 3, 4, 8, and 10 strongly inhibited melanogenesis in B16F10 cells in a pattern similar to the results of cellular tyrosinase inhibition, thereby suggesting that their ability to inhibit melanogenesis was due to their tyrosinase inhibitory activity. In a depigmentation experiment using zebrafish embryos, all 2-TBT derivatives showed better potency than kojic acid, even at 400 to 2000 times lower concentration, and 1 and 10 reduced zebrafish larva pigmentation more strongly than PTU even at 20 times lower concentration. Experiments investigating the changes in tyrosinase inhibitory activity of 2-TBT derivatives in the presence and absence of CuSO4 and their copper chelating ability supported that these derivatives exert their anti-melanogenic effect by chelating the copper ions of tyrosinase. These results suggest that 2-TBT derivatives are promising candidates for the treatment of hyperpigmentation-related disorders.


Subject(s)
Benzothiazoles , Enzyme Inhibitors , Melanins , Monophenol Monooxygenase , Zebrafish , Animals , Mice , Agaricales/enzymology , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Benzothiazoles/chemical synthesis , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Melanins/antagonists & inhibitors , Melanins/metabolism , Molecular Structure , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Phenylthiourea/chemistry , Phenylthiourea/pharmacology , Structure-Activity Relationship
13.
Molecules ; 29(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38999138

ABSTRACT

Cancer remains a leading cause of death worldwide, often resulting from uncontrolled growth in various organs. Protein kinase inhibitors represent an important class of targeted cancer therapies. Recently, the kinases BRAF and VEGFR-2 have shown synergistic effects on tumor progression. Seeking to develop dual BRAF/VEGFR-2 inhibitors, we synthesized 18 amino-benzothiazole derivatives with structural similarities to reported dual inhibitors. Four compounds-4a, 4f, 4l, and 4r-demonstrated remarkable cytotoxicity, with IC50 values ranging from 3.58 to 15.36 µM, against three cancer cell lines. Furthermore, these compounds showed IC50 values of 38.77-66.22 µM in the case of a normal cell line, which was significantly safer than the reference, sorafenib. Subsequent investigation revealed that compound 4f exhibited the capacity to inhibit the BRAF and VEGFR-2 enzymes, with IC50 values similar to sorafenib (0.071 and 0.194 µM, respectively). Moreover, compound 4f caused G2-M- and S-phase cycle arrest. Molecular modeling demonstrated binding patterns compatible with inhibition for both targets, where 4f exerted the critical interactions in the BRAF site and interacted in the VEGFR-2 site in a manner akin to sorafenib, demonstrating affinity similar to dabrafenib.


Subject(s)
Antineoplastic Agents , Benzothiazoles , Cell Proliferation , Molecular Docking Simulation , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Thiadiazoles , Vascular Endothelial Growth Factor Receptor-2 , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Humans , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Benzothiazoles/chemical synthesis , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Design , Structure-Activity Relationship , Sorafenib/pharmacology , Sorafenib/chemistry , Molecular Structure , Computer Simulation , Drug Screening Assays, Antitumor
14.
Exp Cell Res ; 440(1): 114131, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38876374

ABSTRACT

Firefly luciferase (Fluc) from Photinus pyralis is one of the most widely used reporter proteins in biomedical research. Despite its widespread use, Fluc's protein phase transition behaviors and phase separation characteristics have not received much attention. Current research uncovers Fluc's intrinsic property to phase separate in mammalian cells upon a simple cell culture temperature change. Specifically, Fluc spontaneously produced needle-shaped crystal-like inclusion bodies upon temperature shift to the hypothermic temperatures ranging from 25 °C to 31 °C. The crystal-like inclusion bodies were not associated with or surrounded by membranous organelles and were likely built from the cytosolic pool of Fluc. Furthermore, the crystal-like inclusion formation was suppressed when cells were cultured in the presence of D-luciferin and its synthetic analog, as well as the benzothiazole family of so-called stabilizing inhibitors. These two classes of compounds inhibited intracellular Fluc crystallization by different modes of action as they had contrasting effects on steady-state luciferase protein accumulation levels. This study suggests that, under substrate insufficient conditions, the excess Fluc phase separates into a crystal-like state that can modulate intracellular soluble enzyme availability and protein turnover rate.


Subject(s)
Crystallization , Fireflies , Luciferases, Firefly , Temperature , Luciferases, Firefly/metabolism , Animals , Humans , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Inclusion Bodies/metabolism
15.
J Inorg Biochem ; 259: 112636, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38943843

ABSTRACT

The dyshomeostasis of metal ions in the brain leads to the accumulation of excess metals in extracellular and inter-neuronal locations and the Amyloid ß peptide (Aß) binds these transition metals, which ultimately cause the Aß aggregation and severe oxidative stress in the brain. The aggregation of Aß and oxidative stress are important factors to trigger Alzheimer's disease (AD). Metal chelation therapy is a promising approach to removing metals from Aß-M species and relieve the oxidative stress. Therefore, 4 tetrahydrosalens containing benzothiazole moiety were designed and synthesized. Their biological activities for Alzheimer's disease therapy in vitro were determined by Turbidity assay, BCA protein assay, MTT assay and fluorescent probe of DCFH-DA. The results were comparing with that of non-specific chelator (cliquinol, CQ) and non-benzothiazole functionalized tetrahydrosalens, the results demonstrated that benzothiazole functionalized chelators had more efficient bio-activities in preventing Cu2+-induced Aß aggregation, attenuating cytotoxicity mediated by Aß-Cu2+ species and decrease the level of reactive oxygen species (ROS) in Cu2+-Aß treated PC12 cells than that of cliquinol and non-benzothiazole functionalized analogues.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Chelating Agents , Copper , Reactive Oxygen Species , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Chelating Agents/pharmacology , Chelating Agents/chemistry , Chelating Agents/chemical synthesis , Copper/chemistry , PC12 Cells , Amyloid beta-Peptides/metabolism , Animals , Rats , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Benzothiazoles/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/pharmacology , Humans
16.
Future Med Chem ; 16(10): 999-1027, 2024.
Article in English | MEDLINE | ID: mdl-38910576

ABSTRACT

Aim: The objective of the present investigation was to design and synthesize new heterocyclic hybrids comprising benzothiazole and indenopyrazolone pharmacophoric units in a single molecular framework targeting α-amylase and α-glucosidase enzymatic inhibition. Materials & methods: 20 new benzothiazole-appended indenopyrazoles, 3a-t, were synthesized in good yields under environment-friendly conditions via cycloaddition reaction, and assessed for antidiabetic activity against α-amylase and α-glucosidase, using acarbose as the standard reference. Results: Among all the hydroxypyrazolones, 3p and 3r showed the best inhibition against α-amylase and α-glucosidase, which finds support from molecular docking and dynamic studies. Conclusion: Compounds 3p and 3r have been identified as promising antidiabetic agents against α-amylase and α-glucosidase and could be considered valuable leads for further optimization of antidiabetic agents.


[Box: see text].


Subject(s)
Benzothiazoles , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , alpha-Amylases , alpha-Glucosidases , alpha-Glucosidases/metabolism , Benzothiazoles/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Humans , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis
17.
Medicine (Baltimore) ; 103(24): e38496, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875413

ABSTRACT

As a subtype of the 5-hydroxytryptamine (5-HT) receptor, 5-HT1A receptors are involved in the pathological process of psychiatric disorders and is an important target for antidepressants. The research groups focus on these area have tried to design novel compounds to alleviate depression by targeting 5-HT1A receptor. The heterocyclic structures is an important scaffold to enhance the antidepressant activity of ligands, including piperazine, piperidine, benzothiazole, and pyrrolidone. The current review highlights the function and significance of nitrogen-based heterocyclics 5-HT1AR represented by piperazine, piperidine, benzothiazole, and pyrrolidone in the development of antidepressant.


Subject(s)
Antidepressive Agents , Receptor, Serotonin, 5-HT1A , Serotonin 5-HT1 Receptor Agonists , Humans , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT1 Receptor Agonists/therapeutic use , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Receptor, Serotonin, 5-HT1A/drug effects , Receptor, Serotonin, 5-HT1A/metabolism , Piperazines/pharmacology , Piperazines/chemistry , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Piperidines/chemistry , Pyrrolidinones/pharmacology , Pyrrolidinones/therapeutic use , Pyrrolidinones/chemistry , Depression/drug therapy
18.
Acta Chim Slov ; 71(2): 353-362, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38919107

ABSTRACT

The coupling reaction of diazonium ion of 2-amino-6-nitrobenzothiazole at 0-5 °C with distinctly substituted 2-aminobenzothiazole derivatives produced new 1,2,3,5-tetrazine derivatives. It was found that diazotized 2-amino-6-nitrobenzo[d]thiazol reacts with the ring nitrogen atom of varyingly substituted 2-aminobenzothiazole derivatives to yield tetrazine nucleus. The benzene ring of benzothiazole bearing electron donor group and annelated to the tetrazine was further substituted in situ by other 6-nitrobenzo[d]thiazol-2-yl) diazinyl to yield the final product. The structure of the prepared compounds was elucidated using their physical, elemental, and spectroscopic data. The synthesized compounds were tested for their antimicrobial and antibiofilm activities against Staphylococcus aureus and Escherichia coli bacteria. Two of the synthesis tetrazine derivatives exhibited interesting antibiofilm potential.


Subject(s)
Anti-Bacterial Agents , Benzothiazoles , Biofilms , Escherichia coli , Microbial Sensitivity Tests , Staphylococcus aureus , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Benzothiazoles/chemical synthesis , Diazonium Compounds/chemistry , Diazonium Compounds/pharmacology
19.
Funct Integr Genomics ; 24(3): 114, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862667

ABSTRACT

With advances in radioactive particle implantation in clinical practice, Iodine-125 (125I) seed brachytherapy has emerged as a promising treatment for cholangiocarcinoma (CCA), showing good prognosis; however, the underlying molecular mechanism of the therapeutic effect of 125I seed is unclear. To study the effects of 125I seed on the proliferation and apoptosis of CCA cells. CCA cell lines, RBE and HCCC-9810, were treated with reactive oxygen species (ROS) scavenger acetylcysteine (NAC) or the p53 functional inhibitor, pifithrin-α hydrobromide (PFTα). Cell counting kit-8 (CCK-8) assay, 5-bromo-2-deoxy-uridine (BrdU) staining, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry assay were performed to test the radiation-sensitivity of 125I seed toward CCA cells at different radiation doses (0.4 mCi and 0.8 mCi). 2,7-dichlorofluorescein diacetate (DCF-DA) assay, real-time quantitative polymerase chain reaction (RT-qPCR), and western blot analysis were performed to assess the effect of 125I seed on the ROS/p53 axis. A dose-dependent inhibitory effect of 125I seeds on the proliferation of CCA cells was observed. The 125I seed promoted apoptosis of CCA cells and induced the activation of the ROS/p53 pathway in a dose-dependent manner. NAC or PFTα treatment effectively reversed the stimulatory effect of 125I seed on the proliferation of CCA cells. NAC or PFTα suppressed apoptosis and p53 protein expression induced by the 125I seed. 125I seed can inhibit cell growth mainly through the apoptotic pathway. The mechanism may involve the activation of p53 and its downstream apoptotic pathway by up-regulating the level of ROS in cells.


Subject(s)
Apoptosis , Cell Proliferation , Cholangiocarcinoma , Iodine Radioisotopes , Reactive Oxygen Species , Tumor Suppressor Protein p53 , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/radiotherapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/drug therapy , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Humans , Cell Line, Tumor , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/radiotherapy , Acetylcysteine/pharmacology , Benzothiazoles/pharmacology , Signal Transduction/drug effects
20.
Bioorg Med Chem ; 109: 117798, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38906068

ABSTRACT

N-(Benzothiazole-2-yl)pyrrolamide DNA gyrase inhibitors with benzyl or phenethyl substituents attached to position 3 of the benzothiazole ring or to the carboxamide nitrogen atom were prepared and studied for their inhibition of Escherichia coli DNA gyrase by supercoiling assay. Compared to inhibitors bearing the substituents at position 4 of the benzothiazole ring, the inhibition was attenuated by moving the substituent to position 3 and further to the carboxamide nitrogen atom. A co-crystal structure of (Z)-3-benzyl-2-((4,5-dibromo-1H-pyrrole-2-carbonyl)imino)-2,3-dihydrobenzo[d]-thiazole-6-carboxylic acid (I) in complex with E. coli GyrB24 (ATPase subdomain) was solved, revealing the binding mode of this type of inhibitor to the ATP-binding pocket of the E. coli GyrB subunit. The key binding interactions were identified and their contribution to binding was rationalised by quantum theory of atoms in molecules (QTAIM) analysis. Our study shows that the benzyl or phenethyl substituents bound to the benzothiazole core interact with the lipophilic floor of the active site, which consists mainly of residues Gly101, Gly102, Lys103 and Ser108. Compounds with substituents at position 3 of the benzothiazole core were up to two orders of magnitude more effective than compounds with substituents at the carboxamide nitrogen. In addition, the 6-oxalylamino compounds were more potent inhibitors of E. coli DNA gyrase than the corresponding 6-acetamido analogues.


Subject(s)
DNA Gyrase , Escherichia coli , Topoisomerase II Inhibitors , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/chemical synthesis , DNA Gyrase/metabolism , DNA Gyrase/chemistry , Binding Sites , Escherichia coli/enzymology , Escherichia coli/drug effects , Structure-Activity Relationship , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Benzothiazoles/chemical synthesis , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Molecular Structure , Quantum Theory , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL