Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 611
Filter
1.
Bioorg Chem ; 150: 107527, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38876005

ABSTRACT

Two protoberberine alkaloids with a unique C28 skeleton, named xanthiumines A (1) and B (2), respectively, were isolated from the fruits of Xanthium sibiricum Patr. Their structures including absolute configurations were unequivocally established by the comprehensive NMR and MS spectroscopic data analysis together with gauge-independent atomic orbital (GIAO) NMR calculations, and electronic circular dichroism (ECD) calculations. Compounds 1 and 2 are the first examples of natural protoberberine alkaloid with a phenolic acid group at C-13a. Their plausible biosynthetic pathway was proposed on the basis of the coexisting alkaloid monomer as the precursor. Furthermore, the effects and related molecular mechanism of compound 1 on hepatic lipid accumulation were also investigated in oleic acid (OA)-treated HepG2 cells.


Subject(s)
AMP-Activated Protein Kinases , Berberine Alkaloids , Fruit , Xanthium , Humans , Fruit/chemistry , Xanthium/chemistry , Berberine Alkaloids/chemistry , Berberine Alkaloids/pharmacology , Berberine Alkaloids/isolation & purification , Hep G2 Cells , Molecular Structure , AMP-Activated Protein Kinases/metabolism , Structure-Activity Relationship , Dose-Response Relationship, Drug , Drug Discovery , Enzyme Activators/pharmacology , Enzyme Activators/chemistry , Enzyme Activators/isolation & purification
2.
J Ethnopharmacol ; 332: 118375, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38789094

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The quality control methods of different specifications of Corydalis Rhizoma in Zhejiang China (ZJ CR) are the same, so the quality of each specification couldnot be guaranteed. To clarify the quality control methods and pharmacodynamic material basis of ZJ CR with different specifications could provide reference for the quality control of ZJ CR. AIM OF THE STUDY: The purpose of this study was to establish a quality control method for ZJ CR with different specifications and to screen out the pharmacodynamic material basis of ZJ CR with different specifications. MATERIALS AND METHODS: Firstly, according to the existing grading standards, the medicinal materials were divided into specifications, and the character indexes of ZJ CR with different specifications were established. The quality indexes were established by HPLC, network pharmacology and literature retrieval. The correlation between the trait indexes and quality indexes of ZJ CR with different specifications was analyzed, and the best quality control method was established. Further combined with the pharmacodynamic indexes of ZJ CR with different specifications, the pharmacodynamic material basis of ZJ CR with different specifications was screened out by spectrum-effect analysis. The correlation between trait indexes and pharmacodynamic indexes was analyzed to verify the rationality of grade standard. RESULTS: The three specifications of ZJ CR were CR (Diameter ≥1.1 cm), CR (Diameter <1.1 cm), and CR (No size distinction). Diameter, width, thickness, grain weight, volume and 50 g grain number could be used as the trait indexes of ZJ CR. Protopine (CR1), palmatine hydrochloride (CR2), berberine hydrochloride (CR3), dehydrocorydaline (CR4), tetrahydropalmatine (CR5), tetrahydroberberine (CR6), corydaline (CR7), stylopine (CR8) and isoimperatorin (CR9) were identified. Total components, core components (CR5, CR6, CR7 and CR8), alcohol-soluble extracts (ASE) could be used as quality indexes. The best quality control methods of the three specifications respectively were: the larger the diameter and grain weight, the smaller the number of 50 g grains; The larger the diameter, the smaller the volume, thickness, width and number of 50 g particles; The larger the grain weight and volume, the smaller the number of 50 g grains. The main analgesic components of the three specifications respectively were: CR1, CR2 and core components; CR2, CR4; CR8, CR9. The larger the diameter and the less the number of 50 g grains, the better the analgesic effect of ZJ CR, and the grade standard was reasonable. CONCLUSIONS: This study showed that the quality control methods and pharmacodynamic material basis of ZJ CR with different specifications were different, which may be caused by the differences in traits and the contribution of main active ingredients. This study constructed an evaluation model combining external traits, internal quality and overall efficacy, and provided theoretical support for the rationality of ZJ CR grade standard.


Subject(s)
Corydalis , Drugs, Chinese Herbal , Quality Control , Rhizome , Corydalis/chemistry , Rhizome/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/standards , Drugs, Chinese Herbal/pharmacology , China , Berberine Alkaloids/pharmacology , Berberine Alkaloids/analysis , Animals , Chromatography, High Pressure Liquid
3.
Acta Parasitol ; 69(2): 1244-1252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705947

ABSTRACT

PURPOSE: Artemisinin combination therapies, the first-line antimalarials in Nigeria, have reportedly suffered multiple failures in malaria treatment, hence the search for novel combination of other compounds. Methyl gallate and palmatine have been reported to exhibit antiplasmodial activities but the antimalarial activity of their combination has not been evaluated. Therefore, the evaluation of the combination of methyl gallate and palmatine for antimalarial activity in vitro and in vivo in the presence of piperine was carried out. MATERIALS AND METHODS: The inhibitory potential of methyl gallate and palmatine combination on ß-hematin (hemozoin) formation was studied in vitro. Also, the antimalarial activity of methyl gallate and palmatine combination with/without a bioenhancer (piperine) was evaluated in Plasmodium berghei NK65-infected mice. RESULTS: Methyl gallate and palmatine in the ratio 3:2 acted synergistically in vitro and had the highest inhibitory effect (IC50 = 0.73 µg/mL) on ß-hematin (hemozoin) formation. The 3:2 combination of methyl gallate and palmatine exhibited no antimalarial activity in vivo in the absence of piperine but caused reduction in parasitemia that exceeded 40% in the presence of piperine at the dose of 25 mg/kg body weight on days 6 and 8 post-inoculation in mice. CONCLUSION: The 3:2 combination of methyl gallate and palmatine in the presence of piperine exhibited antimalarial activity in vivo, possibly by synergistic inhibition of hemozoin formation which may cause accumulation of haem within the food vacuole of Plasmodium spp. and its death.


Subject(s)
Alkaloids , Antimalarials , Benzodioxoles , Berberine Alkaloids , Drug Synergism , Gallic Acid , Malaria , Piperidines , Plasmodium berghei , Polyunsaturated Alkamides , Animals , Polyunsaturated Alkamides/pharmacology , Antimalarials/pharmacology , Benzodioxoles/pharmacology , Piperidines/pharmacology , Malaria/drug therapy , Malaria/parasitology , Mice , Gallic Acid/pharmacology , Gallic Acid/analogs & derivatives , Alkaloids/pharmacology , Plasmodium berghei/drug effects , Berberine Alkaloids/pharmacology , Parasitemia/drug therapy , Inhibitory Concentration 50 , Hemeproteins
4.
J Asian Nat Prod Res ; 26(8): 910-917, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38619479

ABSTRACT

Alzheimer's disease is a neurodegenerative disorder characterized by the presence of neurodegenerative lesions and cognitive impairment. In this study, a series of novel palmatine derivatives were designed and synthesized through the introduction of a heteroatom using carbodiimide-mediated condensation. The synthesized compounds were then screened for toxicity and potency, leading to the identification of compound 2q, which exhibited low toxicity and high potency. Our findings demonstrated that compound 2q displayed significant neuroprotective activity in vitro, emerging as a promising candidate for Alzheimer's disease treatment.


Subject(s)
Berberine Alkaloids , Neuroprotective Agents , Berberine Alkaloids/pharmacology , Berberine Alkaloids/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Molecular Structure , Humans , Alzheimer Disease/drug therapy , Structure-Activity Relationship , Animals
5.
Int J Biol Macromol ; 268(Pt 1): 131703, 2024 May.
Article in English | MEDLINE | ID: mdl-38643915

ABSTRACT

Interaction under amyloidogenic condition between naturally occurring protoberberine alkaloid palmatine and hen egg white lysozyme was executed by adopting spectrofluorometric and theoretical molecular docking and dynamic simulation analysis. In spetrofluorometric method, different types of experiments were performed to explore the overall mode and mechanism of interaction. Intrinsic fluorescence quenching of lysozyme (Trp residues) by palmatine showed effective binding interaction and also yielded different binding parameters like binding constant, quenching constant and number of binding sites. Synchronous fluorescence quenching and 3D fluorescence map revealed that palmatine was able to change the microenvironment of the interacting site. Fluorescence life time measurements strongly suggested that this interaction was basically static in nature. Molecular docking result matched with fluorimetric experimental data. Efficient drug like interaction of palmatine with lysozyme at low pH and high salt concentration prompted us to analyze its antifibrillation potential. Different assays and microscopic techniques were employed for detailed analysis of lysozyme amyloidosis.Thioflavin T(ThT) assay, Congo Red (CR) assay, 8-anilino-1-naphthalenesulfonic acid (ANS) assay, Nile Red (NR) assay, anisotropy and intrinsic fluorescence measurements confirmed that palmatine successfully retarded and reduced lysozyme fibrillation. Dynamic light scattering (DLS) and atomic force microscopy (AFM) further reiterated the excellent antiamyloidogenic potency of palmatine.


Subject(s)
Berberine Alkaloids , Molecular Docking Simulation , Muramidase , Muramidase/chemistry , Muramidase/metabolism , Berberine Alkaloids/pharmacology , Berberine Alkaloids/chemistry , Protein Binding , Spectrometry, Fluorescence , Animals , Amyloid/chemistry , Amyloid/metabolism , Molecular Dynamics Simulation , Binding Sites , Hydrogen-Ion Concentration , Chickens
6.
Biochem Biophys Res Commun ; 710: 149599, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38608493

ABSTRACT

Osteoarthritis is a highly prevalent joint disease; however, effective treatments are lacking. Protopine (PTP) is an isoquinoline alkaloid with potent anti-inflammatory and antioxidant properties; however, it has not been studied in osteoarthritis. This study aimed to investigate whether PTP can effectively protect chondrocytes from ferroptosis. Primary mouse chondrocytes were treated with tert-butyl hydroperoxide (TBHP) to simulate oxidative stress in an in vitro model of osteoarthritis. Two concentrations of PTP (10 and 20 µg/mL) were validated for in vitro experiments. Cellular inflammation and metabolism were detected using RT-qPCR and western blotting (WB). Ferroptosis was assessed via WB, qPCR, reactive oxygen species (ROS) levels, lipid ROS, and immunofluorescence staining. In vitro, PTP significantly ameliorated chondrocyte inflammation and cytolytic metabolism and significantly suppressed chondrocyte ferroptosis through the activation of the Nrf2 pathway. The anterior cruciate ligament transection (ACLT) mouse model was used to validate the in vivo effects of PTP. The joint cartilage was assessed using the Osteoarthritis Research Society International (OARSI) score, Safranin O staining, and immunohistochemistry. The intra-articular administration of PTP alleviated cartilage inflammation and ferroptosis, as evidenced by the expression of MMP3, MMP13, COL2A1, GPX4, and Nrf2. Overall, we find that PTP exerted anti-ferroptosis and anti-inflammatory effects on chondrocytes to protect the articular cartilage.


Subject(s)
Benzophenanthridines , Berberine Alkaloids , Ferroptosis , Osteoarthritis , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Benzophenanthridines/pharmacology , Berberine Alkaloids/pharmacology , Chondrocytes/drug effects , Chondrocytes/metabolism , Ferroptosis/drug effects , Inflammation/metabolism , NF-E2-Related Factor 2/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Reactive Oxygen Species/metabolism
7.
J Ethnopharmacol ; 329: 118177, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38604510

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Corydalis decumbens (Thunb.) Pers. was used as stasis-eliminating medicine traditionally to treat cardiovascular disease potentially attributed to its antithrombotic effect, but lack of pharmacological research on it. AIM OF THE STUDY: To investigate the antithrombotic effect of C. decumbens and its preliminary mechanism. MATERIALS AND METHODS: A carrageenan-induced mouse thrombus model and adenosine diphosphate stimulated platelet aggregation of rabbits were used to confirm the inhibitory effect of C. decumbens extract and compounds on thrombosis in vivo. Then, H2O2-induced human umbilical vein endothelial cells (HUVECs) injury model was further adopted to verify the effects of bioactive compounds in vitro. Moreover, in silico network pharmacology analyses and molecular docking were performed to predict the underlying mechanisms, targets, and pathways, and which were further confirmed through western blotting assay. RESULTS: The administration of total extract (TE), total alkaloids (TA) and tetrahydropalmatine (TET) resulted in a significant reduction in black tail thrombus and congestion, along with a decreasing in platelet aggregation of rabbits. A superior antithrombotic effect indicated the bioactive fraction, and then the isolated bioactive compounds, TET and protopine (PRO) increased cell survival, and decreased reactive oxygen species (ROS) and lactate dehydrogenase (LDH) release in H2O2-induced HUVECs injury model. Moreover, the two alkaloids targeted 33 major proteins and influenced 153 pathways in network pharmacology prediction. Among these, HSP90AA1, COX-2, NF-κB/p65, MMP1 and HIF-1α were the key proteins and PI3K-Akt emerged as the major signaling pathway. Further western blotting results supported that five key proteins were downregulated by the two bioactive compounds in H2O2-stimulated HUVECs model. CONCLUSION: C. decumbens exerted protective effect on thrombosis through inhibiting PI3K-Akt pathway and related key proteins, which supported the traditional use and presented potential antithrombotic alkaloids for further investigation.


Subject(s)
Corydalis , Fibrinolytic Agents , Human Umbilical Vein Endothelial Cells , Plant Extracts , Proto-Oncogene Proteins c-akt , Signal Transduction , Thrombosis , Animals , Corydalis/chemistry , Rabbits , Humans , Human Umbilical Vein Endothelial Cells/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Thrombosis/drug therapy , Plant Extracts/pharmacology , Mice , Signal Transduction/drug effects , Male , Fibrinolytic Agents/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Platelet Aggregation/drug effects , Molecular Docking Simulation , Berberine Alkaloids/pharmacology , Hydrogen Peroxide/toxicity , Disease Models, Animal , Carrageenan , Reactive Oxygen Species/metabolism
8.
Int Immunopharmacol ; 132: 111968, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38579565

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is an inflammatory disease whose pathogenesis and mechanisms have not been fully described. The m6A methylation modification is a general mRNA modification in mammalian cells and is closely associated with the onset and progression of inflammatory bowel disease (IBD). Palmatine (PAL) is a biologically active alkaloid with anti-inflammatory and protective effects in animal models of colitis. Accordingly, we examined the role of PAL on colitis by regulating N6-methyladenosine (m6A) methylation. METHODS: A rat experimental colitis model was established by 5 % dextran sulfate sodium (DSS) in drinking water for seven days, then PAL treatment was administered for seven days. The colonic tissue pathology was assessed using hematoxylin-eosin (HE) and disease activity index (DAI). In in vitro studies, a human, spontaneously immortalized non-cancerous colon mucosal epithelial cell line (NCM460) was exposed to 2 % DSS and treated with PAL and cell viability was assayed using Cell Counting Kit-8 (CCK-8). The levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1ß, IL-6, and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA) kits. The level of Zonula occludens-1 (ZO-1) was dectected by immunofluorescence. Transepithelial electrical resistance (TEER) of cells was also assessed. The methyltransferase-like 3 (METTL3), METTL14, AlkB homologate 5 (ALKBH5), and fat mass and obesity-associated protein (FTO) expression levels were assessed by western blotting. The localized expression of m6A was measured by immunofluorescence. RESULTS: PAL significantly prevented bodyweight loss and shortening of the colon in experimental colitis rats, as well as decreasing the DAI and histological damage scores. Furthermore, PAL inhibited the levels of inflammatory factors (TNF-α, IL-6, IL-8, and IL-1ß) in both DSS treated rats and NCM460 cells. In addition, PAL enhanced the expression level of ZO-1, and increased the transepithelial electrical resistance to repaire intestinal barrier dysfunction. Colitis occurred due to decreased m6A levels, and the increased FTO expression led to a colitis phenotype. PAL markedly enhanced the METTL3 and METTL14 expression levels while decreasing ALKBH5 and FTO expression levels. CONCLUSIONS: The findings demonstrated that PAL improved DSS-induced experimental colitis. This effect was associated with inhibiting FTO expression and regulating m6A methylation.


Subject(s)
Adenosine/analogs & derivatives , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Berberine Alkaloids , Cytokines , Dextran Sulfate , Disease Models, Animal , Rats, Sprague-Dawley , Animals , Humans , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Male , Berberine Alkaloids/pharmacology , Berberine Alkaloids/therapeutic use , Cytokines/metabolism , Rats , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Cell Line , Colon/pathology , Colon/drug effects , Colon/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism
9.
Brain Res ; 1835: 148932, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38609032

ABSTRACT

Alzheimer's disease (AD) is a primary degenerative encephalopathy that first appeared as a decline in memory and learning skills. Over time, the condition's severity grew. Palmatine (Pal) alleviates Alzheimer's disease symptoms, which has neuroprotective benefits. Numerous investigations have demonstrated a close relationship among AD and gut structure changes. The aim of the research was investigating whether the improvement of Pal on AD is linked to regulating gut flora and autophagy. First, we used Aß1-40 to induce apoptosis in HT22 cells. After Pal treatment, apoptosis can be improved. Then, We used bilateral intracranial hippocampal injection of Aß1-40 for establishing the AD model, after treatment with Pal, the morris water maze experiment and eight-arm maze test demonstrated that Pal enhanced the AD rats' capacity for learning and memory, HE staining illustrated that Pal improved the morphological abnormalities of brain cells and gut tissue damage. Pal reduced the death of hippocampus neurons, as shown by Nissl staining. Pal substantially reduced Tau hyperphosphorylation and Aß accumulation in the brain, according to immunohistochemical labelling. Pal improved the expression of LC3, Beclin 1, AMPK, and suppressed the expression of mTOR and P62, as validated by RT-qPCR and immunofluorescence labelling. This suggests that Pal's treatment of AD may be associated with the control of the AMPK/mTOR autophagy signalling system. 16S rRNA sequencing and short-chain fatty acids (SCFAs) content detection analysis illustrated that Pal has the potential to enhance the content of SCFAs, reverse the alterations in gut microorganisms. It has been showed by the study that Pal could improve AD by activating autophagy signaling pathway and improving gut barrier changes.


Subject(s)
Alzheimer Disease , Autophagy , Berberine Alkaloids , Cognitive Dysfunction , Disease Models, Animal , Gastrointestinal Microbiome , Hippocampus , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Gastrointestinal Microbiome/drug effects , Autophagy/drug effects , Berberine Alkaloids/pharmacology , Rats , Male , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Rats, Sprague-Dawley , Neuroprotective Agents/pharmacology , Amyloid beta-Peptides/metabolism , Maze Learning/drug effects , Apoptosis/drug effects
10.
Bioorg Chem ; 130: 106256, 2023 01.
Article in English | MEDLINE | ID: mdl-36371822

ABSTRACT

The novel Palmatine (PLT)-based supramolecular salt palmatine-sulfosalicylic acid (PLT-SSA) was designed and synthesized, and its structures was determined by the single crystal X-ray diffraction. It is found that PLT-SSA exhibited enhancing thermodynamic stability, fluorescence intensity and emission lifetime in crystal state, which indicated that these structures and aromatic rings may give more overlap between the host-guest units and give rise to a long-lived charge-separated state. In addition, the dyeing properties and toxicity of these protoberberine alkaloid (BBC and PLTCl) and their supramolecular salts will be developed in this work used as yellow dyes for development multifunctional fabrics.


Subject(s)
Berberine Alkaloids , Alkaloids/pharmacology , Alkaloids/chemistry , Coloring Agents , Thermodynamics , Berberine Alkaloids/chemistry , Berberine Alkaloids/pharmacology
11.
Eur J Med Chem ; 245(Pt 1): 114886, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36347091

ABSTRACT

Sixty-one palmatine (PMT) derivatives, of which twenty-eight were new, were synthesized and evaluated for their anti-fibrogenic activities via collagen type I α 1 (COL1A1)-promoter based luciferase model in LX-2 cells, taking 2,3,10-trimethoxy-9-p-isopropyloxyprotopalmatine bromide (1) as the lead. Among them, compound 3a exerted the highest potency with the IC50 value of 8.19 µmol/L and SI value of 8.59, and reduced the expressions of multiple fibrogenic biomarkers, including COL1A1, TGF-ß1, α-SMA and TIMP1 in a dose-dependent manner. In addition, it significantly reduced liver steatosis and inflammation, and especially attenuated the degree of liver fibrosis in choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD)-induced NASH mice model in vivo. Mechanism study indicated that it significantly ameliorated liver injury by activating farnesoid X receptor (FXR). BDL-induced fibrosis rats model further verified its liver-protective and anti-fibrosis activities. Therefore, PMT derivatives constituted a new family of non-steroidal FXR agonists as anti-NASH candidates, with the advantage of good safety profile, and are worthy for further investigation.


Subject(s)
Antifibrotic Agents , Berberine Alkaloids , Liver , Non-alcoholic Fatty Liver Disease , Animals , Mice , Rats , Berberine Alkaloids/chemistry , Berberine Alkaloids/pharmacology , Berberine Alkaloids/therapeutic use , Liver/drug effects , Liver/metabolism , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Antifibrotic Agents/chemistry , Antifibrotic Agents/pharmacology , Antifibrotic Agents/therapeutic use
12.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142236

ABSTRACT

Gastric cancer (GC) has high incidence rates and constitutes a common cause of cancer mortality. Despite advances in treatment, GC remains a challenge in cancer therapy which is why novel treatment strategies are needed. The interest in natural compounds has increased significantly in recent years because of their numerous biological activities, including anti-cancer action. The isolation of the bioactive compounds from Coptis chinensis Franch was carried out with the Centrifugal Partition Chromatography (CPC) technique, using a biphasic solvent system composed of chloroform (CHCl3)-methanol (MeOH)-water (H2O) (4:3:3, v/v) with an addition of hydrochloric acid and trietylamine. The identity of the isolated alkaloids was confirmed using a high resolution HPLC-MS chromatograph. The phytochemical constituents of Coptis chinensis such as berberine, jatrorrhizine, palmatine and coptisine significantly inhibited the viability and growth of gastric cancer cell lines ACC-201 and NCI-N87 in a dose-dependent manner, with coptisine showing the highest efficacy as revealed using MTT and BrdU assays, respectively. Flow cytometry analysis confirmed the coptisine-induced population of gastric cancer cells in sub-G1 phase and apoptosis. The combination of coptisine with cisplatin at the fixed-ratio of 1:1 exerted synergistic and additive interactions in ACC-201 and NCI-N87, respectively, as determined by means of isobolographic analysis. In in vivo assay, coptisine was safe for developing zebrafish at the dose equivalent to the highest dose active in vitro, but higher doses (greater than 10 times) caused morphological abnormalities in larvae. Our findings provide a theoretical foundation to further studies on more detailed mechanisms of the bioactive compounds from Coptis chinensis Franch anti-cancer action that inhibit GC cell survival in in vitro settings.


Subject(s)
Alkaloids , Berberine Alkaloids , Berberine , Coptis , Drugs, Chinese Herbal , Stomach Neoplasms , Alkaloids/analysis , Alkaloids/pharmacology , Animals , Berberine/analogs & derivatives , Berberine/pharmacology , Berberine Alkaloids/pharmacology , Bromodeoxyuridine , Chloroform , Cisplatin , Coptis/chemistry , Coptis chinensis , Drugs, Chinese Herbal/chemistry , Hydrochloric Acid , Isoquinolines , Methanol , Solvents , Stomach Neoplasms/drug therapy , Water , Zebrafish
13.
Phytochemistry ; 200: 113217, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35504329

ABSTRACT

Berberine alkaloids belong to the class of isoquinoline alkaloids that have been shown to possess anticancer potential, berberine exhibits inhibitory effects on breast cancer development. However, the exact mechanisms of action for anti-breast carcinoma of the alkaloids, including epiberberine, berberrubine and dihydroberberine are still unclear. MTT assay, colony formation, wound healing and transwell invasion assays detected these alkaloids suppressed proliferation, migration and invasion of breast cancer cells. Hoechst and Annexin V-FITC/PI staining were used to analyze the apoptosis of breast cancer cells. Western blotting investigated the changes noted in the expression levels of the key proteins involved in the Wnt/ß-catenin signaling pathway and epithelial to mesenchymal transition (EMT). The results showed that inhibited the proliferation of breast cancer cells. Berberine alkaloids inhibited the cell cycle at G2/M phase in MCF-7 cells, but in MDA-MB-231 cells berberine alkaloids arrested the cell cycle in G0/G1 and G2/M phases. By decreasing ß-catenin expression, increasing GSK-3ß expression and decreasing N-cadherin expression, increasing E-cadherin expression, which proved that epiberberine, berberrubine and dihydroberberine inhibited of metastasis of breast cancer cells through Wnt signaling pathway and reversed EMT except berberine. Furthermore, berberine alkaloids exert their anti-breast cancer effects through the synergistic action of intrinsic and extrinsic pathways of apoptosis. These findings highlight the different effects of different berberine alkaloids on breast cancer cells and confirm that berberine alkaloids may be potentially used in the treatment of breast cancer.


Subject(s)
Berberine Alkaloids , Berberine , Breast Neoplasms , Wnt Signaling Pathway , Berberine/pharmacology , Berberine Alkaloids/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Female , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism
14.
Biomed Pharmacother ; 147: 112645, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35051862

ABSTRACT

Plants are a rich source for bioactive compounds. However, plant extracts can harbor a mixture of bioactive molecules that promote divergent phenotypes and potentially have confounding effects in bioassays. Even with further purification and identification, target deconvolution can be challenging. Corynoline and acetylcorynoline, are phytochemicals that were previously isolated through a screen for compounds able to induce mitotic arrest and polyploidy in oncogene expressing retinal pigment epithelial (RPE) cells. Here, we shed light on the mechanism by which these phytochemicals can attack human cancer cells. Mitotic arrest was coincident to the induction of centrosome amplification and declustering, causing multi-polar spindle formation. Corynoline was demonstrated to have true centrosome declustering activity in a model where A549 cells were chemically induced to have more than a regular complement of centrosomes. Corynoline could inhibit the centrosome clustering required for pseudo-bipolar spindle formation in these cells. The activity of AURKB, but not AURKA or polo-like kinase 4, was diminished by corynoline. It only partially inhibited AURKB, so it may be a partial antagonist or corynoline may work upstream on an unknown regulator of AURKB activity or localization. Nonetheless, corynoline and acetylcorynoline inhibited the viability of a variety of human cancer derived cell lines. These phytochemicals could serve as prototypes for a next-generation analog with improved potency, selectivity or in vivo bioavailability. Such an analog could be useful as a non-toxic component of combination therapies where inhibiting the chromosomal passenger protein complex is desired.


Subject(s)
Aurora Kinase B/drug effects , Berberine Alkaloids/pharmacology , Mitosis/drug effects , Phytochemicals/pharmacology , Polyploidy , A549 Cells , Apoptosis/drug effects , Aurora Kinase A/drug effects , Cell Line, Tumor , Centrosome/drug effects , Humans
15.
Int Immunopharmacol ; 104: 108468, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35066343

ABSTRACT

BACKGROUND: Previous studies have substantiated that M2-activated tumor-associated macrophages (M2-TAMs) are involved in multiple malignancies. Presently, we probe the impact and related mechanisms of 13-methyl-palmatrubine (13MP), the Corydalis yanhusuo extract, on M2-TAM-mediated non-small cell lung cancer (NSCLC) development. METHODS: IL-4 and IL-13 were adopted to induce M2-TAMs. The polarization state of TAMs was evaluated by quantitative reverse transcription PCR (qRT-PCR), Western blot (WB) and cellular immunofluorescence. NSCLC cells (A549 and NCL-H1975) were co-cultured with the conditioned medium (CM) of M2-TAMs. Followed by 13MP treatment, cell viability, proliferation, invasion, epithelial-mesenchymal transition (EMT), and in-vivo growth of NSCLC cells were determined. Additionally, human umbilical vein endothelial cells (HUVECs) were co-cultured with the CM of M2-TAMs. The tube formation assay was made to test the tube formation capacity of HUVECs, and the expression of MMP3, MMP9, and VEGF was assessed by WB in the co-culture model. Mechanistically, WB was performed to validate the expression of the PI3K/AKT and JAK/STAT3 pathways in NSCLC cells (A549 and NCL-H1975) as well as in endothelial cell lines co-cultured with M2-TAMs. RESULTS: 13MP inhibited the proliferation, invasion, EMT, growth and enhanced apoptosis of NSCLC cells. 13MP dose-dependently boosted the polarization of TAM from M2 to M1 state. M2-TAMs enhanced the malignant behaviors of NSCLC cells, whereas 13MP hindered M2-TAM-mediated NSCLC cell proliferation and invasion. Meanwhile, 13MP weakened the M2-TAM-mediated angiogenesis. Moreover, 13MP inactivated the PI3K/AKT and JAK/STAT3 signaling in A549 cells, NCL-H1975 cells and HUVECs. CONCLUSION: 13MP suppresses TAM-mediated NSCLC progression via transforming the polarization of TAM from M2 to M1.


Subject(s)
Antineoplastic Agents/therapeutic use , Berberine Alkaloids/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Berberine Alkaloids/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Coculture Techniques , Cytokines/genetics , Epithelial-Mesenchymal Transition/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Mice, Nude , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology
16.
J Nat Prod ; 85(1): 215-224, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34910498

ABSTRACT

During a research program to identify new cholinesterase inhibitors of natural origin, two new 7,8-didehydroprotoberberine alkaloids (1 and 2) and nine known compounds (3-11) were isolated from the capsules of the common ornamental poppy, Papaver setiferum (previously P. pseudo-orientale). Despite their reported instability, the 7,8-didehydroprotoberberines isolated herein appeared relatively stable, particularly as their trifluoroacetic acid salts. The spatial distributions of the isolated alkaloids were also analyzed using desorption electrospray ionization imaging mass spectrometry. The alkaloids were localized predominantly within the walls and vascular bundles of the capsules, with the highest relative abundances occurring in the lower half of the capsules toward the peduncle. The relative abundances of the alkaloids were also compared across plant development stages. Although most alkaloids did not show clear patterns in their concentration across development stages, the concentration of suspected oxidation products clearly spiked upon plant death. Finally, all isolated natural products were screened for inhibitory activities against a panel of cholinesterases, from both human and animal sources. These studies identified several competitive inhibitors of cholinesterases with potency in the low micromolar range (1-4, 6, 7), offering new lead compounds for the development of cholinesterase inhibitory drugs.


Subject(s)
Berberine Alkaloids/pharmacology , Cholinesterase Inhibitors/pharmacology , Papaver/chemistry , Animals , Berberine Alkaloids/chemistry , Humans , Spectrometry, Mass, Electrospray Ionization
18.
Int J Mol Sci ; 22(23)2021 11 30.
Article in English | MEDLINE | ID: mdl-34884773

ABSTRACT

STAT3 is a transcription factor that regulates various cellular processes with oncogenic potential, thereby promoting tumorigenesis when activated uncontrolled. STAT3 activation is mediated by its tyrosine phosphorylation, triggering dimerization and nuclear translocation. STAT3 also contains a serine phosphorylation site, with a postulated regulatory role in STAT3 activation and G2/M transition. Interleukin-6, a major activator of STAT3, is present in elevated concentrations in uveal melanomas, suggesting contribution of dysregulated STAT3 activation to their pathogenesis. Here, we studied the impact of chelidonine on STAT3 signaling in human uveal melanoma cells. Chelidonine, an alkaloid isolated from Chelidonium majus, disrupts microtubules, causes mitotic arrest and provokes cell death in numerous tumor cells. According to our flow cytometry and confocal microscopy data, chelidonine abrogated IL-6-induced activation and nuclear translocation, but amplified constitutive serine phosphorylation of STAT3. Both effects were restricted to a fraction of cells only, in an all-or-none fashion. A partial overlap could be observed between the affected subpopulations; however, no direct connection could be proven. This study is the first proof on a cell-by-cell basis for the opposing effects of a microtubule-targeting agent on the two types of STAT3 phosphorylation.


Subject(s)
Benzophenanthridines/pharmacology , Berberine Alkaloids/pharmacology , Melanoma/pathology , STAT3 Transcription Factor/metabolism , Uveal Neoplasms/pathology , Apoptosis/drug effects , Cell Line, Tumor , Humans , Interleukin-6/metabolism , Microtubules/metabolism , Phosphorylation/drug effects , Serine/metabolism , Signal Transduction/drug effects , Tyrosine/metabolism
19.
Molecules ; 26(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34885971

ABSTRACT

Rhizoma Coptidis (RC) is a widely used traditional Chinese medicine. Although modern research has found that some alkaloids from RC are the pharmacologically active constituents, the differences in their biological effects are not completely clear. This study analyzed the differences in the typical alkaloids in RC at a systematic level and provided comprehensive information on the pharmaceutical mechanisms of the different alkaloids. The ethanol RC extract (RCE) was characterized using HPLC assay. HepG2, 3T3-L1, and RAW264.7 cells were used to detect the cytotoxicity of alkaloids. Transcriptome analyses were performed to elucidate the cellular pathways affected by RCE and alkaloids. HPLC analysis revealed that the typical alkaloids of RCE were berberine, coptisine, and palmatine. Coptisine and berberine displayed a stronger inhibitory effect on cell proliferation than palmatine. The overlapping ratios of differentially expressed genes between RCE and berberine, coptisine, and palmatine were 70.8%, 52.6%, and 42.1%, respectively. Pathway clustering analysis indicated that berberine and coptisine possessed a certain similarity to RCE, and both compounds affected the cell cycle pathway; moreover, some pathways were uniquely enriched by berberine or coptisine. Berberine and coptisine had different regulatory effects on genes involved in lipid metabolism. These results provide comprehensive information on the pharmaceutical mechanisms of the different RC alkaloids and insights into their better combinatory use for the treatment of diseases.


Subject(s)
Berberine Alkaloids/pharmacology , Berberine/analogs & derivatives , Coptis chinensis/chemistry , Coptis/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Rhizome/chemistry , 3T3-L1 Cells , Animals , Berberine/analysis , Berberine/pharmacology , Berberine Alkaloids/analysis , Cell Cycle/drug effects , Cell Proliferation/drug effects , Chromatography, High Pressure Liquid , Gene Expression Regulation/drug effects , Hep G2 Cells , Humans , Mice , RAW 264.7 Cells , Signal Transduction/drug effects , Transcriptome/drug effects , Transcriptome/genetics
20.
Molecules ; 26(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34684834

ABSTRACT

Palmatine (PLT) is a natural isoquinoline alkaloid that belongs to the class of protoberberines and exhibits a wide spectrum of pharmacological and biological properties, including anti-cancer activity. The aim of our study was to isolate PLT from the roots of Berberis cretica and investigate its cytotoxic and anti-proliferative effects in vitro alone and in combination with doxorubicine (DOX) using human ER+/HER2- breast cancer cell lines. The alkaloid was purified by column chromatography filled with silica gel NP and Sephadex LH-20 resin developed in the mixture of methanol: water (50:50 v/v) that provided high-purity alkaloid for bioactivity studies. The purity of the alkaloid was confirmed by high resolution mass measurement and MS/MS fragmentation analysis in the HPLC-ESI-QTOF-MS/MS-based analysis. It was found that PLT treatment inhibited the viability and proliferation of breast cancer cells in a dose-dependent manner as demonstrated by MTT and BrdU assays. PLT showed a quite similar growth inhibition on breast cancer cells with IC50 values ranging from 5.126 to 5.805 µg/mL. In contrast, growth of normal human breast epithelial cells was not affected by PLT. The growth inhibitory activity of PLT was related to the induction of apoptosis, as determined by Annexin V/PI staining. Moreover, PLT sensitized breast cancer cells to DOX. Isobolographic analysis revealed synergistic and additive interactions between studied agents. Our studies suggest that PLT can be a potential candidate agent for preventing and treating breast cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Berberine Alkaloids/pharmacology , Breast Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Apoptosis/drug effects , Berberine Alkaloids/administration & dosage , Berberis/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/administration & dosage , Drug Synergism , Female , Humans , MCF-7 Cells , Phytotherapy , Plant Roots/chemistry , Plants, Medicinal/chemistry , Receptors, Estrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL