Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48
1.
J Agric Food Chem ; 72(6): 2943-2962, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38301126

The antioxidant and anti-inflammatory activities of acylated and decarboxylated gomphrenins, as well as Basella alba L. fruit extract, were investigated in relation to gomphrenin, known for its high biological potential. The most abundant natural acylated gomphrenins, namely, 6'-O-E-caffeoyl-gomphrenin (malabarin) and 6'-O-E-4-coumaroyl-gomphrenin (globosin), were isolated from B. alba extract for the studies. In addition, controlled thermal decarboxylation of gomphrenin in the purified B. alba extract at 65-75 °C resulted in the formation of the most prevalent decarboxylated products, including 17-decarboxy-gomphrenin and 2,17-bidecarboxy-gomphrenin, along with their isoforms. The structures of the decarboxylated pigments were confirmed by NMR analyses. Exploring the matrix effect on pigment reactivity revealed a tremendous increase in the stability of all betacyanins after the initial stage of extract purification using a cation exchanger under various conditions. This indicates the removal of a substantial portion of the unfavorable matrix from the extract, which presumably contains reactive species that could otherwise degrade the pigments. Furthermore, the high concentration of citrates played a significant role in favoring the formation of 2-decarboxy-gomphrenin to a considerable extent. In vitro screening experiments revealed that the tested compounds demonstrated strong anti-inflammatory properties in lipopolysaccharide (LPS)-activated human macrophages. This effect encompassed the selective inhibition of cytokine and chemokine release from activated macrophages, modulation of the chemotactic activity of immune cells, and the regulation of tissue remodeling mediators' release.


Betacyanins , Caryophyllales , Humans , Betacyanins/chemistry , Spinacia oleracea , Fruit/chemistry , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Betalains/pharmacology , Betalains/chemistry
2.
Curr Nutr Rep ; 12(4): 778-787, 2023 Dec.
Article En | MEDLINE | ID: mdl-37824059

PURPOSE OF REVIEW: Beetroot juice is a popular natural food supplement commonly consumed for its health and ergogenic benefits. It contains an abundance of phytochemical compounds, which have been shown to enhance sports endurance and recovery. Among them, nitrate is well-studied and known for improving performance during exercise. On the other hand, betalains, the bioactive pigment, have shown various biological activities including antioxidant, anti-inflammatory, and anti-hypertensive, which may improve exercise performance and post-exercise recovery. Additionally, free radical scavenging activities of betalains could increase nitric oxide availability in the blood, thereby improving blood flow and oxygen supply during strenuous exercise. This review article provides a critical discussion of the non-pathological conditions induced by prolonged or strenuous exercise and betalains' potential in reducing such conditions including muscle damage, inflammation, and fatigue. Additionally, the real-time application of betalains as an ergogenic compound in competitive athletes has been discussed. Finally, future directions and conclusions on the potential of betalains as a natural ergogenic aid in sport endurance are outlined. RECENT FINDINGS: Betalains in beetroot are the major water-soluble nitrogen-containing pigment possessing high antioxidant, anti-inflammatory, and anti-fatigue activities. Betalain supplementation could alleviate exercise-induced oxidative stress, inflammation, and fatigue in competitive athletes. Betalains have the potential to become a natural ergogenic aid or nutraceutical compound for sports people during exercise and competitive performance.


Antioxidants , Betalains , Humans , Antioxidants/pharmacology , Betalains/pharmacology , Fatigue/drug therapy , Oxidative Stress , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology
3.
Mol Nutr Food Res ; 67(15): e2200583, 2023 08.
Article En | MEDLINE | ID: mdl-37203590

SCOPE: Betalain pigments are increasingly highlighted for their bioactive and anti-inflammatory properties, although research is lacking to demonstrate contributions of individual betalains. The work herein aimed to compare effects of four main betalains on inflammatory and cell-protective markers and to highlight potential structure-related relationships of the two main subgroups: betacyanins vs betaxanthins. METHODS AND RESULTS: Murine RAW 264.7 macrophages were stimulated with bacterial lipopolysaccharide following incubation with betacyanins (betanin, neobetanin) and betaxanthins (indicaxanthin, vulgaxanthin I) in concentrations from 1 to 100 µM. All betalains suppressed expression of pro-inflammatory markers IL-6, IL-1ß, iNOS, and COX-2 with tendency for stronger effects of betacyanins compared to betaxanthins. In contrast, HO-1 and gGCS showed mixed and only moderate induction, while more emphasized effects were observed for betacyanins. While all betalains suppressed mRNA levels of NADPH oxidase 2 (NOX-2), a superoxide generating enzyme, only betacyanins were able to counteract hydrogen peroxide induced reactive oxygen species (ROS) generation, in alignment with their radical scavenging potential. Furthermore, betaxanthins exerted pro-oxidant properties, elevating ROS production beyond hydrogen peroxide stimulation. CONCLUSION: In summary, all betalains display anti-inflammatory properties, although only betacyanins demonstrate radical scavenging capacities, indicating potential differing responses under oxidative stress conditions, which requires further research.


Betacyanins , Betaxanthins , Animals , Mice , Betacyanins/pharmacology , Betaxanthins/pharmacology , Betaxanthins/metabolism , Reactive Oxygen Species , Hydrogen Peroxide , Betalains/pharmacology , Betalains/chemistry , Oxidative Stress , Anti-Inflammatory Agents/pharmacology
4.
Food Chem ; 414: 135641, 2023 Jul 15.
Article En | MEDLINE | ID: mdl-36809729

Atriplex hortensis var. rubra L. extracts prepared from leaves, seeds with sheaths, and stems were characterized for betalainic profiles by spectrophotometry, LC-DAD-ESI-MS/MS and LC-Orbitrap-MS techniques. The presence of 12 betacyanins in the extracts was strongly correlated with high antioxidant activity measured by ABTS, FRAP, and ORAC assays. Comparative assessment between samples indicated the highest potential for celosianin and amaranthin (IC50 21.5 and 32.2 µg/ml, respectively). The chemical structure of celosianin was elucidated for the first time by complete 1D and 2D NMR analysis. Our findings also demonstrate that betalain-rich A. hortensis extracts and purified pigments (amaranthin and celosianin) do not induce cytotoxicity in a wide concentration range in rat cardiomyocytes model (up to 100 µg/ml for extracts and 1 mg/ml for pigments). Furthermore, tested samples effectively protect H9c2 cells from H2O2-induced cell death and prevent from apoptosis induced by Paclitaxel. The effects were observed at sample concentrations between 0.1 and 10 µg/ml.


Atriplex , Betalains , Animals , Rats , Betalains/pharmacology , Betalains/chemistry , Antioxidants/chemistry , Tandem Mass Spectrometry , Hydrogen Peroxide , Plant Extracts/pharmacology , Plant Extracts/chemistry
5.
Food Chem ; 407: 135180, 2023 May 01.
Article En | MEDLINE | ID: mdl-36521390

Betalains are plant pigments characterized by showing a wide range of beneficial properties for health. Its bioactive potential has been studied for the first time after its encapsulation in liposomes and subsequent administration to the animal model Caenorhabditis elegans. Phenylalanine-betaxanthin and indoline carboxylic acid-betacyanin encapsulated at concentrations of 25 and 500 µM managed to reduce lipid accumulation and oxidative stress in the nematodes. Highly antioxidant betalains dopaxanthin and betanidin were also included in the survival analyses. The results showed that phenylalanine-betaxanthin was the most effective betalain by increasing the lifespan of C. elegans by 21.8%. In addition, the administration of encapsulated natural betanidin increased the nematodes' survival rate by up to 13.8%. The preservation of the bioactive properties of betalains manifested in this study means that the stabilization of the plant pigments through encapsulation in liposomes can be postulated as a new way for administration in pharmacological and food applications.


Betacyanins , Betalains , Animals , Betalains/pharmacology , Betacyanins/analysis , Betaxanthins/pharmacology , Liposomes/pharmacology , Caenorhabditis elegans , Phenylalanine/pharmacology , Eating
6.
Nat Prod Res ; 37(10): 1746-1765, 2023 May.
Article En | MEDLINE | ID: mdl-35921318

In the last years, the use of natural phytochemical compounds as protective agents in the prevention and treatment of obesity and the related-metabolic syndrome has gained much attention worldwide. Different studies have shown health benefits for many vegetables such Opuntia ficus-indica and Beta vulgaris and their pigments collectively referred as betalains. Betalains exert antioxidative, anti-inflammation, lipid lowering, antidiabetic and anti-obesity effects. This review summarizes findings in the literature and highlights the therapeutic potential of betalains and their natural source as valid alternative for supplementation in obesity-related disorders treatment. Further research is needed to establish the mechanisms through which these natural pigments exert their beneficial effects and to translate the promising findings from animal models to humans.


Betalains , Opuntia , Animals , Humans , Betalains/pharmacology , Betalains/therapeutic use , Betalains/analysis , Color , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/analysis , Opuntia/chemistry , Fruit/chemistry
7.
J Appl Microbiol ; 133(6): 3347-3367, 2022 Dec.
Article En | MEDLINE | ID: mdl-36036373

Betalains are nitrogen-containing plant pigments that can be red-violet (betacyanins) or yellow-orange (betaxanthins), currently employed as natural colourants in the food and cosmetic sectors. Betalains exhibit antimicrobial activity against a broad spectrum of microbes including multidrug-resistant bacteria, as well as single-species and dual-species biofilm-producing bacteria, which is highly significant given the current antimicrobial resistance issue reported by The World Health Organization. Research demonstrating antiviral activity against dengue virus, in silico studies including SARS-CoV-2, and anti-fungal effects of betalains highlight the diversity of their antimicrobial properties. Though limited in vivo studies have been conducted, antimalarial and anti-infective activities of betacyanin have been observed in living infection models. Cellular mechanisms of antimicrobial activity of betalains are yet unknown; however existing research has laid the framework for a potentially novel antimicrobial agent. This review covers an overview of betalains as antimicrobial agents and discussions to fully exploit their potential as therapeutic agents to treat infectious diseases.


Anti-Infective Agents , COVID-19 Drug Treatment , Humans , Betalains/pharmacology , Betalains/therapeutic use , SARS-CoV-2 , Betacyanins , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use
8.
Food Res Int ; 158: 111556, 2022 08.
Article En | MEDLINE | ID: mdl-35840248

Beetroot (Beta vulgaris) is the most well-known and commonly cultivated fruit from the Chenopodiaceae family. Beetroot is a rich source of nutrients including vitamins (B complex and C), minerals, fibre, proteins, and a variety of bioactive phenolic substances, which are chiefly composed of betalains, and other components possessing antioxidant activity, such as coumarins, carotenoids, sesquiterpenoids, triterpenes, and flavonoids (astragalin, tiliroside, rhamnocitrin, kaempferol, rhamnetin). Beetroot and its value-added products provide a variety of health advantages and may help prevent and manage various ailments and diseases due to bioactive components. Beetroot's phytochemical diversity makes them potential sources of nutraceutical chemicals that can be used to build functional foods. Pharmacologically, beetroot has the potential to be an antioxidant, antimicrobial, anticancerous, hypocholesterolemic, and anti-inflammatory agent. In a comprehensive analysis, this review first provides an overview of the bioactive compounds present in beetroot and its parts, followed by a specific description of the current evidence on this bioactive potential of beetroot and its parts, highlighting the biochemical mechanisms involved. Additionally, the factors affecting the concentration and activity of the beetroot bioactives and the best possible method to conserve its bioactivity has also been discussed in this review.


Beta vulgaris , Antioxidants/analysis , Beta vulgaris/chemistry , Betalains/analysis , Betalains/pharmacology , Phytochemicals/analysis , Phytochemicals/pharmacology , Vegetables
9.
Food Funct ; 13(8): 4699-4713, 2022 Apr 20.
Article En | MEDLINE | ID: mdl-35380561

Garambullo (Myrtillocactus geometrizans), endemic fruit from Mexico, contains several bioactive compounds (phenolic compounds, betalains, antioxidant fiber), highlighting it as a good functional food. In this research, the impact of the in vitro gastrointestinal digestion on phytochemical bioaccessibility from garambullo and its antioxidant capacity are studied. The fruit contained previously unidentified phytochemicals in the polar and non-polar extracts (acetone and hexane). The bioaccessibility decreased in the mouth and stomach for flavanones (up to 11.9 and 8.9%, respectively), isoflavones (up to 20.0 and 9.2%, respectively), flavonols (up to 15.2 and 15.7%, respectively), hydroxycinnamic acids (up to 21.7 and 13.1%, respectively), and betalains (up to 10.5 and 4.2%, respectively); hydroxybenzoic acids were increased (up to 752.8 and 552.6%, respectively), while tocopherols increased in the mouth (127.7%) and decreased in the stomach (up to 90.3%). In the intestinal phase, the digestible fraction showed low phytochemicals bioaccessibility, and some compounds were recovered in the non-digestible fraction. The antioxidant capacity decreased in different compartments of the gastrointestinal tract, being higher in the mouth (872.9, 883.6, 385.2, and 631.2 µmol TE per g dw by ABTS, DPPH, ORAC, and FRAP, respectively) and stomach (836.2, 942.1, 289.0, and 494.9 µmol TE per g dw ABTS, DPPH, ORAC, and FRAP, respectively). The results indicate that digestion positively or negatively affects compounds' bioaccessibility depending on their structural family, and the antioxidant capacity decreases but remains higher than other functional foods.


Antioxidants , Cactaceae , Antioxidants/pharmacology , Betalains/pharmacology , Digestion , Phytochemicals/pharmacology
10.
Plant Foods Hum Nutr ; 77(2): 198-205, 2022 Jun.
Article En | MEDLINE | ID: mdl-35397767

Replacing synthetic dyes with natural pigments has gained great attention over the past years in the food industry, due to the increased alertness of consumers for nontoxic and natural additives. Betalains are water-soluble nitrogenous natural pigments that are used as natural colorants in food industries, due to their applicability and their rich pharmacological profile including antioxidant, antimicrobial, and anticancer properties. Therefore, there is a need for a detailed exploration of betalains to fully exploit their properties. Opuntia spp. plants are one of the primary sources of betalains. The objective of this study was to identify betalain phytochemical content in prickly pear cactus of two different Opuntia species from Greece (an Opuntia ficus-indica (L.) Mill (OFI) orange prickly pear cultivar and an Opuntia spp. purple prickly pear cultivar) using modern analytical techniques as also to evaluate their antioxidant and cytotoxicity profile. To achieve this we used an array of analytical techniques, including ultra-violet-vis (UV-Vis) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and liquid chromatography-high resolution mass spectrometry (LC-HRMS) as also cell based in vitro assays. These enabled us to establish a rapid approach that can distinguish the different Opuntia spp. cultivars based on their phytochemical constituents through untargeted metabolomics analysis using ultra-high performance liquid chromatography-mass spectrometry - quadrupole time-of-flight (UPLC/MS Q-TOF). These findings could allow a further exploitation of Opuntia species and especially their enriched betalain phytochemical profile as viable source of natural food colorants.


Citrus sinensis , Opuntia , Antioxidants/analysis , Betalains/analysis , Betalains/chemistry , Betalains/pharmacology , Fruit/chemistry , Greece , Opuntia/chemistry , Phytochemicals/analysis
11.
Am J Clin Nutr ; 115(5): 1418-1431, 2022 05 01.
Article En | MEDLINE | ID: mdl-35265960

BACKGROUND: Betalains are natural red color pigments abundant in red-fleshed dragon fruit (Hylocereus polyrhizus). Recent research has shown that dragon fruit consumption may help improve blood glucose and lipid profile. However, investigations of its cardioprotective properties in human trials, especially in nutritionally achievable amounts, remain nonexistent. OBJECTIVES: The aim of this study was to investigate the effects of acute and short-term consumption of dragon fruit on vascular function in a healthy population. METHODS: A randomized, double-blind, placebo-controlled, crossover trial was conducted in 19 young, healthy, nonsmoking men and women assigned to consume 24 g whole dragon fruit powder (33 mg betalains) or a nutrient-matched placebo, daily for 14 d. Flow-mediated dilation (FMD), arterial stiffness, and blood pressure (BP) were measured at 0 h, 1 h, 2 h, 3 h, and 4 h and finally at 14 d after daily consumption. RESULTS: A total of 18 participants completed the trial. Dragon fruit consumption significantly improved acute FMD at 2 h (+0.8 ± 0.3%, P = 0.01), 3 h (+1.0 ± 0.3%, P = 0.001), and 4 h (+1.3 ± 0.4%, P < 0.001) postconsumption compared with placebo. This effect was sustained up until 14 d (+1.3 ± 0.2%, P < 0.001). Pulse-wave velocity was acutely significantly reduced at 3 h (-0.5 ± 0.2 m/s, P = 0.003), whereas augmentation index (AIx) also improved after 14 d (-7.0 ± 3.3%, P = 0.02) when compared with placebo. No differences were found in either peripheral or central BP across all time points. CONCLUSIONS: Acute and short-term consumption of dragon fruit in dietary achievable amounts improved endothelial function and arterial stiffness in healthy individuals. This implies that regular dragon fruit consumption may have a meaningful impact on cardiovascular disease risk likely due to the high betalain content. This trial was registered at ClinicalTrials.gov as NCT03995602.


Betalains , Vascular Stiffness , Betalains/pharmacology , Blood Pressure , Cross-Over Studies , Double-Blind Method , Endothelium, Vascular , Female , Fruit , Humans , Male , Pulse Wave Analysis
12.
Plant Foods Hum Nutr ; 77(1): 90-97, 2022 Mar.
Article En | MEDLINE | ID: mdl-35088214

Betalain pigments are mainly produced by plants belonging to the order of Caryophyllales. Betalains exhibit strong antioxidant activity and responds to environmental stimuli and stress in plants. Recent reports of antioxidant, anti-inflammatory and anti-cancer properties of betalain pigments have piqued interest in understanding their biological functions. We investigated the effects of betalain pigments (betanin and isobetanin) derived from red-beet on amyloid-ß (Aß) aggregation, which causes Alzheimer's disease. Non-specific inhibition of Aß aggregation against Aß40 and Aß42 by red-beet betalain pigments, in vitro was demonstrated using the thioflavin t fluorescence assay, circular dichroism spectroscopy analysis, transmission electron microscopy and nuclear magnetic resonance (NMR) analysis. Furthermore, we examined the ability of red-beet betalain pigments to interfere with Aß toxicity by using the transgenic Caenorhabditis elegans model, which expresses the human Aß42 protein intracellularly within the body wall muscle. It responds to Aß-toxicity with paralysis and treatment with 50 µM red-beet betalain pigments significantly delayed the paralysis of C. elegans. These results suggest that betalain pigments reduce Aß-induced toxicity.


Beta vulgaris , Betalains , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Animals , Antioxidants/pharmacology , Beta vulgaris/chemistry , Betalains/analysis , Betalains/chemistry , Betalains/pharmacology , Caenorhabditis elegans/metabolism , Paralysis/chemically induced
13.
Molecules ; 26(20)2021 Oct 09.
Article En | MEDLINE | ID: mdl-34684678

BACKGROUND: The blockade of the progression or onset of pathological events is essential for the homeostasis of an organism. Some common pathological mechanisms involving a wide range of diseases are the uncontrolled inflammatory reactions that promote fibrosis, oxidative reactions, and other alterations. Natural plant compounds (NPCs) are bioactive elements obtained from natural sources that can regulate physiological processes. Inflammation is recognized as an important factor in the development and evolution of chronic renal damage. Consequently, any compound able to modulate inflammation or inflammation-related processes can be thought of as a renal protective agent and/or a potential treatment tool for controlling renal damage. The objective of this research was to review the beneficial effects of bioactive natural compounds on kidney damage to reveal their efficacy as demonstrated in clinical studies. METHODS: This systematic review is based on relevant studies focused on the impact of NPCs with therapeutic potential for kidney disease treatment in humans. RESULTS: Clinical studies have evaluated NPCs as a different way to treat or prevent renal damage and appear to show some benefits in improving OS, inflammation, and antioxidant capacity, therefore making them promising therapeutic tools to reduce or prevent the onset and progression of KD pathogenesis. CONCLUSIONS: This review shows the promising clinical properties of NPC in KD therapy. However, more robust clinical trials are needed to establish their safety and therapeutic effects in the area of renal damage.


Kidney Diseases/drug therapy , Plant Extracts/pharmacology , Protective Agents/pharmacology , Antioxidants/pharmacology , Berberine/pharmacology , Beta vulgaris , Betalains/pharmacology , Biological Products/pharmacology , Catechin/pharmacology , Curcumin/pharmacology , Disulfides/pharmacology , Flavonoids/pharmacology , Humans , Isothiocyanates/pharmacology , Kidney/drug effects , Kidney/pathology , Pomegranate , Resveratrol/pharmacology , Sulfinic Acids/pharmacology , Sulfoxides/pharmacology , Xanthophylls/pharmacology
14.
Food Chem ; 362: 130196, 2021 Nov 15.
Article En | MEDLINE | ID: mdl-34091165

This review examines the nutritional and functional aspects of some representatives of the Cactaceae family, as well as its technological potential in the most diverse industrial fields. The studied species are good sources of nutrients and phytochemicals of biological interest, such as phenolic compounds, carotenoids, betalains, phytosterols, tocopherols, etc. They also have shown great potential in preventing some diseases, including diabetes, obesity, cancer, and others. As to technological applications, the Cactaceae family can be explored in the production of food (e.g., cakes, yogurts, bread, ice cream, and juices), as natural dyes, sources of pectins, water treatment and in animal feed. In addition, they have great potential for many technological domains, including food chemistry, pharmacy, biotechnology, and many others.


Cactaceae/chemistry , Food , Phytochemicals/pharmacology , Animal Feed , Animals , Betalains/chemistry , Betalains/pharmacology , Bread , Cactaceae/classification , Coloring Agents/chemistry , Humans , Ice Cream , Nutritive Value , Obesity/drug therapy , Pectins/chemistry , Pectins/pharmacology , Phenols/chemistry , Phenols/pharmacology , Phytochemicals/chemistry , Yogurt
15.
Hum Exp Toxicol ; 40(12_suppl): S16-S28, 2021 Dec.
Article En | MEDLINE | ID: mdl-34189972

Betalain is a natural plant pigment known to elicit various biological activities. However, studies on the protective effect of betalain against heart failure have not reported yet. The experimental model of heart failure was created in Wistar rats using isoproterenol (ISO). The animals were randomly assigned into four groups such as sham-control, ISO-induced heart failure, betalain pretreated before ISO induction (50 mg/kg/day), and betalain drug control group were maintained for 6 weeks. At the end of the experimental period, anti-oxidant enzymes, inflammatory markers, matrix proteins, cardiac-specific markers, and micro RNAs were elucidated using RT-PCR, and ELISA analysis. The results demonstrated that the rats induced with ISO displayed an abnormality in cardiac functions, increased oxidative stress markers (p < 0.01), inflammatory cytokines (p < 0.01) while abrogated the expression of miR-18a, and increased miR-199a. While betalain pre-treated rats prevented the cardiac failure significantly (p < 0.01) with improved anti-oxidant enzymes, abrogated the inflammatory signals with restored matrix proteins, cardiac biomarker genes, and attenuated miR-423 and miR-27 compared to heart failure rats. The results of the study suggest that the betalain treatment protected the hearts from failing via microRNA mediated activation the anti-inflammatory signaling and restoring the matrix protein modulation.


Anti-Inflammatory Agents/pharmacology , Betalains/pharmacology , Cardiotonic Agents/pharmacology , Heart Failure/prevention & control , Adrenergic beta-Agonists/administration & dosage , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Cytokines/metabolism , Disease Models, Animal , Heart Failure/chemically induced , Heart Failure/metabolism , Inflammation Mediators/metabolism , Isoproterenol/administration & dosage , Male , Rats , Rats, Wistar
16.
Molecules ; 26(9)2021 Apr 26.
Article En | MEDLINE | ID: mdl-33925891

Betalains are water-soluble pigments present in vacuoles of plants of the order Caryophyllales and in mushrooms of the genera Amanita, Hygrocybe and Hygrophorus. Betalamic acid is a constituent of all betalains. The type of betalamic acid substituent determines the class of betalains. The betacyanins (reddish to violet) contain a cyclo-3,4-dihydroxyphenylalanine (cyclo-DOPA) residue while the betaxanthins (yellow to orange) contain different amino acid or amine residues. The most common betacyanin is betanin (Beetroot Red), present in red beets Beta vulgaris, which is a glucoside of betanidin. The structure of this comprehensive review is as follows: Occurrence of Betalains; Structure of Betalains; Spectroscopic and Fluorescent Properties; Stability; Antioxidant Activity; Bioavailability, Health Benefits; Betalains as Food Colorants; Food Safety of Betalains; Other Applications of Betalains; and Environmental Role and Fate of Betalains.


Betalains/chemistry , Betalains/pharmacology , Coloring Agents/chemistry , Coloring Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Biological Availability , Biological Products/chemistry , Biological Products/pharmacology , Chemical Phenomena , Food Coloring Agents , Food Safety , Molecular Structure , Phytochemicals/chemistry , Pigments, Biological , Spectrum Analysis , Structure-Activity Relationship
17.
Molecules ; 26(9)2021 Apr 22.
Article En | MEDLINE | ID: mdl-33922131

Flavonoids, phenolic acids, and anthocyanidins are widely studied polyphenolics owing to their antiradical activity. Recently, beetroot dyes have drawn an attention as possible radical scavengers, but scant information can be found on this topic. In this study selected compounds were investigated using computational chemistry methods. Implicit water at physiological pH was chosen as the environment of interest. Betalains' dissociation process and electronic structure were examined, as well as the reactivity in six pathways against some common radicals, such as hydroxyl, hydroperoxide, superoxide, and nitric oxide. The study showed that all carboxyl groups are dissociated in the given conditions. The dissociation process impacts the electronic structure, which has consequences for the overall activity. Highly stabilized conjugated structures favor the electron-accepting type of scavenging reactions, primarily by a radical adduct formation mechanism. Betanidin and indicaxanthin were found to be the most promising of the compounds studied. Nevertheless, the study established the role of betalains as powerful antiradical dietary agents.


Beta vulgaris/chemistry , Betalains/pharmacology , Free Radical Scavengers/pharmacology , Plant Extracts/pharmacology , Plant Roots/chemistry , Betalains/chemistry , Density Functional Theory , Free Radical Scavengers/chemistry , Hydrogen/chemistry , Models, Molecular , Molecular Conformation , Molecular Structure , Plant Extracts/chemistry
18.
J Environ Pathol Toxicol Oncol ; 40(2): 11-21, 2021.
Article En | MEDLINE | ID: mdl-33822513

Global industrialization not only improved the quality life of millions but also paved the way to solving many health problems. One among them is allergic asthma, which affects approximately 20% of the global population. Poor air quality is the major culprit in allergic asthma, which not only affects the individual's health, but also impairs his or her life quality and that of family members. Asthma is a chronic pulmonary inflammatory disease characterized by excess mucus production, airway hyperresponsiveness, and bronchoconstriction. Inhalation of corticosteroids, leukotriene modifiers, and ß-adrenergic agonists is one treatment prescribed to control the symptoms of asthma, but there is still no effective cure. Phytochemicals such as carotenoids, phenolics, alkaloids, and nitrogen and organosulfur compounds are proven to possess immense pharmacological properties. Betalain is one such phytochemical present in plants of the order Caryophyllales. It is a water-soluble nitrogen-based pigment proven to possess antimicrobial, antioxidant, anti-inflammatory, hepatoprotective, antilipidemic, antidiabetic, and anticancer properties. We examined the curative potential of betalain against allergic asthma in a mouse model. Betalain treatment effectively decreased lung weight and infiltration of inflammatory cells in BAL fluid, and lowered IgE, eotaxin, and cytokine levels in asthma-induced mice. It also improved pulmonary mechanics and decreased oxidative stress and nitric oxide levels. Betalain significantly decreased gene expression of TGF-ß and its downstream signaling Smad proteins. Lung histology confirmed that betalain protected the lung tissue of mice from ovalbumin-induced allergic asthma. Overall, our results show that betalain is a potent antiallergic drug that effectively protects mice from ovalbumin-induced allergic asthma. With further research, it can be prescribed as a treatment for asthma in humans.


Anti-Asthmatic Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Asthma/drug therapy , Betalains/therapeutic use , Smad Proteins/immunology , Transforming Growth Factor beta1/immunology , Allergens , Animals , Anti-Asthmatic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Asthma/immunology , Asthma/pathology , Asthma/physiopathology , Betalains/pharmacology , Cytokines/immunology , Disease Models, Animal , Female , Immunoglobulin E/immunology , Lung/drug effects , Lung/immunology , Lung/pathology , Lung/physiopathology , Mice, Inbred BALB C , Ovalbumin , Signal Transduction/drug effects , Smad Proteins/genetics , Transforming Growth Factor beta1/genetics
19.
Molecules ; 25(23)2020 Dec 04.
Article En | MEDLINE | ID: mdl-33291808

Cactus acid fruit (Xoconostle) has been studied due its content of bioactive compounds. Traditional Mexican medicine attributes hypoglycemic, hypocholesterolemic, anti-inflammatory, antiulcerogenic and immunostimulant properties among others. The bioactive compounds contained in xoconostle have shown their ability to inhibit digestive enzymes such as α-amylase and α-glucosidase. Unfortunately, polyphenols and antioxidants in general are molecules susceptible to degradation due to storage conditions, (temperature, oxygen and light) or the gastrointestinal tract, which limits its activity and compromises its potential beneficial effect on health. The objectives of this work were to evaluate the stability, antioxidant and antidiabetic activity of encapsulated extract of xoconostle within double emulsions (water-in-oil-in-water) during storage conditions and simulated digestion. Total phenols, flavonoids, betalains, antioxidant activity, α-amylase and α-glucosidase inhibition were measured before and after the preparation of double emulsions and during the simulation of digestion. The ED40% (treatment with 40% of xoconostle extract) treatment showed the highest percentage of inhibition of α-glucosidase in all phases of digestion. The inhibitory activity of α-amylase and α-glucosidase related to antidiabetic activity was higher in microencapsulated extracts than the non-encapsulated extracts. These results confirm the viability of encapsulation systems based on double emulsions to encapsulate and protect natural antidiabetic compounds.


Antioxidants/chemistry , Cactaceae/chemistry , Fruit/chemistry , Hypoglycemic Agents/chemistry , Phytochemicals/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/physiology , Betalains/chemistry , Betalains/pharmacology , Digestion/drug effects , Flavonoids/chemistry , Flavonoids/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Phenols/chemistry , Phenols/pharmacology , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/chemistry , Polyphenols/pharmacology , alpha-Amylases/chemistry , alpha-Glucosidases/chemistry
20.
J Agric Food Chem ; 68(42): 11595-11611, 2020 Oct 21.
Article En | MEDLINE | ID: mdl-33040529

In recent years, red beetroot has received a growing interest due to its abundant source of bioactive compounds, particularly betalains. Red beetroot betalains have great potential as a functional food ingredient employed in the food and medical industry due to their diverse health-promoting effects. Betalains from red beetroot are natural pigments, which mainly include either yellow-orange betaxanthins or red-violet betacyanins. However, betalains are quite sensitive toward heat, pH, light, and oxygen, which leads to the poor stability during processing and storage. Therefore, it is necessary to comprehend the impacts of the processing approaches on betalains. In this review, the effective extraction and processing methods of betalains from red beetroot were emphatically reviewed. Furthermore, a variety of recently reported bioactivities of beetroot betalains were also summarized. The present work can provide a comprehensive review on both conventional and innovative extraction techniques, processing methods, and the stability of betalains.


Beta vulgaris/chemistry , Betalains/chemistry , Betalains/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Betalains/pharmacology , Food Handling , Plant Extracts/pharmacology , Plant Roots/chemistry
...