Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.305
Filter
1.
BMC Microbiol ; 24(1): 233, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951788

ABSTRACT

BACKGROUND: Inflammatory Bowel Diseases (IBD) are a major public health issue with unclear aetiology. Changes in the composition and functionality of the intestinal microbiota are associated with these pathologies, including the depletion of strict anaerobes such as Feacalibacterium prausnitzii. Less evidence is observed for depletion in other anaerobes, among which bifidobacteria. This study characterized the taxonomic and functional diversity of bifidobacteria isolated from the human intestinal microbiota in active and non-active IBD patients by a culturomics approach and evaluated if these bifidobacteria might be used as probiotics for gut health. RESULTS: A total of 341 bifidobacteria were isolated from the intestinal microbiota of IBD patients (52 Crohn's disease and 26 ulcerative colitis patients), with a high proportion of Bifidobacterium dentium strains (28% of isolated bifidobacteria). In ulcerative colitis, the major species identified was B. dentium (39% of isolated bifidobacteria), in active and non-active ulcerative colitis. In Crohn's disease, B. adolescentis was the major species isolated from non-active patients (40%), while similar amounts of B. dentium and B. adolescentis were found in active Crohn's disease patients. The relative abundance of B. dentium was increased with age, both in Crohn's disease and ulcerative colitis and active and non-active IBD patients. Antibacterial capacities of bifidobacteria isolated from non-active ulcerative colitis against Escherichia coli LF82 and Salmonella enterica ATCC 14028 were observed more often compared to strains isolated from active ulcerative colitis. Finally, B. longum were retained as strains with the highest probiotic potential as they were the major strains presenting exopolysaccharide synthesis, antibacterial activity, and anti-inflammatory capacities. Antimicrobial activity and EPS synthesis were further correlated to the presence of antimicrobial and EPS gene clusters by in silico analysis. CONCLUSIONS: Different bifidobacterial taxonomic profiles were identified in the microbiota of IBD patients. The most abundant species were B. dentium, mainly associated to the microbiota of ulcerative colitis patients and B. adolescentis, in the intestinal microbiota of Crohn's disease patients. Additionally, the relative abundance of B. dentium significantly increased with age. Furthermore, this study evidenced that bifidobacteria with probiotic potential (antipathogenic activity, exopolysaccharide production and anti-inflammatory activity), especially B. longum strains, can be isolated from the intestinal microbiota of both active and non-active Crohn's disease and ulcerative colitis patients.


Subject(s)
Bifidobacterium , Gastrointestinal Microbiome , Probiotics , Humans , Bifidobacterium/isolation & purification , Bifidobacterium/classification , Bifidobacterium/genetics , Adult , Female , Male , Middle Aged , Inflammatory Bowel Diseases/microbiology , Young Adult , Aged , Colitis, Ulcerative/microbiology , Crohn Disease/microbiology , Phylogeny , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Phenotype , Adolescent , Anti-Bacterial Agents/pharmacology
2.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38896583

ABSTRACT

Probiotics have gained significant attention as a potential strategy to improve health by modulating host-microbe interactions, particularly in situations where the normal microbiota has been disrupted. However, evidence regarding their efficacy has been inconsistent, with considerable interindividual variability in response. We aimed to explore whether a common genetic variant that affects the production of mucosal α(1,2)-fucosylated glycans, present in around 20% of the population, could explain the observed interpersonal differences in the persistence of commonly used probiotics. Using a mouse model with varying α(1,2)-fucosylated glycans secretion (Fut2WT or Fut2KO), we examined the abundance and persistence of Bifidobacterium strains (infantis, breve, and bifidum). We observed significant differences in baseline gut microbiota characteristics between Fut2WT and Fut2KO littermates, with Fut2WT mice exhibiting enrichment of species able to utilize α(1,2)-fucosylated glycans. Following antibiotic exposure, only Fut2WT animals showed persistent engraftment of Bifidobacterium infantis, a strain able to internalize α(1,2)-fucosylated glycans, whereas B. breve and B. bifidum, which cannot internalize α(1,2)-fucosylated glycans, did not exhibit this difference. In mice with an intact commensal microbiota, the relationship between secretor status and B. infantis persistence was reversed, with Fut2KO animals showing greater persistence compared to Fut2WT. Our findings suggest that the interplay between a common genetic variation and antibiotic exposure plays a crucial role in determining the dynamics of B. infantis in the recipient gut, which could potentially contribute to the observed variation in response to this commonly used probiotic species.


Subject(s)
Anti-Bacterial Agents , Fucosyltransferases , Galactoside 2-alpha-L-fucosyltransferase , Gastrointestinal Microbiome , Probiotics , Animals , Mice , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Probiotics/administration & dosage , Anti-Bacterial Agents/pharmacology , Bifidobacterium longum subspecies infantis/genetics , Bifidobacterium longum subspecies infantis/metabolism , Polysaccharides/metabolism , Host Microbial Interactions , Mice, Inbred C57BL , Mice, Knockout , Bifidobacterium/genetics , Bifidobacterium/metabolism
3.
Nutrients ; 16(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38931248

ABSTRACT

Human milk provides essential nutrients for infants but also consists of human milk oligosaccharides (HMOs), which are resistant to digestion by the infant. Bifidobacteria are among the first colonizers, providing various health benefits for the host. This is largely facilitated by their ability to efficiently metabolize HMOs in a species-specific way. Nevertheless, these abilities can vary significantly by strain, and our understanding of the mechanisms applied by different strains from the same species remains incomplete. Therefore, we assessed the effects of strain-level genomic variation in HMO utilization genes on growth on HMOs in 130 strains from 10 species of human associated bifidobacteria. Our findings highlight the extent of genetic diversity between strains of the same species and demonstrate the effects on species-specific HMO utilization, which in most species is largely retained through the conservation of a core set of genes or the presence of redundant pathways. These data will help to refine our understanding of the genetic factors that contribute to the persistence of individual strains and will provide a better mechanistic rationale for the development and optimization of new early-life microbiota-modulating products to improve infant health.


Subject(s)
Bifidobacterium , Milk, Human , Oligosaccharides , Species Specificity , Bifidobacterium/genetics , Bifidobacterium/metabolism , Humans , Oligosaccharides/metabolism , Genetic Variation , Infant , Genes, Bacterial
4.
Sci Rep ; 14(1): 14086, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890373

ABSTRACT

Gut microbiota can regulate the metabolic and immunological aspects of ischemic stroke and modulate the treatment effects. The present study aimed to identify specific changes in gut microbiota in patients with large vessel occlusion (LVO) ischemic stroke and assess the potential association between gut microbiota and clinical features of ischemic stroke. A total of 63 CSVD patients, 64 cerebral small vessel disease (CSVD) patients, and 36 matching normal controls (NCs) were included in this study. The fecal samples were collected for all participants and analyzed for gut microbiota using 16S rRNA gene sequencing technology. The abundances of five gut microbiota, including genera Bifidobacterium, Butyricimonas, Blautia, and Dorea and species Bifidobacterium_longum, showed significant changes with high specificity in the LVO patients as compared to the NCs and CSVD patients. In LVO patients, the genera Bifidobacterium and Blautia and species Bifidobacterium_longum were significantly correlated with the National Institutes of Health Stroke Scale (NIHSS) scores at the admission and discharge of the patients. Serum triglyceride levels could significantly affect the association of the abundance of genus Bifidobacterium and species Bifidobacterium_longum with the NIHSS scores at admission and modified Rankin Scale (mRS) at discharge in LVO patients. The identification of five gut microbiota with high specificity were identified in the early stage of LVO stroke, which contributed to performed an effective clinical management for LVO ischemic stroke.


Subject(s)
Gastrointestinal Microbiome , Ischemic Stroke , RNA, Ribosomal, 16S , Humans , Male , Ischemic Stroke/microbiology , Female , Aged , Middle Aged , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Cerebral Small Vessel Diseases/microbiology , Case-Control Studies , Bifidobacterium/isolation & purification , Bifidobacterium/genetics , Brain Ischemia/microbiology
5.
Gut Microbes ; 16(1): 2357176, 2024.
Article in English | MEDLINE | ID: mdl-38798019

ABSTRACT

Resistance to antibiotics in newborns is a huge concern as their immune system is still developing, and infections and resistance acquisition in early life have short- and long-term consequences for their health. Bifidobacterium species are important commensals capable of dominating the infant gut microbiome and are known to be less prone to possess antimicrobial resistance genes than other taxa that may colonize infants. We aimed to study the association between Bifidobacterium-dominated infant gut microbiota and the antibiotic resistant gene load in neonates, and to ascertain the perinatal factors that may contribute to the antibiotic resistance acquisition. Two hundred infant fecal samples at 7 days and 1 month of age from the MAMI birth cohort were included in the study and for whom maternal-neonatal clinical records were available. Microbiota profiling was carried out by 16S rRNA amplicon sequencing, and targeted antibiotic resistance genes (ARGs) including tetM, tetW, tetO, blaTEM, blaSHV and ermB were quantified by qPCR. Infant microbiota clustered into two distinct groups according to their Bifidobacterium genus abundance: high and low. The main separation of groups or clusters at each time point was performed with an unsupervised non-linear algorithm of k-means partitioning to cluster data by time points based on Bifidobacterium genus relative abundance. Microbiota composition differed significantly between both groups, and specific bifidobacterial species were enriched in each cluster. Lower abundance of Bifidobacterium in the infant gut was associated with a higher load of antibiotic resistance genes. Our results highlight the relevance of Bifidobacterium genus in the early acquisition and establishment of antibiotic resistance in the gut. Further studies are needed to develop strategies to promote a healthy early colonization and fight against the spread of antibiotic resistances.


Subject(s)
Anti-Bacterial Agents , Bifidobacterium , Drug Resistance, Bacterial , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Humans , Bifidobacterium/genetics , Bifidobacterium/drug effects , Bifidobacterium/isolation & purification , Infant, Newborn , Gastrointestinal Microbiome/drug effects , Feces/microbiology , Anti-Bacterial Agents/pharmacology , Female , RNA, Ribosomal, 16S/genetics , Drug Resistance, Bacterial/genetics , Male , Infant
6.
Int J Biol Macromol ; 268(Pt 2): 131836, 2024 May.
Article in English | MEDLINE | ID: mdl-38692553

ABSTRACT

Multiple species of Bifidobacterium exhibit the ability to bioconvert conjugated fatty acids (CFAs), which is considered an important pathway for these strains to promote host health. However, there has been limited progress in understanding the enzymatic mechanism of CFA bioconversion by bifidobacteria, despite the increasing number of studies identifying CFA-producing strains. The protein responsible for polyunsaturated fatty acid (PUFA) isomerization in B. breve CCFM683 has recently been discovered and named BBI, providing a starting point for exploring Bifidobacterium isomerases (BIs). This study presents the sequence classification of membrane-bound isomerases from four common Bifidobacterium species that produce CFA. Heterologous expression, purification, and enzymatic studies of the typical sequences revealed that all possess a single c9, t11 isomer as the product and share common features in terms of enzymatic properties and catalytic kinetics. Using molecular docking and alanine scanning, Lys84, Tyr198, Asn202, and Leu245 located in the binding pocket were identified as critical to the catalytic activity, a finding further confirmed by site-directed mutagenesis-based screening assays. Overall, these findings provide insightful knowledge concerning the molecular mechanisms of BIs. This will open up additional opportunities for the use of bifidobacteria and CFAs in probiotic foods and precision nutrition.


Subject(s)
Bifidobacterium , Fatty Acids, Unsaturated , Bifidobacterium/enzymology , Bifidobacterium/genetics , Bifidobacterium/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Molecular Docking Simulation , Isomerism , Kinetics , Amino Acid Sequence , Mutagenesis, Site-Directed , Probiotics/metabolism
7.
Curr Microbiol ; 81(7): 168, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733376

ABSTRACT

In 2018, Nouioui et al. proposed that Bifidobacterium coryneforme was a later synonym of Bifidobacterium indicum on the basis of the digital DNA-DNA hybridization (dDDH) value (85.0%) between B. coryneforme LMG 18911T and B. indicum LMG 11587T. However, in the study of Scardovi et al. (1970), the type strains of B. indicum and B. coryneforme only exhibited 60% DNA-DNA hybridization value. In the present study, the genomes of B. coryneforme CGMCC 1.2279T, B. coryneforme JCM 5819T, B. indicum JCM 1302T, B. indicum CGMCC 1.2275T, B. indicum DSM 20214T, B. indicum LMG 27437T, B. indicum ATCC 25912T, B. indicum KCTC 3230T, B. indicum CCUG 34985T, were sequenced, and the taxonomic relationship between B. coryneforme and B. indicum was re-evaluated. On the basis of the results presented here, (i) ATCC 25912 and DSM 20214 deposited by Vittorio Scardovi are two different strains; (ii) the type strain of B. indicum is ATCC 25912T (= JCM 1302T = LMG 27437T = CGMCC 1.2275T = KCTC 3230T), and not DSM 20214 (= BCRC 14674 = CCUG 34985 = LMG 11587); (iii) B. coryneforme and B. indicum represent two different species of the genus Bifidobacterium; (iv) strain DSM 20214 (= BCRC 14674 = CCUG 34985 = LMG 11587) belongs to B. coryneforme.


Subject(s)
Bifidobacterium , DNA, Bacterial , Genome, Bacterial , Phylogeny , Bifidobacterium/genetics , Bifidobacterium/classification , Bifidobacterium/isolation & purification , DNA, Bacterial/genetics , Nucleic Acid Hybridization , Bacterial Typing Techniques , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
8.
Gut Microbes ; 16(1): 2347728, 2024.
Article in English | MEDLINE | ID: mdl-38706226

ABSTRACT

Indole in the gut is formed from dietary tryptophan by a bacterial tryptophan-indole lyase. Indole not only triggers biofilm formation and antibiotic resistance in gut microbes but also contributes to the progression of kidney dysfunction after absorption by the intestine and sulfation in the liver. As tryptophan is an essential amino acid for humans, these events seem inevitable. Despite this, we show in a proof-of-concept study that exogenous indole can be converted to an immunomodulatory tryptophan metabolite, indole-3-lactic acid (ILA), by a previously unknown microbial metabolic pathway that involves tryptophan synthase ß subunit and aromatic lactate dehydrogenase. Selected bifidobacterial strains converted exogenous indole to ILA via tryptophan (Trp), which was demonstrated by incubating the bacterial cells in the presence of (2-13C)-labeled indole and l-serine. Disruption of the responsible genes variedly affected the efficiency of indole bioconversion to Trp and ILA, depending on the strains. Database searches against 11,943 bacterial genomes representing 960 human-associated species revealed that the co-occurrence of tryptophan synthase ß subunit and aromatic lactate dehydrogenase is a specific feature of human gut-associated Bifidobacterium species, thus unveiling a new facet of bifidobacteria as probiotics. Indole, which has been assumed to be an end-product of tryptophan metabolism, may thus act as a precursor for the synthesis of a host-interacting metabolite with possible beneficial activities in the complex gut microbial ecosystem.


Subject(s)
Bifidobacterium , Gastrointestinal Microbiome , Indoles , Tryptophan , Tryptophan/metabolism , Humans , Indoles/metabolism , Bifidobacterium/metabolism , Bifidobacterium/genetics , Tryptophan Synthase/metabolism , Tryptophan Synthase/genetics , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism
9.
Benef Microbes ; 15(3): 241-258, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688490

ABSTRACT

Aging is a physiological and immunological process involving the deterioration of human health, characterised by the progressive alteration of organs and their functions. The speed and extent of such decline are dependent on lifestyle, environment, and genetic factors. Moreover, with advancing age, humans become progressively more fragile and prone to acute and chronic diseases. Although the intestinal microbiota is predisposed to perturbations that accompany aging and frailty, it is generally accepted that the gut microbiota engages in multiple interactions that affect host health throughout the host life span. In the current study, an exhaustive in silico investigation of gut-associated bifidobacteria in healthy individuals from birth to old age revealed that Bifidobacterium longum subsp. longum is the most prevalent member, especially during infancy and in centenarians. Moreover, B. longum subsp. longum genome reconstruction and strain tracing among human gut microbiomes allowed the identification of prototypes of this taxon in the human gut microbiota of healthy elderly individuals. Such analyses guided culturomics attempts to isolate B. longum subsp. longum strains that matched the genomic content of B. longum subsp. longum prototypes from healthy elderly individuals. The molecular effects of selected B. longum subsp. longum strains on the human host were further investigated using in vitro microbe-host interactions, revealing differences in the host immune system transcriptome, with a reduction in gene expression of inflammation-related cytokines. These intriguing findings support the potential anti-aging effects of elderly associated prototypes of B. longum subsp. longum.


Subject(s)
Bifidobacterium , Gastrointestinal Microbiome , Immunity, Innate , Humans , Bifidobacterium/genetics , Bifidobacterium/immunology , Aged, 80 and over , Aged , Infant , Aging/immunology , Child, Preschool , Adult , Adolescent , Young Adult , Middle Aged , Male , Female , Genome, Bacterial/genetics , Host Microbial Interactions/immunology
10.
Microbiol Res ; 283: 127709, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593579

ABSTRACT

Bifidobacterium longum subsp. infantis commonly colonizes the human gut and is capable of metabolizing L-fucose, which is abundant in the gut. Multiple studies have focused on the mechanisms of L-fucose utilization by B. longum subsp. infantis, but the regulatory pathways governing the expression of these catabolic processes are still unclear. In this study, we have conducted a structural and functional analysis of L-fucose metabolism transcription factor FucR derived from B. longum subsp. infantis Bi-26. Our results indicated that FucR is a L-fucose-sensitive repressor with more α-helices, fewer ß-sheets, and ß-turns. Transcriptional analysis revealed that FucR displays weak negative self-regulation, which is counteracted in the presence of L-fucose. Isothermal titration calorimetry indicated that FucR has a 2:1 stoichiometry with L-fucose. The key amino acid residues for FucR binding L-fucose are Asp280 and Arg331, with mutation of Asp280 to Ala resulting in a decrease in the affinity between FucR and L-fucose with the Kd value from 2.58 to 11.68 µM, and mutation of Arg331 to Ala abolishes the binding ability of FucR towards L-fucose. FucR specifically recognized and bound to a 20-bp incomplete palindrome sequence (5'-ACCCCAATTACGAAAATTTTT-3'), and the affinity of the L-fucose-loaded FucR for the DNA fragment was lower than apo-FucR. The results provided new insights into the regulating L-fucose metabolism by B. longum subsp. infantis.


Subject(s)
Bifidobacterium longum , Bifidobacterium , Humans , Bifidobacterium/genetics , Bifidobacterium/metabolism , Fucose/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Carbohydrate Metabolism , Bifidobacterium longum/genetics , Bifidobacterium longum/metabolism
11.
Article in English | MEDLINE | ID: mdl-38661726

ABSTRACT

A novel bifidobacterium (designated F753-1T) was isolated from the gut of honeybee (Apis mellifera). Strain F753-1T was characterized using a polyphasic taxonomic approach. Strain F753-1T was phylogenetically related to the type strains of Bifidobacterium mizhiensis, Bifidobacterium asteroides, Bifidobacterium choladohabitans, Bifidobacterium mellis, Bifidobacterium apousia and Bifidobacterium polysaccharolyticum, having 98.4-99.8 % 16S rRNA gene sequence similarities. The phylogenomic tree indicated that strain F753-1T was most closely related to the type strains of B. mellis and B. choladohabitans. Strain F753-1T had the highest average nucleotide identity (94.1-94.5 %) and digital DNA-DNA hybridization (56.3 %) values with B. mellis Bin7NT. Acid production from amygdalin, d-fructose, gentiobiose, d-mannose, maltose, sucrose and d-xylose, activity of α-galactosidase, pyruvate utilization and hydrolysis of hippurate could differentiate strain F753-1T from B. mellis CCUG 66113T and B. choladohabitans JCM 34586T. Based upon the data obtained in the present study, a novel species, Bifidobacterium apis sp. nov., is proposed, and the type strain is F753-1T (=CCTCC AB 2023227T=JCM 36562T=LMG 33388T).


Subject(s)
Bacterial Typing Techniques , Bifidobacterium , DNA, Bacterial , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Bees/microbiology , Animals , RNA, Ribosomal, 16S/genetics , Bifidobacterium/isolation & purification , Bifidobacterium/classification , Bifidobacterium/genetics , DNA, Bacterial/genetics , Fatty Acids , Base Composition , Gastrointestinal Microbiome
12.
Genes (Basel) ; 15(4)2024 04 08.
Article in English | MEDLINE | ID: mdl-38674400

ABSTRACT

Bifidobacterium longum subsp. infantis YLGB-1496 (YLGB-1496) is a probiotic strain isolated from human breast milk. The application of YLGB-1496 is influenced by carbohydrate utilization and genetic stability. This study used genome sequencing and morphology during continuous subculture to determine the carbohydrate utilization characteristics and genetic stability of YLGB-1496. The complete genome sequence of YLGB-1496 consists of 2,758,242 base pairs, 2442 coding sequences, and a GC content of 59.87%. A comparison of carbohydrate transport and metabolism genes of Bifidobacterium longum subsp. infantis (B. infantis) showed that YLGB-1496 was rich in glycosyl hydrolase 13, 20, 25, and 109 gene families. During continuous subculture, the growth characteristics and fermentation activity of the strain were highly stable. The bacterial cell surface and edges of the 1000th-generation strains were progressively smoother and well-defined, with no perforations or breaks in the cell wall. There were 20 SNP loci at the 1000th generation, fulfilling the requirement of belonging to the same strain. The presence of genes associated with cell adhesion and the absence of resistance genes supported the probiotic characteristics of the strain. The data obtained in this study provide insights into broad-spectrum carbohydrate utilization, genomic stability, and probiotic properties of YLGB-1496, which provide theoretical support to promote the use of YLGB-1496.


Subject(s)
Bifidobacterium , Carbohydrate Metabolism , Genome, Bacterial , Bifidobacterium/genetics , Bifidobacterium/metabolism , Carbohydrate Metabolism/genetics , Humans , Probiotics , Genomic Instability , Bifidobacterium longum subspecies infantis/genetics , Bifidobacterium longum subspecies infantis/metabolism
13.
Benef Microbes ; 15(3): 227-240, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38677714

ABSTRACT

Early life microbiota encompasses of a large percentage of Bifidobacterium, while it is not sufficiently understood how the Bifidobacterium population develops after infant's birth. Current study investigated the longitudinal changes in Bifidobacterium population during the first two years of life in 196 term born infants (1,654 samples) using 16S rRNA-23S rRNA internal transcribed spacer (ITS) sequence analysis. Throughout the first two years of life, Bifidobacterium breve, Bifidobacterium longum subsp. longum and Bifidobacterium adolescentis were most dominant and prevalent in the Bifidobacterium population, while B. breve had the highest relative abundance and prevalence during the first week of life and it was taken over by B. longum subsp. longum around two years after birth. Sampling time points, early antibiotic(s) exposure (effect only measurable within a month after birth), delivery mode (effect still detectable two-months after birth) and feeding mode (effect lasted until six months after birth), significantly contributed to the overall variation in the bifidobacterial population. From six months onwards, introducing of solid food and cessation of breastfeeding were accompanied with drastic changes in the composition in bifidobacterial population. Altogether, current study confirmed the effect of potential contributors to the longitudinal changes within the bifidobacterial population during the first two years of life. Registered at https://clinicaltrials.gov: NCT02536560.


Subject(s)
Bifidobacterium , RNA, Ribosomal, 16S , Humans , Infant , Bifidobacterium/genetics , Bifidobacterium/isolation & purification , Infant, Newborn , Female , Longitudinal Studies , RNA, Ribosomal, 16S/genetics , Male , Feces/microbiology , Breast Feeding , Child, Preschool , Gastrointestinal Microbiome , RNA, Ribosomal, 23S/genetics , Anti-Bacterial Agents/pharmacology , DNA, Bacterial/genetics
14.
Microbiol Spectr ; 12(5): e0272023, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38572984

ABSTRACT

Gut microbiota has demonstrated an increasingly important role in the onset and development of colorectal cancer (CRC). Nonetheless, the association between gut microbiota and KRAS mutation in CRC remains enigmatic. We conducted 16S rRNA sequencing on stool samples from 94 CRC patients and employed the linear discriminant analysis effect size algorithm to identify distinct gut microbiota between KRAS mutant and KRAS wild-type CRC patients. Transcriptome sequencing data from nine CRC patients were transformed into a matrix of immune infiltrating cells, which was then utilized to explore KRAS mutation-associated biological functions, including Gene Ontology items and Kyoto Encyclopedia of Genes and Genomes pathways. Subsequently, we analyzed the correlations among these KRAS mutation-associated gut microbiota, host immunity, and KRAS mutation-associated biological functions. At last, we developed a predictive random forest (RF) machine learning model to predict the KRAS mutation status in CRC patients, based on the gut microbiota associated with KRAS mutation. We identified a total of 26 differential gut microbiota between both groups. Intriguingly, a significant positive correlation was observed between Bifidobacterium spp. and mast cells, as well as between Bifidobacterium longum and chemokine receptor CX3CR1. Additionally, we also observed a notable negative correlation between Bifidobacterium and GOMF:proteasome binding. The RF model constructed using the KRAS mutation-associated gut microbiota demonstrated qualified efficacy in predicting the KRAS phenotype in CRC. Our study ascertained the presence of 26 KRAS mutation-associated gut microbiota in CRC and speculated that Bifidobacterium may exert an essential role in preventing CRC progression, which appeared to correlate with the upregulation of mast cells and CX3CR1 expression, as well as the downregulation of GOMF:proteasome binding. Furthermore, the RF model constructed on the basis of KRAS mutation-associated gut microbiota exhibited substantial potential in predicting KRAS mutation status in CRC patients.IMPORTANCEGut microbiota has emerged as an essential player in the onset and development of colorectal cancer (CRC). However, the relationship between gut microbiota and KRAS mutation in CRC remains elusive. Our study not only identified a total of 26 gut microbiota associated with KRAS mutation in CRC but also unveiled their significant correlations with tumor-infiltrating immune cells, immune-related genes, and biological pathways (Gene Ontology items and Kyoto Encyclopedia of Genes and Genomes pathways). We speculated that Bifidobacterium may play a crucial role in impeding CRC progression, potentially linked to the upregulation of mast cells and CX3CR1 expression, as well as the downregulation of GOMF:Proteasome binding. Furthermore, based on the KRAS mutation-associated gut microbiota, the RF model exhibited promising potential in the prediction of KRAS mutation status for CRC patients. Overall, the findings of our study offered fresh insights into microbiological research and clinical prediction of KRAS mutation status for CRC patients.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Machine Learning , Mutation , Proto-Oncogene Proteins p21(ras) , Humans , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gastrointestinal Microbiome/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Male , Female , RNA, Ribosomal, 16S/genetics , Middle Aged , Aged , Feces/microbiology , Bifidobacterium/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism
15.
Microbiome ; 12(1): 60, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515179

ABSTRACT

BACKGROUND: The gut microbiota is recognized as a regulator of brain development and behavioral outcomes during childhood. Nonetheless, associations between the gut microbiota and behavior are often inconsistent among studies in humans, perhaps because many host-microbe relationships vary widely between individuals. This study aims to stratify children based on their gut microbiota composition (i.e., clusters) and to identify novel gut microbiome cluster-specific associations between the stool metabolomic pathways and child behavioral outcomes. METHODS: Stool samples were collected from a community sample of 248 typically developing children (3-5 years). The gut microbiota was analyzed using 16S sequencing while LC-MS/MS was used for untargeted metabolomics. Parent-reported behavioral outcomes (i.e., Adaptive Skills, Internalizing, Externalizing, Behavioral Symptoms, Developmental Social Disorders) were assessed using the Behavior Assessment System for Children (BASC-2). Children were grouped based on their gut microbiota composition using the Dirichlet multinomial method, after which differences in the metabolome and behavioral outcomes were investigated. RESULTS: Four different gut microbiota clusters were identified, where the cluster enriched in both Bacteroides and Bifidobacterium (Ba2) had the most distinct stool metabolome. The cluster characterized by high Bifidobacterium abundance (Bif), as well as cluster Ba2, were associated with lower Adaptive Skill scores and its subcomponent Social Skills. Cluster Ba2 also had significantly lower stool histidine to urocanate turnover, which in turn was associated with lower Social Skill scores in a cluster-dependent manner. Finally, cluster Ba2 had increased levels of compounds involved in Galactose metabolism (i.e., stachyose, raffinose, alpha-D-glucose), where alpha-D-glucose was associated with the Adaptive Skill subcomponent Daily Living scores (i.e., ability to perform basic everyday tasks) in a cluster-dependent manner. CONCLUSIONS: These data show novel associations between the gut microbiota, its metabolites, and behavioral outcomes in typically developing preschool-aged children. Our results support the concept that cluster-based groupings could be used to develop more personalized interventions to support child behavioral outcomes. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Child, Preschool , Humans , Bifidobacterium/genetics , Chromatography, Liquid , Gastrointestinal Microbiome/genetics , Glucose , Metabolome , Metabolomics/methods , RNA, Ribosomal, 16S , Tandem Mass Spectrometry
16.
mSystems ; 9(4): e0029424, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38530054

ABSTRACT

Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which, in turn, influences the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology, and gene expression, 21-day-old germ-free C57BL/6 mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity; however, SMM mice had a higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there was a higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 were increased in MFM mice supplemented with HMOs, while in the spleen, they were increased in SMM + HMOs mice. Similarly, serum immunoglobulin A was also elevated in MFM + HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data show that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response, and intestinal gene expression in a mouse model. IMPORTANCE: Early life factors like neonatal diet modulate gut microbiota, which is important for the optimal gut and immune function. One such factor, human milk oligosaccharides (HMOs), the composition of which is determined by maternal secretor status, has a profound effect on infant gut microbiota. However, how the infant gut microbiota composition determined by maternal secretor status or consumption of infant formula devoid of HMOs impacts infant intestinal ammorphology, gene expression, and immune signature is not well explored. This study provides insights into the differential establishment of infant microbiota derived from infants fed by secretor or non-secretor mothers milk or those consuming infant formula and demonstrates that the secretor status of mothers promotes Bifidobacteria and Bacteroides sps. establishment. This study also shows that supplementation of pooled HMOs in mice changed immune cell composition in the spleen and mesenteric lymph nodes and immunoglobulins in circulation. Hence, this study highlights that maternal secretor status has a role in infant gut microbiota composition, and this, in turn, can impact host gut and immune system.


Subject(s)
Immunity, Innate , Microbiota , Infant , Female , Humans , Animals , Mice , Mice, Inbred C57BL , Lymphocytes/metabolism , Milk, Human/chemistry , Immune System/metabolism , Oligosaccharides/analysis , Bifidobacterium/genetics
17.
mSystems ; 9(3): e0071523, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38363147

ABSTRACT

Bifidobacterium longum subsp. infantis is a representative and dominant species in the infant gut and is considered a beneficial microbe. This organism displays multiple adaptations to thrive in the infant gut, regarded as a model for human milk oligosaccharides (HMOs) utilization. These carbohydrates are abundant in breast milk and include different molecules based on lactose. They contain fucose, sialic acid, and N-acetylglucosamine. Bifidobacterium metabolism is complex, and a systems view of relevant metabolic pathways and exchange metabolites during HMO consumption is missing. To address this limitation, a refined genome-scale network reconstruction of this bacterium is presented using a previous reconstruction of B. infantis ATCC 15967 as a template. The latter was expanded based on an extensive revision of genome annotations, current literature, and transcriptomic data integration. The metabolic reconstruction (iLR578) accounted for 578 genes, 1,047 reactions, and 924 metabolites. Starting from this reconstruction, we built context-specific genome-scale metabolic models using RNA-seq data from cultures growing in lactose and three HMOs. The models revealed notable differences in HMO metabolism depending on the functional characteristics of the substrates. Particularly, fucosyl-lactose showed a divergent metabolism due to a fucose moiety. High yields of lactate and acetate were predicted under growth rate maximization in all conditions, whereas formate, ethanol, and 1,2-propanediol were substantially lower. Similar results were also obtained under near-optimal growth on each substrate when varying the empirically observed acetate-to-lactate production ratio. Model predictions displayed reasonable agreement between central carbon metabolism fluxes and expression data across all conditions. Flux coupling analysis revealed additional connections between succinate exchange and arginine and sulfate metabolism and a strong coupling between central carbon reactions and adenine metabolism. More importantly, specific networks of coupled reactions under each carbon source were derived and analyzed. Overall, the presented network reconstruction constitutes a valuable platform for probing the metabolism of this prominent infant gut bifidobacteria.IMPORTANCEThis work presents a detailed reconstruction of the metabolism of Bifidobacterium longum subsp. infantis, a prominent member of the infant gut microbiome, providing a systems view of its metabolism of human milk oligosaccharides.


Subject(s)
Fucose , Milk, Human , Infant , Female , Humans , Milk, Human/chemistry , Fucose/analysis , Lactose/analysis , Oligosaccharides/analysis , Bifidobacterium/genetics , Bifidobacterium longum subspecies infantis/metabolism , Acetates/analysis , Carbon/analysis , Lactates/analysis
18.
J Agric Food Chem ; 72(9): 4801-4813, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38393993

ABSTRACT

Previous studies showed that cal-miR2911, featuring an atypical biogenesis, could target genes of virus and in turn inhibit virus replication. Given its especial sequence motif and cross-kingdom potential, the stability of miR2911 under digestive environment and its impact on intestinal microbes in mice were examined. The results showed that miR2911 was of considerable stability during oral, gastric, and intestinal digestion. The coingested food matrix enhanced its stability in the gastric phase, contributing to the existence of miR2911 in mouse intestines. The survival miR2911 promoted the growth of Bifidobacterium in mice and maintained the overall composition and diversity of the gut microbiota. miR2911 specifically entered the cells of Bifidobacterium adolescentis and potentially modulated the gene expression as evidenced by the dual-luciferase assay. The current study provided evidence on the cross-kingdom communication between dietary miRNAs and gut microbes, suggesting that modulating target bacteria using miRNAs for nutritional and therapeutic ends is promising.


Subject(s)
Gastrointestinal Microbiome , MicroRNAs , Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Bifidobacterium/genetics , Bifidobacterium/metabolism , Food , Digestion
19.
Medicine (Baltimore) ; 103(5): e36493, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306556

ABSTRACT

Recent studies have shown that gut microbiota is associated with coronavirus disease 2019 (COVID-19). However, the causal impact of the gut microbiota on COVID-19 remains unclear. We performed a bidirectional Mendelian randomization. The summary statistics on the gut microbiota from the MiBioGen consortium. Summary statistics for COVID-19 were obtained from the 6th round of the COVID-19 Host Genetics Initiative genome-wide association study meta-analysis. Inverse variance weighting was used as the main method to test the causal relationship between gut microbiota and COVID-19. Reverse Mendelian randomization analysis was performed. Mendelian randomization analysis showed that Intestinimas.id.2062 was associated with an increased risk of severe COVID-19. Bifidobacterium.id.436, LachnospiraceaeUCG010.id.11330, RikenellaceaeRC9gutgroup.id.11191 increase the risk of hospitalized COVID-19. RuminococcaceaeUCG014.id.11371 shows the positive protection on hospitalized COVID-19. There is no causal relationship between gut microbiota and infection with COVID-19. According to the results of reverse Mendelian randomization analysis, no significant causal effect of COVID-19 on gut microbiota was found. The study found that gut microbiota with COVID-19 has a causal relationship. This study provides a basis for the theory of the gut-lung axis. Further randomized controlled trials are needed to clarify the protective effect of probiotics against COVID-19 and the specific protective mechanisms. This study has important implications for gut microbiota as a nondrug intervention for COVID-19.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Bifidobacterium/genetics
20.
Microbiome ; 12(1): 19, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310316

ABSTRACT

BACKGROUND: Infant gut microbiota is highly malleable, but the long-term longitudinal impact of antibiotic exposure in early life, together with the mode of delivery on infant gut microbiota and resistome, is not extensively studied. METHODS: Two hundred and eight samples from 45 infants collected from birth until 2 years of age over five time points (week 1, 4, 8, 24, year 2) were analysed. Based on shotgun metagenomics, the gut microbial composition and resistome profile were compared in the early life of infants divided into three groups: vaginal delivery/no-antibiotic in the first 4 days of life, C-section/no-antibiotic in the first 4 days of life, and C-section/antibiotic exposed in first 4 days of life. Gentamycin and benzylpenicillin were the most commonly administered antibiotics during this cohort's first week of life. RESULTS: Newborn gut microbial composition differed in all three groups, with higher diversity and stable composition seen at 2 years of age, compared to week 1. An increase in microbial diversity from week 1 to week 4 only in the C-section/antibiotic-exposed group reflects the effect of antibiotic use in the first 4 days of life, with a gradual increase thereafter. Overall, a relative abundance of Actinobacteria and Bacteroides was significantly higher in vaginal delivery/no-antibiotic while Proteobacteria was higher in C-section/antibiotic-exposed infants. Strains from species belonging to Bifidobacterium and Bacteroidetes were generally persistent colonisers, with Bifidobacterium breve and Bifidobacterium bifidum species being the major persistent colonisers in all three groups. Bacteroides persistence was dominant in the vaginal delivery/no-antibiotic group, with species Bacteroides ovatus and Phocaeicola vulgatus found to be persistent colonisers in the no-antibiotic groups. Most strains carrying antibiotic-resistance genes belonged to phyla Proteobacteria and Firmicutes, with the C-section/antibiotic-exposed group presenting a higher frequency of antibiotic-resistance genes (ARGs). CONCLUSION: These data show that antibiotic exposure has an immediate and persistent effect on the gut microbiome in early life. As such, the two antibiotics used in the study selected for strains (mainly Proteobacteria) which were multiple drug-resistant (MDR), presumably a reflection of their evolutionary lineage of historical exposures-leading to what can be an extensive and diverse resistome. Video Abstract.


Subject(s)
Anti-Bacterial Agents , Gentamicins , Humans , Infant, Newborn , Infant , Pregnancy , Female , Anti-Bacterial Agents/adverse effects , Penicillin G , Cesarean Section , Bifidobacterium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL