Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.073
1.
CBE Life Sci Educ ; 23(2): ar16, 2024 Jun.
Article En | MEDLINE | ID: mdl-38620007

Interpreting three-dimensional models of biological macromolecules is a key skill in biochemistry, closely tied to students' visuospatial abilities. As students interact with these models and explain biochemical concepts, they often use gesture to complement verbal descriptions. Here, we utilize an embodied cognition-based approach to characterize undergraduate students' gesture production as they described and interpreted an augmented reality (AR) model of potassium channel structure and function. Our analysis uncovered two emergent patterns of gesture production employed by students, as well as common sets of gestures linked across categories of biochemistry content. Additionally, we present three cases that highlight changes in gesture production following interaction with a 3D AR visualization. Together, these observations highlight the importance of attending to gesture in learner-centered pedagogies in undergraduate biochemistry education.


Gestures , Students , Humans , Biochemistry/education
2.
Nurse Educ Today ; 138: 106188, 2024 Jul.
Article En | MEDLINE | ID: mdl-38554567

BACKGROUND: Many nursing students struggle with the disciplines of biosciences, particularly Anatomy, physiology, and biochemistry, which are introduced in the first year. Nursing students' motivation, prior knowledge, and academic performance matter, but teaching methods may also influence students' learning process. Retrieving knowledge through testing has previously proven to enhance learning to a greater extent than time spent on other classroom activities. OBJECTIVE: The aim of this study was to explore nursing students' experiences with test-enhanced learning as a way of enhancing learning in Anatomy, physiology, and biochemistry. DESIGN: The lectures in each topic were followed by testing five days later. The tests were typically multiple-choice tests with short reply-times. The effect was measured in terms of students' self-reported level of satisfaction with test-enhanced learning, and their performance on the final exam in Anatomy, physiology, and biochemistry. The tests were performed in teams to avoid stressful situations that could negatively affect the students' learning process. RESULTS: A key achievement from introducing test-enhanced learning in the Anatomy, physiology, and biochemistry course was a perceived higher learning outcome and increased engagement and motivation among the students, resulting in resulting in more students achieving the highest grades (A and B). However, the students' academic results from upper secondary school also seemed to matter for their achievements on the final exam. CONCLUSION: These results indicated that many students benefited from test-enhanced learning, suggesting that test-enhanced learning can be an important teaching strategy in nursing education, particularly for biosciences.


Education, Nursing, Baccalaureate , Educational Measurement , Learning , Students, Nursing , Humans , Students, Nursing/psychology , Students, Nursing/statistics & numerical data , Cross-Sectional Studies , Educational Measurement/methods , Education, Nursing, Baccalaureate/methods , Female , Male , Motivation , Anatomy/education , Biochemistry/education , Young Adult , Physiology/education , Adult
3.
Biochem Mol Biol Educ ; 52(3): 317-322, 2024.
Article En | MEDLINE | ID: mdl-38308530

As a strategy to carry out a better achievement in the Biochemistry course, undergraduate dentistry education manage a traditional course on the basic concepts of general chemistry necessary in the understanding of Biochemistry. In order to evaluate the effectiveness of learning outcome, we aimed to develop an evaluation tool that was applied to first-year dental students before and after receiving the general chemistry classes. Randomized trial consisted of 50 items distributed in 10 categories. The evaluation was applied to the students who took the Oral Biology course in the periods comprising 2020, 2021, and 2022 to a population of 109 students. Our results showed that after receiving the course the improvement rate was 20.71% with significant differences in each category. In conclusion, the introductory course allows students coming from different school systems to attend Biochemistry with similar knowledge of general chemistry.


Biochemistry , Curriculum , Education, Dental , Educational Measurement , Students, Dental , Humans , Biochemistry/education , Education, Dental/methods , Learning
4.
Biochem Mol Biol Educ ; 52(3): 340-347, 2024.
Article En | MEDLINE | ID: mdl-38358340

The ability to connect key concepts of biochemistry with clinical presentations is essential for the development of clinical reasoning skills and adaptive expertise in medical trainees. To support the integration of foundational and clinical sciences in our undergraduate health science curricula, we developed a small group active learning exercise during which interprofessional groups of students use clinical cases to explore the biochemistry, diagnostic strategy, and evidence-based treatment options of inborn errors of metabolism (IEM). We designed multistage learning modules consisting of (1.) low-fidelity case simulations of pediatric patients presenting with IEMs, (2.) guided group discussions on clinical biochemistry, differential diagnoses, and diagnostic strategies, (3.) oral presentations of clinical reasoning strategies, and (4.) discussion of relevant evidence-based medicine topics related to the cases. These modules Scientific Knowledge Integrated in Patient Presentations (SKIPPs) were added to a first-semester foundational sciences course serving five health professions programs. The assessment of learning outcomes by students and faculty shows that SKIPPs sessions are well-received activities that significantly improve trainees' ability to integrate foundational science concepts into clinical scenarios, to practice interprofessional teamwork and to develop clinical reasoning skills.


Biochemistry , Curriculum , Education, Medical, Undergraduate , Problem-Based Learning , Humans , Biochemistry/education , Problem-Based Learning/methods , Students, Medical
5.
Biochem Mol Biol Educ ; 52(3): 348-358, 2024.
Article En | MEDLINE | ID: mdl-38400827

Enzymes are nature's catalysts, mediating chemical processes in living systems. The study of enzyme function and mechanism includes defining the maximum catalytic rate and affinity for substrate/s (among other factors), referred to as enzyme kinetics. Enzyme kinetics is a staple of biochemistry curricula and other disciplines, from molecular and cellular biology to pharmacology. However, because enzyme kinetics involves concepts rarely employed in other areas of biology, it can be challenging for students and researchers. Traditional graphical analysis was replaced by computational analysis, requiring another skill not core to many life sciences curricula. Computational analysis can be time-consuming and difficult in free software (e.g., R) or require costly software (e.g., GraphPad Prism). We present Enzyme Kinetics Analysis (EKA), a web-tool to augment teaching and learning and streamline EKA. EKA is an interactive and free tool for analyzing enzyme kinetic data and improving student learning through simulation, built using R and RStudio's ShinyApps. EKA provides kinetic models (Michaelis-Menten, Hill, simple reversible inhibition models, ternary-complex, and ping-pong) for users to fit experimental data, providing graphical results and statistics. Additionally, EKA enables users to input parameters and create data and graphs, to visualize changes to parameters (e.g., K M or number of measurements). This function is designed for students learning kinetics but also for researchers to design experiments. EKA (enzyme-kinetics.shinyapps.io/enzkinet_webpage/) provides a simple, interactive interface for teachers, students, and researchers to explore enzyme kinetics. It gives researchers the ability to design experiments and analyze data without specific software requirements.


Enzymes , Software , Kinetics , Enzymes/metabolism , Humans , Biochemistry/education , Internet , Students , Teaching , Curriculum
6.
Biochem Mol Biol Educ ; 52(2): 249-251, 2024.
Article En | MEDLINE | ID: mdl-38319132

Innovations in medical education, including the integration of narrative-based tales, are transforming the way complex biochemical concepts are taught and understood. In this "Idea to Explore", the essence of integrating tales that personify molecules and depict biochemical processes as engaging stories to enhance student engagement, promote active learning, and improve knowledge retention is discussed. It also explores the effectiveness of scientific discovery games and traditional scientific stories in deepening students' interest in biochemistry. Highlighting the potential of narrative methods to make biochemistry more accessible and engaging, educators are encouraged to adopt creative teaching tools that promote critical thinking, problem-solving, and communication skills, thereby inspiring active participation, and lifelong learning in biochemistry.


Education, Medical , Students, Medical , Humans , Problem-Based Learning , Thinking , Biochemistry/education
7.
Biochem Mol Biol Educ ; 52(3): 311-316, 2024.
Article En | MEDLINE | ID: mdl-38193602

A literature review is an important part of conducting academic research. Knowing how to conduct a literature search and write a high-quality literature review is a valuable skill. Herein, the authors describe the method of introducing a literature review writing exercise in an upper-level biochemistry course. Since 2020, authors have collaborated with numerous undergraduates writing literature reviews on topics in biochemistry that resulted in peer-reviewed publications. Authors believe that this unique idea of providing a course-based undergraduate research experience (CURE) to many undergraduates, especially those who otherwise do not receive collaborative research experience through traditional research paths, must be shared with other instructors.


Biochemistry , Curriculum , Students , Writing , Biochemistry/education , Humans , Universities , Review Literature as Topic
8.
Biochem Mol Biol Educ ; 52(2): 220-227, 2024.
Article En | MEDLINE | ID: mdl-38226712

Electron transport chain and oxidative phosphorylation are always a challenging topic for students studying metabolism. We had adopted blended learning in metabolism teaching and evaluated the learning experiences of students. In this project, a pre-class learning aid the Story Mode and a post-class learning aid the Revision Mode in the Powerland was developed that facilitated students learning electron transport chain and oxidative phosphorylation. In the Story Mode, pathways were presented by short animations and simplified diagram that allowed students to understand basic concepts and recall simple facts of the topic. Students were asked to watch the animations before class to acquire lower level of cognitive learning first, and this facilitated students in understanding more complicated concepts later on during class. Another challenge that students faced was that they were especially weak at integrating metabolic pathways and understand the relationships between these pathways. A metro map was designed in the Revision Mode that aided students in knowledge integration, and the functions of biomolecules were summarized in flashcards that helped students in revising the concepts. This interactive self-learning tool was packaged as a courseware using the Articulate Storyline.


Learning , Oxidative Phosphorylation , Humans , Electron Transport , Biochemistry/education , Students
9.
Biochem Mol Biol Educ ; 52(1): 58-69, 2024.
Article En | MEDLINE | ID: mdl-37815098

We present as a case study the evolution of a series of participant-centered workshops designed to meet a need in the life sciences education community-the incorporation of best practices in the assessment of student learning. Initially, the ICABL (Inclusive Community for the Assessment of Biochemistry and Molecular Biology/BMB Learning) project arose from a grass-roots effort to develop material for a national exam in biochemistry and molecular biology. ICABL has since evolved into a community of practice in which participants themselves-through extensive peer review and reflection-become integral stakeholders in the workshops. To examine this evolution, this case study begins with a pilot workshop supported by seed funding and thoughtful programmatic assessment, the results of which informed evidence-based changes that, in turn, led to an improved experience for the community. Using participant response data, the case study also reveals critical features for successful workshops, including participant-centered activities and the value of frequent peer review of participants' products. Furthermore, we outline a train-the-trainer model for creating a self-renewing community by bringing new perspectives and voices into an existing core leadership team. This case study, then, offers a blueprint for building a thriving, evolving community of practice that not only serves the needs of individual scientist-educators as they seek to enhance student learning, but also provides a pathway for elevating members to positions of leadership.


Physicians , Students , Humans , Biochemistry/education , Molecular Biology/education , Learning
10.
Biochem Mol Biol Educ ; 52(1): 6-14, 2024.
Article En | MEDLINE | ID: mdl-37702404

Course-based Undergraduate Research Experiences (CUREs) integrate active, discovery-based learning into undergraduate curricula, adding tremendous value to Biochemistry and Molecular Biology (BMB) education. There are multiple challenges in transforming a research project into a CURE, such as the readiness of students, the time commitment of the instructor, and the productivity of the research. In this article, we report a CURE course developed and offered in the University of Massachusetts Amherst BMB Department since 2018 that addresses these challenges. Our CURE focuses on fungal effectors which are proteins secreted by a destructive pathogenic fungus Fusarium oxysporum, one of the top five most devastating plant pathogens. By studying this group of proteins, students are connected to real-world problems and participate in the search for potential solutions. A 3-week "standard Boot Camp" is implemented to help students familiarize themselves with all basic techniques and boost their confidence. Next, molecular cloning, a versatile technique with modularity and repeatability, is used as the bedrock of the course. Our past 5 years of experience have confirmed that we have developed a novel and feasible CURE protocol. Measurable progress documented by students who took this course includes stimulated active learning and increased career trajectory to pursue hypothesis-based research to address societal needs. In addition, data generated through the course advance ongoing lab research. Collectively, we encourage the implementation of CURE among research-intensive faculty to provide a more inclusive research experience to undergraduate students, an important element in predicting career success.


Biochemistry , Students , Humans , Biochemistry/education , Curriculum , Problem-Based Learning , Proteins/chemistry
11.
Biochem Mol Biol Educ ; 52(1): 82-92, 2024.
Article En | MEDLINE | ID: mdl-37792403

Despite being a traditional coursework for pre-medical and medical students around the globe, biochemistry education suffers from a lack of positive appreciation due to the nature of the subject combined with deficiency of teaching modalities. A first semester biochemistry course was designed to include four different teaching modalities: lectures, recitations, case studies, and student presentations. A multi-item, anonymous, and voluntary questionnaire was distributed to students who had just completed the course and to those who had taken it the previous year. The questionnaire asked students to evaluate the course and how the different modalities affected their learning. These questionnaires took place in a two-year period between 2020 and 2021. Eighty-six (46%) of 186 total students responded. The vast majority of respondents agreed with the use of multimodal teaching techniques with respect to its impact on overall preparedness for future coursework, understanding, and enjoyability. Lectures and recitations were found to be the most useful in information retention and learning, although the same were found to be less enjoyable than other modalities. Although case studies and presentations were found to be enjoyable, most students ranked them low in terms of information retention and were the most voted to be removed from the course. There was general agreement between premedical and medical students' perception on the usefulness of the multimodal teaching techniques with respect to medical biochemistry modules and standardized exams. The agreement between cohorts suggests the premedical students accurately evaluated the usefulness of the course for the following year and validates the usefulness of the premedical student surveys. Use of multiple modalities in biochemistry education can be of substantial benefit in engaging and preparing students for further education.


Education, Medical, Undergraduate , Students, Medical , Humans , Learning , Biochemistry/education , Curriculum , Educational Measurement , Education, Medical, Undergraduate/methods , Teaching , Surveys and Questionnaires
12.
Biochem Mol Biol Educ ; 52(1): 36-44, 2024.
Article En | MEDLINE | ID: mdl-37837317

This research reports on implementing the integrated laboratory work to achieve effective learning in the biochemistry course. The integrated laboratory work includes three stages: pre-laboratory, lab work, and post-laboratory. In other words, the three stages include planning, implementing, and evaluating investigation activities in the laboratory. The research design used was a posttest control group design consisting of a control and an experimental group. There were 67 students as respondents, who were divided into control (N = 33) and experimental (N = 34) groups. Practical skills were measured using an assessment rubric with the involvement of the observer. The categories of practical skills measured were procedural skills, observation skills, interpretation skills, and reporting skills. Attitude toward biochemistry was measured using a questionnaire with five Likert scales. The indicators of attitudes toward biochemistry used were liking for a biochemistry theory lesson, liking for biochemistry laboratory work, evaluative beliefs about biochemistry, and behavioral tendencies to learn biochemistry. The influence of the implementation of the integrated laboratory work on the students' practical skills and attitudes toward biochemistry was analyzed using MANOVA. The research result shows that implementing the integrated laboratory work improves students' average scores in practical skills and attitudes toward biochemistry. All the practical skills and attitudes categories in the experimental group have a higher score than those in the control group. The reason is that the work of the integrated laboratory can prepare students to conduct better investigations in biochemistry laboratory work.


Attitude , Students , Humans , Biochemistry/education , Learning
13.
BMC Med Educ ; 23(1): 912, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38037047

BACKGROUND: Traditional problem-based learning (PBL) relying on tutored learning in small groups is very resource-intensive. Little is known about the benefits of PBL in a large classroom setting. This paper introduced a PBL case into the traditional didactic biochemistry course and investigated the acceptability of total online or partial online PBL in a large classroom setting introduced during the coronavirus pandemic. METHODS: The students were allocated into either total online Group 1, partial online Group 2, or partial online and with poorer academic performance Group 3. A questionnaire comprising of 8 closed-ended questions and 2 open-ended questions and final exam performances were used to evaluate the acceptability of total online or partial online PBL in a large classroom setting. The 8 closed-ended questions were analysed by the Kruskal-Wallis test or chi-square tests. The word cloud analysis of the 2 open-ended questions were conducted by Wenjuanxing. Students' performances in the final examination were analysed by One-way Anova. RESULTS: Both total online and partial online PBL were rated highly by the students. Overall, there were no significant differences in the effectiveness evaluation of PBL between Group 2 and Group 3. There were no significant differences in final exam performances between Group 1 and Group 2. However, Group 1 rated the effectiveness of PBL much higher than Group 2 and 3. Word cloud analysis of the 2 open-ended questions showed students' positive perspectives of PBL. In biochemistry teaching, from the perspective of the students, the expected optimal number of useful PBL cases might be 2. CONCLUSIONS: Both total online and partial online PBL in a large classroom setting were widely accepted as a beneficial supplement to traditional biochemistry classes.


Problem-Based Learning , Students , Humans , Educational Measurement , Biochemistry/education , Surveys and Questionnaires
14.
Biochem Mol Biol Educ ; 51(6): 708-718, 2023.
Article En | MEDLINE | ID: mdl-37597129

An understanding of structure-function relationships in proteins is essential for modern biochemical studies. The integration of common freely accessible bioinformatics tools available online with the knowledge of protein-engineering tools provide a fundamental understanding of the application of protein structure-function for biochemical research. In order for students to apply their prior knowledge of recombinant protein technology into the understanding of protein structure-function relationships, we developed a semester-long project-oriented biochemistry laboratory experience that is the second laboratory course of a series. For easier integration of knowledge and application, we organized this course into four sequential modules: protein structure visualization/modification, mutagenesis target identification, site-directed mutagenesis, and mutant protein expression, purification, and characterization. These tasks were performed on the protein small laccase (SLAC) that was cloned and characterized by students in the previous semester during the first biochemistry laboratory course of the series. This goal-oriented project-based approach helped students apply their prior knowledge to newly introduced techniques to understand protein structure-function relationships in this research-like laboratory setting. A student assessment before and after the course demonstrated an overall increase in learning and enthusiasm for this topic.


Laccase , Streptomyces coelicolor , Humans , Laccase/metabolism , Streptomyces coelicolor/genetics , Biochemistry/education , Students , Mutagenesis, Site-Directed
16.
Biochem Mol Biol Educ ; 51(5): 499-507, 2023.
Article En | MEDLINE | ID: mdl-37341458

The Department of Chemistry and Biochemistry at St. Mary's College of Maryland has scaffolded collaboration skills throughout the Biochemistry curriculum and developed several assessment tools to evaluate these skills. Biochemistry I and II have used team contracts at the beginning of extensive team projects where students identify their strengths, review expectations, and plan for group communication. At the conclusion of each project, each student assesses their own contributions and team members for various parts of the project. A common collaboration rubric was also applied in Biochemistry I and II as well as in two other courses, General Chemistry II Lab and Physical Chemistry I Lab, for students to evaluate themself and team members using the following subcategories: quality of work, commitment, leadership, communication, and analysis. In Biochemistry I and II, we used this rubric for multiple assignments that are part of the projects in the lecture courses. In the General Chemistry II Lab, we provided elements of this rubric within an evaluation form that reflects these collaboration attributes after each lab experience, so students can assess and report privately on their experiences as part of their collaboration grade for the course. A similar collaboration rubric is completed by students for each team-based laboratory within Physical Chemistry I. We also demonstrate different ways that instructors can use the data from these assessment tools. In our department, we are using these tools to frame the importance of collaboration skills and collecting data to inform our teaching of these skills. Preliminary data suggest that our curriculum is successfully teaching students how to be good collaborators.


Curriculum , Learning , Humans , Students , Biochemistry/education , Chemistry, Physical
17.
BMC Med Educ ; 23(1): 391, 2023 May 27.
Article En | MEDLINE | ID: mdl-37245007

BACKGROUND: The error-proneness in the preanalytical and postanalytical stages is higher than that in the analytical stage of the total testing process. However, preanalytical and postanalytical quality management has not received enough attention in medical laboratory education and tests in clinical biochemistry courses. METHODS/APPROACH: Clinical biochemistry teaching program aim to improve students' awareness and ability of quality management according to international organization for standardization 15,189 requirements. We designed a student-centred laboratory training program, according to case-based learning that included 4 stages: "establish an overall testing process based on the patient's clinical indicator, clarify principles, improve operational skills, and review process and continuous improvement". The program was implemented in our college during the winter semesters of 2019 and 2020. A total of 185 undergraduate students majoring in medical laboratory science participated in the program as a test group, and the other 172 students were set up as the control group and adopted the conventional method. The participants were asked to finish an online survey to evaluate the class at the end. RESULTS/OUTCOMES: The test group had significantly better examination scores not only in experimental operational skills (89.27 ± 7.16 vs. 77.51 ± 4.72, p < 0.05 in 2019 grade, 90.31 ± 5.35 vs. 72.87 ± 8.41 in 2020 grade) but also in total examination (83.47 ± 6.16 vs. 68.90 ± 5.86 in 2019 grade, 82.42 ± 5.72 vs. 69.55 ± 7.54 in 2020 grade) than the control group. The results of the questionnaire survey revealed that the students in the test group better achieved classroom goals than those in the control group (all p < 0.05). CONCLUSIONS: The new student-centred laboratory training program based on case-based learning in clinical biochemistry is an effective and acceptable strategy compared with the conventional training program.


Education, Medical , Students, Medical , Humans , Students , Biochemistry/education , Educational Status , Clinical Competence , Teaching
19.
Biochem Mol Biol Educ ; 51(4): 439-445, 2023.
Article En | MEDLINE | ID: mdl-37022094

We present here two accessible ways for enhanced understanding of complex biological structures and their function in undergraduate Biology and Biochemistry classrooms. These methods can be applied for in-class instruction as well as for remote lessons, as they are cheap, easily available and easy to implement. LEGO® bricks and MERGE CUBE based augmented reality can be applied to make three-dimensional representation for any structure available on PDB. We envisage these techniques to be useful for students when visualizing simple stereochemical problems or complex pathway interactions.


Augmented Reality , Humans , Biochemistry/education , Students
20.
Biochem Mol Biol Educ ; 51(4): 394-401, 2023.
Article En | MEDLINE | ID: mdl-37022101

A challenge in the pandemic era is to implement effective but flexible practical teaching for biological sciences courses. Such teaching needs to deliver conceptual, analytical and practical skills training while having the option to rapidly respond to health and safety issues, local regulations, staff and student concerns. In this paper, we describe a set of cell biology practicals (mini-project) that meets many of these requirements and provides flexibility in providing skills training both through online and in practical laboratory environments. We have used a human adenocarcinoma cell line A431 stably transfected with a fluorescent cell cycle reporter as a biological model to deliver training through discrete work packages encompassing cell culture, fluorescence microscopy, biochemistry and statistics. How such work packages can be modified to, an online format either partially or completely is also described. Furthermore, the activities can be adapted for teaching both undergraduate and postgraduate level courses to ensure effective skills training which is applicable to a wide range of biological degree programs and levels of study.


Biological Science Disciplines , Humans , Biological Science Disciplines/education , Students , Curriculum , Biochemistry/education , Laboratories
...