Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.791
1.
Nat Commun ; 15(1): 4777, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839748

Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in vertebrate animals, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle. These robots integrate multifunctional sensing and on-demand actuation into a biocompatible platform using an in-situ solution-based method. They feature biomimetic designs that enable adaptive motions and stress-free contact with tissues, supported by a battery-free wireless module for untethered operation. Demonstrations range from a robotic cuff for detecting blood pressure, to a robotic gripper for tracking bladder volume, an ingestible robot for pH sensing and on-site drug delivery, and a robotic patch for quantifying cardiac function and delivering electrotherapy, highlighting the application versatilities and potentials of the bio-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.


Robotics , Robotics/instrumentation , Robotics/methods , Animals , Biomimetics/methods , Biomimetics/instrumentation , Humans , Prostheses and Implants , Skin , Equipment Design , Muscle, Skeletal/physiology , Wearable Electronic Devices
2.
Drug Deliv ; 31(1): 2361169, 2024 Dec.
Article En | MEDLINE | ID: mdl-38828914

Active components of natural products, which include paclitaxel, curcumin, gambogic acid, resveratrol, triptolide and celastrol, have promising anti-inflammatory, antitumor, anti-oxidant, and other pharmacological activities. However, their clinical application is limited due to low solubility, instability, low bioavailability, rapid metabolism, short half-life, and strong off-target toxicity. To overcome these drawbacks, cell membrane-based biomimetic nanosystems have emerged that avoid clearance by the immune system, enhance targeting, and prolong drug circulation, while also improving drug solubility and bioavailability, enhancing drug efficacy, and reducing side effects. This review summarizes recent advances in the preparation and coating of cell membrane-coated biomimetic nanosystems and in their applications to disease for targeted natural products delivery. Current challenges, limitations, and prospects in this field are also discussed, providing a research basis for the development of multifunctional biomimetic nanosystems for natural products.


Biological Products , Cell Membrane , Biological Products/administration & dosage , Biological Products/chemistry , Humans , Cell Membrane/metabolism , Biomimetics/methods , Animals , Biomimetic Materials/chemistry , Drug Delivery Systems/methods , Biological Availability , Solubility , Nanoparticles/chemistry
3.
Sci Adv ; 10(19): eadm9561, 2024 May 10.
Article En | MEDLINE | ID: mdl-38718119

Lactic acid (LA) accumulation in the tumor microenvironment poses notable challenges to effective tumor immunotherapy. Here, an intelligent tumor treatment microrobot based on the unique physiological structure and metabolic characteristics of Veillonella atypica (VA) is proposed by loading Staphylococcus aureus cell membrane-coating BaTiO3 nanocubes (SAM@BTO) on the surface of VA cells (VA-SAM@BTO) via click chemical reaction. Following oral administration, VA-SAM@BTO accurately targeted orthotopic colorectal cancer through inflammatory targeting of SAM and hypoxic targeting of VA. Under in vitro ultrasonic stimulation, BTO catalyzed two reduction reactions (O2 → •O2- and CO2 → CO) and three oxidation reactions (H2O → •OH, GSH → GSSG, and LA → PA) simultaneously, effectively inducing immunogenic death of tumor cells. BTO catalyzed the oxidative coupling of VA cells metabolized LA, effectively disrupting the immunosuppressive microenvironment, improving dendritic cell maturation and macrophage M1 polarization, and increasing effector T cell proportions while decreasing regulatory T cell numbers, which facilitates synergetic catalysis and immunotherapy.


Colorectal Neoplasms , Immunotherapy , Tumor Microenvironment , Colorectal Neoplasms/therapy , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Immunotherapy/methods , Animals , Mice , Humans , Catalysis , Cell Line, Tumor , Nanostructures/chemistry , Biomimetic Materials/chemistry , Administration, Oral , Titanium/chemistry , Biomimetics/methods , Lactic Acid/chemistry , Dendritic Cells/immunology , Dendritic Cells/metabolism , Barium Compounds
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731897

Inspired by nature's remarkable ability to form intricate minerals, researchers have unlocked transformative strategies for creating next-generation biosensors with exceptional sensitivity, selectivity, and biocompatibility. By mimicking how organisms orchestrate mineral growth, biomimetic and bioinspired materials are significantly impacting biosensor design. Engineered bioinspired materials offer distinct advantages over their natural counterparts, boasting superior tunability, precise controllability, and the ability to integrate specific functionalities for enhanced sensing capabilities. This remarkable versatility enables the construction of various biosensing platforms, including optical sensors, electrochemical sensors, magnetic biosensors, and nucleic acid detection platforms, for diverse applications. Additionally, bioinspired materials facilitate the development of smartphone-assisted biosensing platforms, offering user-friendly and portable diagnostic tools for point-of-care applications. This review comprehensively explores the utilization of naturally occurring and engineered biominerals and materials for diverse biosensing applications. We highlight the fabrication and design strategies that tailor their functionalities to address specific biosensing needs. This in-depth exploration underscores the transformative potential of biominerals and materials in revolutionizing biosensing, paving the way for advancements in healthcare, environmental monitoring, and other critical fields.


Biomimetic Materials , Biosensing Techniques , Biosensing Techniques/methods , Biomimetic Materials/chemistry , Humans , Minerals/chemistry , Minerals/analysis , Animals , Biomimetics/methods
5.
Bioinspir Biomim ; 19(4)2024 May 24.
Article En | MEDLINE | ID: mdl-38722377

State-of-the-art morphing materials are either very compliant to achieve large shape changes (flexible metamaterials, compliant mechanisms, hydrogels), or very stiff but with infinitesimal changes in shape that require large actuation forces (metallic or composite panels with piezoelectric actuation). Morphing efficiency and structural stiffness are therefore mutually exclusive properties in current engineering morphing materials, which limits the range of their applicability. Interestingly, natural fish fins do not contain muscles, yet they can morph to large amplitudes with minimal muscular actuation forces from the base while producing large hydrodynamic forces without collapsing. This sophisticated mechanical response has already inspired several synthetic fin rays with various applications. However, most 'synthetic' fin rays have only considered uniform properties and structures along the rays while in natural fin rays, gradients of properties are prominent. In this study, we designed, modeled, fabricated and tested synthetic fin rays with bioinspired gradients of properties. The rays were composed of two hemitrichs made of a stiff polymer, joined by a much softer core region made of elastomeric ligaments. Using combinations of experiments and nonlinear mechanical models, we found that gradients in both the core region and hemitrichs can increase the morphing and stiffening response of individual rays. Introducing a positive gradient of ligament density in the core region (the density of ligament increases towards the tip of the ray) decreased the actuation force required for morphing and increased overall flexural stiffness. Introducing a gradient of property in the hemitrichs, by tapering them, produced morphing deformations that were distributed over long distances along the length of the ray. These new insights on the interplay between material architecture and properties in nonlinear regimes of deformation can improve the designs of morphing structures that combine high morphing efficiency and high stiffness from external forces, with potential applications in aerospace or robotics.


Animal Fins , Biomimetic Materials , Animals , Animal Fins/physiology , Animal Fins/anatomy & histology , Biomechanical Phenomena , Biomimetics/methods , Fishes/physiology , Fishes/anatomy & histology
7.
Bioinspir Biomim ; 19(4)2024 May 17.
Article En | MEDLINE | ID: mdl-38697139

Jumping microrobots and insects power their impressive leaps through systems of springs and latches. Using springs and latches, rather than motors or muscles, as actuators to power jumps imposes new challenges on controlling the performance of the jump. In this paper, we show how tuning the motor and spring relative to one another in a torque reversal latch can lead to an ability to control jump output, producing either tuneable (variable) or stereotyped jumps. We develop and utilize a simple mathematical model to explore the underlying design, dynamics, and control of a torque reversal mechanism, provides the opportunity to achieve different outcomes through the interaction between geometry, spring properties, and motor voltage. We relate system design and control parameters to performance to guide the design of torque reversal mechanisms for either variable or stereotyped jump performance. We then build a small (356 mg) microrobot and characterize the constituent components (e.g. motor and spring). Through tuning the actuator and spring relative to the geometry of the torque reversal mechanism, we demonstrate that we can achieve jumping microrobots that both jump with different take-off velocities given the actuator input (variable jumping), and those that jump with nearly the same take-off velocity with actuator input (stereotyped jumping). The coupling between spring characteristics and geometry in this system has benefits for resource-limited microrobots, and our work highlights design combinations that have synergistic impacts on output, compared to others that constrain it. This work will guide new design principles for enabling control in resource-limited jumping microrobots.


Equipment Design , Robotics , Torque , Robotics/instrumentation , Robotics/methods , Animals , Insecta/physiology , Biomimetics/methods , Models, Biological , Computer Simulation , Biomechanical Phenomena , Locomotion/physiology
8.
Bioinspir Biomim ; 19(4)2024 May 31.
Article En | MEDLINE | ID: mdl-38718810

The spring-loaded inverted pendulum (SLIP) model is an effective model to capture the essential dynamics during human walking and/or running. However, most of the existing three-dimensional (3D) SLIP model does not explicitly account for human movement speed and frequency. To address this knowledge gap, this paper develops a new SLIP model, which includes a roller foot, massless spring, and concentrated mass. The governing equations-of-motion for the SLIP model during its double support phase are derived. It is noted that in the current formulation, the motion of the roller foot is prescribed; therefore, only the equations for the concentrated mass need to be solved. To yield model parameters leading to a periodic walking gait, a constrained optimization problem is formulated and solved using a gradient-based approach with a global search strategy. The optimization results show that when the attack angle ranges from 68° to 74°, the 3D SLIP model can yield a periodic walking gait with walking speeds varying from 0.5 to 2.0 m s-1. The predicted human walking data are also compared with published experimental data, showing reasonable accuracy.


Computer Simulation , Gait , Models, Biological , Walking , Humans , Walking/physiology , Gait/physiology , Walking Speed/physiology , Biomimetics/methods , Foot/physiology
9.
Int J Pharm ; 658: 124221, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38750980

Natural organisms have evolved sophisticated and multiscale hierarchical structures over time to enable survival. Currently, bionic design is revolutionizing drug delivery systems (DDS), drawing inspiration from the structure and properties of natural organisms that offer new possibilities to overcome the challenges of traditional drug delivery systems. Bionic drug delivery has contributed to a significant improvement in therapeutic outcomes, providing personalized regimens for patients with various diseases and enhancing both their quality of life and drug efficacy. Therefore, it is important to summarize the progress made so far and to discuss the challenges and opportunities for future development. Herein, we review the recent advances in bio-inspired materials, bio-inspired drug vehicles, and drug-loading platforms of biomimetic structures and properties, emphasizing the importance of adapting the structure and function of organisms to meet the needs of drug delivery systems. Finally, we highlight the delivery strategies of bionics in DDS to provide new perspectives and insights into the research and exploration of bionics in DDS. Hopefully, this review will provide future insights into utilizing biologically active vehicles, bio-structures, and bio-functions, leading to better clinical outcomes.


Drug Delivery Systems , Drug Delivery Systems/methods , Humans , Animals , Biomimetic Materials/chemistry , Bionics , Drug Carriers/chemistry , Biomimetics/methods
10.
Bioinspir Biomim ; 19(4)2024 May 21.
Article En | MEDLINE | ID: mdl-38701824

The resilience of pine cone scales has been investigated in the context of current architectural efforts to develop bioinspired passive façade shading systems that can help regulate the indoor climate. As previously shown for other species, separated tissues ofPinus jeffreyipine cone scales show independent hygroscopic bending. The blocking force that pine cone scales can generate during a closing movement is shown to be affected by the length, width and mass of the scales. After cyclically actuating pine cone scales by submerging and drying them for 102 cycles and comparing their functional characteristics measured in the undamaged and damaged state, they were still able to achieve 97% of their undamaged blocking force and torque and over 94% of their undamaged opening angle. Despite evidence of cracking within the sclereid cell layer and extensive delamination of sclerenchyma fibres, no loss of function was observed in any tested pine cone scale. This functional resilience and robustness may allowP. jeffreyitrees to continue seed dispersal for longer periods of time and to reliably protect seeds that have not yet been released. These results have contributed to a better understanding of the pine cone scale and may provide inspiration for further improving the long-term performance of passive, hygro-sensitive façade shading systems.


Pinus , Pinus/physiology , Biomimetics/methods , Seed Dispersal/physiology
11.
Bioinspir Biomim ; 19(4)2024 May 21.
Article En | MEDLINE | ID: mdl-38722361

Aiming at the blade flutter of large horizontal-axis wind turbines, a method by utilizing biomimetic corrugation to suppress blade flutter is first proposed. By extracting the dragonfly wing corrugation, the biomimetic corrugation airfoil is constructed, finding that mapping corrugation to the airfoil pressure side has better aerodynamic performance. The influence of corrugation type, amplitudeλ, and intensity on airfoil flutter is analyzed using orthogonal experiment, which determines that theλhas the greatest influence on airfoil flutter. Based on the fluctuation range of the moment coefficient ΔCm, the optimal airfoil flutter suppression effect is obtained when the type is III,λ= 0.6, and intensity is denser (n= 13). The effective corrugation layout area in the chord direction is determined to be the leading edge, and the ΔCmof corrugation airfoil is reduced by 7.405%, compared to the original airfoil. The application of this corrugation to NREL 15 MW wind turbine 3D blades is studied, and the influence of corrugation layout length in the blade span direction on the suppressive effect is analyzed by fluid-structure interaction. It is found that when the layout length is 0.85 R, the safety marginSfreaches a maximum value of 0.3431 Hz, which is increased 2.940%. The results show that the biomimetic corrugated structure proposed in this paper can not only improve the aerodynamic performance by changing the local flow field on the surface of the blade, but also increase the structural stiffness of the blade itself, and achieve the effect of flutter suppression.


Biomimetics , Equipment Design , Wind , Wings, Animal , Animals , Wings, Animal/physiology , Biomimetics/methods , Odonata/physiology , Biomimetic Materials/chemistry , Flight, Animal/physiology , Power Plants
12.
Analyst ; 149(11): 3078-3084, 2024 May 28.
Article En | MEDLINE | ID: mdl-38717228

This study is the first to identify bovine blastocysts through in vitro fertilization (IVF) of matured oocytes with a large quantity of high-quality sperm separated from a biomimetic cervix environment. We obtained high-quality sperm in large quantities using an IVF sperm sorting chip (SSC), which could mimic the viscous environment of the bovine cervix during ovulation and facilitates isolation of progressively motile sperm from semen. The viscous environment-on-a-chip was realized by formulating and implementing polyvinylpyrrolidone (PVP)-based solutions for the SSC medium. Sperm separated from the IVF-SSC containing PVP 1.5% showed high motility, normal morphology and high DNA integrity. As a result of IVF, a higher rate of hatching blastocysts, which is the pre-implantation stage, were observed, compared to the conventional swim-up method. Our results may significantly contribute to improving livestock with superior male and female genetic traits, thus overcoming the limitation of artificial insemination based on the superior genetic traits of existing males.


Embryonic Development , Fertilization in Vitro , Spermatozoa , Animals , Cattle , Male , Spermatozoa/cytology , Spermatozoa/chemistry , Female , Fertilization in Vitro/methods , Embryonic Development/physiology , Biomimetics/methods , Cervix Uteri/cytology , Povidone/chemistry , Blastocyst/cytology , Sperm Motility/drug effects
13.
Int J Biol Macromol ; 269(Pt 2): 132124, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723802

Bacterial cellulose (BC) hydrogel is renowned in the field of tissue engineering for its high biocompatibility, excellent mechanical strength, and eco-friendliness. Herein, we present a biomimetic mineralization method for preparing BC/hydroxyapatite (HAP) composite hydrogel scaffolds with different mineralization time and ion concentration of the mineralized solution. Spherical HAP reinforcement enhanced bone mineralization, thereby imparting increased bioactivity to BC matrix materials. Subsequently, platelet-rich plasma (PRP) was introduced into the scaffold. The PRP-loaded hydrogel enhanced the release of growth factors, which promoted cell adhesion, growth, and bone healing. After 3 weeks of MC3T3-E1 cell-induced osteogenesis, PRP positively affected cell differentiation in BC/HAP@PRP scaffolds. Overall, these scaffolds exhibited excellent biocompatibility, mineralized nodule formation, and controlled release in vitro, demonstrating great potential for application in bone tissue repair.


Cellulose , Durapatite , Hydrogels , Osteogenesis , Platelet-Rich Plasma , Tissue Engineering , Tissue Scaffolds , Platelet-Rich Plasma/chemistry , Tissue Engineering/methods , Durapatite/chemistry , Durapatite/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Animals , Mice , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Osteogenesis/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , Delayed-Action Preparations/pharmacology , Cell Differentiation/drug effects , Biomimetics/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Line , Bone Regeneration/drug effects
14.
Colloids Surf B Biointerfaces ; 239: 113951, 2024 Jul.
Article En | MEDLINE | ID: mdl-38759295

One of the main concerns in oligonucleotide-based therapeutics is achieving a successful cell targeting while avoiding drug degradation and clearance. Nanoparticulated drug delivery systems have emerged as a way of overcoming these issues. Among them, membrane-coated nanoparticles are of increasing relevance mainly due to their enhanced cellular uptake, immune evasion and biocompatibility. In this study, we designed and elaborated a simple and highly tuneable biomimetic drug delivery nanosystem based on a polymeric core surrounded by extracellular vesicles (EVs)-derived membranes. This strategy should allow the nanosystems to benefit from the properties conferred by the membrane proteins present in EVs membrane, key paracrine mediators. The developed systems were able to successfully encapsulate the required oligonucleotides. Also, their characterisation through already well standardised methods (dynamic light scattering, transmission electron microscopy and nanoparticle tracking analysis) and by fluorescence cross-correlation spectroscopy (FCCS) showed the desired core-shell structure. The cellular uptake using different cell types further confirmed the coating though an enhancement in cell internalisation of the developed biomimetic nanoparticles. This study brings up new possibilities for GapmeR delivery as it might be a base for the development of new delivery systems for gene therapy.


Biomimetic Materials , Extracellular Vesicles , Genetic Therapy , Nanoparticles , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Nanoparticles/chemistry , Humans , Biomimetic Materials/chemistry , Genetic Therapy/methods , Particle Size , Biomimetics/methods , Oligonucleotides/chemistry , Drug Delivery Systems
15.
Bioinspir Biomim ; 19(4)2024 Jun 05.
Article En | MEDLINE | ID: mdl-38722349

This study aims to investigate the feasibility of using an artificial lateral line (ALL) system for predicting the real-time position and pose of an undulating swimmer with Carangiform swimming patterns. We established a 3D computational fluid dynamics simulation to replicate the swimming dynamics of a freely swimming mackerel under various motion parameters, calculating the corresponding pressure fields. Using the simulated lateral line data, we trained an artificial neural network to predict the centroid coordinates and orientation of the swimmer. A comprehensive analysis was further conducted to explore the impact of sensor quantity, distribution, noise amplitude and sampling intervals of the ALL array on predicting performance. Additionally, to quantitatively assess the reliability of the localization network, we trained another neural network to evaluate error magnitudes for different input signals. These findings provide valuable insights for guiding future research on mutual sensing and schooling in underwater robotic fish.


Computer Simulation , Lateral Line System , Neural Networks, Computer , Swimming , Swimming/physiology , Animals , Lateral Line System/physiology , Models, Biological , Perciformes/physiology , Robotics/instrumentation , Robotics/methods , Hydrodynamics , Biomimetics/methods
16.
J Am Chem Soc ; 146(22): 15096-15107, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38773940

For cationic nanoparticles, the spontaneous nanoparticle-protein corona formation and aggregation in biofluids can trigger unexpected biological reactions. Herein, we present a biomimetic strategy for camouflaging the cationic peptide/siRNA nanocomplex (P/Si) with single or dual proteins, which exploits the unique properties of endogenous proteins and stabilizes the cationic P/Si complex for safe and targeted delivery. An in-depth study of the P/Si protein corona (P/Si-PC) formation and protein binding was conducted. The results provided insights into the biochemical and toxicological properties of cationic nanocomplexes and the rationales for engineering biomimetic protein camouflages. Based on this, the human serum albumin (HSA) and apolipoprotein AI (Apo-AI) ranked within the top 20 abundant protein species of P/Si-PC were selected to construct biomimetic HSA-dressed P/Si (P/Si@HSA) and dual protein (HSA and Apo-AI)-dressed P/Si (P/Si@HSA_Apo), given that the dual-protein camouflage plays complementary roles in efficient delivery. A branched cationic peptide (b-HKR) was tailored for siRNA delivery, and their nanocomplexes, including the cationic P/Si and biomimetic protein-dressed P/Si, were produced by a precise microfluidic technology. The biomimetic anionic protein camouflage greatly enhanced P/Si biostability and biocompatibility, which offers a reliable strategy for overcoming the limitation of applying cationic nanoparticles in biofluids and systemic delivery.


Biomimetic Materials , Nanoparticles , Peptides , RNA, Small Interfering , Serum Albumin, Human , Humans , RNA, Small Interfering/chemistry , Peptides/chemistry , Biomimetic Materials/chemistry , Nanoparticles/chemistry , Serum Albumin, Human/chemistry , Protein Engineering , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/genetics , Apolipoprotein A-I/metabolism , Protein Corona/chemistry , Biomimetics/methods
17.
Carbohydr Polym ; 338: 122204, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38763712

This study presents the development and characterization of a novel double-network self-healing hydrogel based on N-carboxyethyl chitosan (CEC) and oxidized dextran (OD) with the incorporation of crosslinked collagen (CEC-OD/COL-GP) to enhance its biological and physicochemical properties. The hydrogel formed via dynamic imine bond formation exhibited efficient self-healing within 30 min, and a compressive modulus recovery of 92 % within 2 h. In addition to its self-healing ability, CEC-OD/COL-GP possesses unique physicochemical characteristics including transparency, injectability, and adhesiveness to various substrates and tissues. Cell encapsulation studies confirmed the biocompatibility and suitability of the hydrogel as a cell-culture scaffold, with the presence of a collagen network that enhances cell adhesion, spreading, long-term cell viability, and proliferation. Leveraging their unique properties, we engineered assemblies of self-healing hydrogel modules for controlled spatiotemporal drug delivery and constructed co-culture models that simulate angiogenesis in tumor microenvironments. Overall, the CEC-OD/COL-GP hydrogel is a versatile and promising material for biomedical applications, offering a bottom-up approach for constructing complex structures with self-healing capabilities, controlled drug release, and support for diverse cell types in 3D environments. This hydrogel platform has considerable potential for advancements in tissue engineering and therapeutic interventions.


Cell Adhesion , Chitosan , Dextrans , Hydrogels , Hydrogels/chemistry , Hydrogels/pharmacology , Chitosan/chemistry , Dextrans/chemistry , Humans , Cell Adhesion/drug effects , Cell Survival/drug effects , Collagen/chemistry , Animals , Drug Liberation , Cell Proliferation/drug effects , Cell Encapsulation/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Mice , Biomimetics/methods , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Scaffolds/chemistry
18.
Technol Cancer Res Treat ; 23: 15330338241250244, 2024.
Article En | MEDLINE | ID: mdl-38693842

Single biofilm biomimetic nanodrug delivery systems based on single cell membranes, such as erythrocytes and cancer cells, have immune evasion ability, good biocompatibility, prolonged blood circulation, and high tumor targeting. Because of the different characteristics and functions of each single cell membrane, more researchers are using various hybrid cell membranes according to their specific needs. This review focuses on several different types of biomimetic nanodrug-delivery systems based on composite biofilms and looks forward to the challenges and possible development directions of biomimetic nanodrug-delivery systems based on composite biofilms to provide reference and ideas for future research.


Antineoplastic Agents , Biofilms , Biomimetics , Drug Delivery Systems , Neoplasms , Humans , Neoplasms/drug therapy , Biofilms/drug effects , Biomimetics/methods , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Biomimetic Materials/chemistry , Animals , Drug Carriers/chemistry
19.
Bioinspir Biomim ; 19(4)2024 May 31.
Article En | MEDLINE | ID: mdl-38701828

Environmental wind is a random phenomenon in both speed and direction, though it can be forecasted to some extent. An example of that is a gust which is an abrupt, but short-time change in wind speed and direction. Being a free and clean source for small-scale energy scavenging, attraction of wind is rapidly growing in the world of energy harvesters. In this paper, a leaf-like flapping wind energy harvester is introduced as the base structure in which a short-span airfoil is attached to the free end of a double-deck cantilever beam. A flap mechanism inspired by scales on sharks' skin and a tail mechanism inspired by birds' horizontal tail are proposed for integration to the base harvester to make it adaptive with respect to wind speed and direction, respectively. The use of the flap mechanism increases the leaf flapping frequency by +2.1 to +11.5 Hz at wind speeds of 1.5 to 6.0 m s-1. Therefore, since the output power of a vibrational harvester is a function of vibration frequency, a figure of merit or an efficiency parameter related to the output power will increase, as well. On the other hand, if there is a misalignment between the harvester's heading and wind direction due to change of the latter one, the harvesting performance deteriorates. Although the base harvester can realign in certain ranges of sideslip angle at each wind speed, when the tail mechanism is integrated into that, it broadens the range of realignable sideslip angles at all the investigated wind speeds by up to 80∘.


Plant Leaves , Wind , Animals , Plant Leaves/physiology , Equipment Design , Vibration , Biomimetics/instrumentation , Biomimetics/methods , Birds/physiology
20.
J Chromatogr A ; 1722: 464891, 2024 May 10.
Article En | MEDLINE | ID: mdl-38608368

Particle size is a critical parameter of chromatographic resins that significantly affects protein separation. In this study, effects of resin particle sizes (31.26 µm, 59.85 µm and 85.22 µm named Aga-31, Aga-60 and Aga-85, respectively) on antibody adsorption capacity and separation performance of a hybrid biomimetic ligand were evaluated. Their performance was investigated through static adsorption and breakthrough assays to quantify static and dynamic binding capacity (Qmax and DBC). The static adsorption results revealed that the Qmax for hIgG was 152 mg/g resin with Aga-31, 151 mg/g resin with Aga-60, and 125 mg/g resin with Aga-85. Moreover, the DBC at 10% breakthrough for hIgG with a residence time of 2 min was determined to be 49.4 mg/mL for Aga-31, 45.9 mg/mL for Aga-60, and 38.9 mg/mL for Aga-85. The resins with smaller particle sizes exhibited significantly higher capacity compared to typical commercial agarose resins and a Protein A resin (MabSelect SuRe). Furthermore, the Aga-31 resin with the hybrid biomimetic ligand demonstrated exceptional performance in terms of IgG purity (>98%) and recovery (>96%) after undergoing 20 separation cycles from CHO cell supernatant. These findings are helpful in further chromatographic resin design for the industrial application of antibody separation and purification.


Immunoglobulin G , Particle Size , Adsorption , Ligands , Immunoglobulin G/chemistry , Immunoglobulin G/isolation & purification , Chromatography, Affinity/methods , Biomimetic Materials/chemistry , Animals , Biomimetics/methods , Cricetulus , CHO Cells
...