Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.642
Filter
1.
Proc Biol Sci ; 291(2024): 20240567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864323

ABSTRACT

Understanding the drivers of community stability has been a central goal in ecology. Traditionally, emphasis has been placed on studying the effects of biotic interactions on community variability, and less is understood about how the spatial configuration of habitats promotes or hinders metacommunity stability. To test the effects of contrasting spatial configurations on metacommunity stability, I designed metacommunities with patches connected as random or scale-free networks. In these microcosms, two prey and one protist predator dispersed, and I evaluated community persistence, tracked biomass variations, and measured synchrony between local communities and the whole metacommunity. After 30 generations, scale-free metacommunities had lower global biomass variability and higher persistence, suggesting higher stability. Synchrony between patches was lower in scale-free metacommunities. Patches in scale-free metacommunities showed a positive relationship between variability and patch connectivity, indicating higher stability in isolated communities. No clear relationship between variability and patch connectivity was observed in random networks. These results suggest the increased heterogeneity in connectivity of scale-free networks favours the prevalence of isolated patches of the metacommunity, which likely act as refugia against competition-the dominant interaction in this system-resulting in higher global stability. These results highlight the importance of accounting for network topology in the study of spatial dynamics.


Subject(s)
Ecosystem , Population Dynamics , Animals , Biomass , Food Chain , Biota , Models, Biological
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230137, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38913055

ABSTRACT

Suitable conditions for species to survive and reproduce constitute their ecological niche, which is built by abiotic conditions and interactions with conspecifics and heterospecifics. Organisms should ideally assess and use information about all these environmental dimensions to adjust their dispersal decisions depending on their own internal conditions. Dispersal plasticity is often considered through its dependence on abiotic conditions or conspecific density and, to a lesser extent, with reference to the effects of interactions with heterospecifics, potentially leading to misinterpretation of dispersal drivers. Here, we first review the evidence for the effects of and the potential interplays between abiotic factors, biotic interactions with conspecifics and heterospecifics and phenotype on dispersal decisions. We then present an experimental test of these potential interplays, investigating the effects of density and interactions with conspecifics and heterospecifics on temperature-dependent dispersal in microcosms of Tetrahymena ciliates. We found significant differences in dispersal rates depending on the temperature, density and presence of another strain or species. However, the presence and density of conspecifics and heterospecifics had no effects on the thermal-dependency of dispersal. We discuss the causes and consequences of the (lack of) interplay between the different environmental dimensions and the phenotype for metacommunity assembly and dynamics. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Subject(s)
Temperature , Ecosystem , Biota , Tetrahymena/physiology , Phenotype
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230126, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38913056

ABSTRACT

Dispersal among local communities is fundamental to the metacommunity concept but is only important to the metacommunity structure if dispersal causes distortions of species abundances away from what local ecological conditions favour. We know from much previous work that dispersal can cause such abundance distortions. However, almost all previous theoretical studies have only considered one species alone or two interacting species (e.g. competitors or predator and prey). Moreover, a systematic analysis is needed of whether different dispersal strategies (e.g. passive dispersal versus demographic habitat selection) result in different abundance distortion patterns, how these distortion patterns change with local food web structure, and how the dispersal propensities of the interacting species might evolve in response to one another. In this article, we show using computer simulations and analytical models that abundance distortions occur in simple food webs with both passive dispersal and habitat selection, but habitat selection causes larger distortions. Additionally, patterns in the evolution of dispersal propensity in interacting species are very different for these two dispersal strategies. This study identifies that the dispersal strategies employed by interacting species critically shape how dispersal will influence metacommunity structure. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Subject(s)
Biological Evolution , Ecosystem , Food Chain , Models, Biological , Animal Distribution , Animals , Computer Simulation , Biota , Population Dynamics
4.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230132, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38913058

ABSTRACT

While the influence of dispersal on ecological selection is the subject of intense research, we still lack a thorough understanding of how ecological selection operates to favour distinct dispersal strategies in metacommunities. To address this issue, we developed a model framework in which species with distinct quantitative dispersal traits that govern the three stages of dispersal-departure, movement and settlement-compete under different ecological contexts. The model identified three primary dispersal strategies (referred to as nomadic, homebody and habitat-sorting) that consistently dominated metacommunities owing to the interplay of spatiotemporal environmental variation and different types of competitive interactions. We outlined the key characteristics of each strategy and formulated theoretical predictions regarding the abiotic and biotic conditions under which each strategy is more likely to prevail in metacommunities. By presenting our results as relationships between dispersal traits and well-known ecological gradients (e.g. seasonality), we were able to contrast our theoretical findings with previous empirical research. Our model demonstrates how landscape environmental characteristics and competitive interactions at the intra- and interspecific levels can interact to favour distinct multivariate and context-dependent dispersal strategies in metacommunities. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Subject(s)
Animal Distribution , Ecosystem , Models, Biological , Animals , Biota
5.
Water Environ Res ; 96(6): e11065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895814

ABSTRACT

Wastewater containing tetrabromobisphenol A (TBBPA), a commonly used flame retardant found in wastewater, can present significant toxic effects on biota, yet its impact on tropical freshwater environments is not well understood. This study explores the effectiveness of two independent anaerobic treatment systems, the acidogenic reactor (AR) and the methanogenic reactor (MR), for the ecotoxicity reduction of TBBPA-rich wastewater in four tropical freshwater species. Despite presenting good physicochemical performance and reduced toxicity of the influent for most species, AR and MR treatments remain acute and chronic toxicity. Overall, MR exhibited greater efficacy in reducing influent toxicity compared with AR. TBBPA bioaccumulation was observed in Chironomus sancticaroli after short-term exposure to 100% MR effluent. Multigenerational exposures highlighted changes in the wing length of C. sancticaroli, showing decreases after influent and AR exposures and increases after MR exposures. These findings underscore the need for ecotoxicological tools in studies of new treatment technologies, combining the removal of emerging contaminants with safeguarding aquatic biota. PRACTITIONER POINTS: Acidogenic and methanogenic reactors reduced the acute and chronic toxicity of wastewater containing tetrabromobisphenol A. Both treatments still exhibit toxicity, inducing short- and long-term toxic effects on four native tropical species. The aquatic species Pristina longiseta was most sensitive to effluents from acidogenic and methanogenic reactors. TBBPA concentrations recovered from Chironomus sancticaroli bioaccumulation analysis ranged from 1.07 to 1.35 µg g-1. Evaluating new treatment technologies with multiple species bioassays is essential for a comprehensive effluent toxicity assessment and ensuring aquatic safety.


Subject(s)
Polybrominated Biphenyls , Water Pollutants, Chemical , Animals , Polybrominated Biphenyls/toxicity , Polybrominated Biphenyls/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Anaerobiosis , Wastewater/chemistry , Biota , Flame Retardants/toxicity , Flame Retardants/metabolism , Waste Disposal, Fluid/methods , Chironomidae/drug effects , Chironomidae/metabolism , Aquatic Organisms/drug effects , Aquatic Organisms/metabolism
6.
Microb Biotechnol ; 17(6): e14505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932670

ABSTRACT

In recent years, the production of volatile fatty acids (VFA) through mixed culture fermentation (MCF) has been gaining attention. Most authors have focused on the fermentation of carbohydrates, while other possible substrates, such as proteins, have not been considered. Moreover, there is little information about how operational parameters affect the microbial communities involved in these processes, even though they are strongly related to reactor performance and VFA selectivity. Hence, this study aims to evaluate how microbial composition changes according to three different parameters (pH, type of protein and micronutrient addition) during anaerobic fermentation of protein-rich side streams. For this, two continuous stirred tank reactors (CSTR) were fed with two different proteins (casein and gelatine) and operated at different conditions: three pH values (5.0, 7.0 and 9.0) with only macronutrients supplementation and two pH values (5.0 and 7.0) with micronutrients' supplementation as well. Firmicutes, Proteobacteria and Bacteroidetes were the dominant phyla in the two reactors at all operational conditions, but their relative abundance varied with the parameters studied. At pH 7.0 and 9.0, the microbial composition was mainly affected by protein type, while at acidic conditions the driving force was the pH. The influence of micronutrients was dependent on the pH and the protein type, with a special effect on Clostridiales and Bacteroidales populations. Overall, this study shows that the acidogenic microbial community is affected by the three parameters studied and the changes in the microbial community can partially explain the macroscopic results, especially the process selectivity.


Subject(s)
Bacteria , Bioreactors , Fatty Acids, Volatile , Fermentation , Fatty Acids, Volatile/metabolism , Bioreactors/microbiology , Hydrogen-Ion Concentration , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Anaerobiosis , Proteins/metabolism , Biota , Microbiota
7.
Mar Pollut Bull ; 203: 116444, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705002

ABSTRACT

An efficient and sensitivity approach, which combines solid-phase extraction or ultrasonic extraction for pretreatment, followed by ultra-performance liquid chromatography-tandem mass spectrometry, has been established to simultaneously determine eight lipophilic phycotoxins and one hydrophilic phycotoxin in seawater, sediment and biota samples. The recoveries and matrix effects of target analytes were in the range of 61.6-117.3 %, 55.7-121.3 %, 57.5-139.9 % and 82.6 %-95.0 %, 85.8-106.8 %, 80.7 %-103.3 % in seawater, sediment, and biota samples, respectively. This established method revealed that seven, six and six phycotoxins were respectively detected in the Beibu Gulf, with concentrations ranging from 0.14 ng/L (okadaic acid, OA) to 26.83 ng/L (domoic acid, DA) in seawater, 0.04 ng/g (gymnodimine-A, GYM-A) to 2.75 ng/g (DA) in sediment and 0.01 ng/g (GYM-A) to 2.64 ng/g (domoic acid) in biota samples. These results suggest that the presented method is applicable for the simultaneous determination of trace marine lipophilic and hydrophilic phycotoxins in real samples.


Subject(s)
Biota , Environmental Monitoring , Marine Toxins , Seawater , Solid Phase Extraction , Marine Toxins/analysis , Environmental Monitoring/methods , Seawater/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Tandem Mass Spectrometry , Hydrophobic and Hydrophilic Interactions , Kainic Acid/analogs & derivatives , Kainic Acid/analysis , Heterocyclic Compounds, 3-Ring , Hydrocarbons, Cyclic , Imines
8.
Geobiology ; 22(3): e12597, 2024.
Article in English | MEDLINE | ID: mdl-38700422

ABSTRACT

Ediacara-type macrofossils appear as early as ~575 Ma in deep-water facies of the Drook Formation of the Avalon Peninsula, Newfoundland, and the Nadaleen Formation of Yukon and Northwest Territories, Canada. Our ability to assess whether a deep-water origination of the Ediacara biota is a genuine reflection of evolutionary succession, an artifact of an incomplete stratigraphic record, or a bathymetrically controlled biotope is limited by a lack of geochronological constraints and detailed shelf-to-slope transects of Ediacaran continental margins. The Ediacaran Rackla Group of the Wernecke Mountains, NW Canada, represents an ideal shelf-to-slope depositional system to understand the spatiotemporal and environmental context of Ediacara-type organisms' stratigraphic occurrence. New sedimentological and paleontological data presented herein from the Wernecke Mountains establish a stratigraphic framework relating shelfal strata in the Goz/Corn Creek area to lower slope deposits in the Nadaleen River area. We report new discoveries of numerous Aspidella hold-fast discs, indicative of frondose Ediacara organisms, from deep-water slope deposits of the Nadaleen Formation stratigraphically below the Shuram carbon isotope excursion (CIE) in the Nadaleen River area. Such fossils are notably absent in coeval shallow-water strata in the Goz/Corn Creek region despite appropriate facies for potential preservation. The presence of pre-Shuram CIE Ediacara-type fossils occurring only in deep-water facies within a basin that has equivalent well-preserved shallow-water facies provides the first stratigraphic paleobiological support for a deep-water origination of the Ediacara biota. In contrast, new occurrences of Ediacara-type fossils (including juvenile fronds, Beltanelliformis, Aspidella, annulated tubes, and multiple ichnotaxa) are found above the Shuram CIE in both deep- and shallow-water deposits of the Blueflower Formation. Given existing age constraints on the Shuram CIE, it appears that Ediacaran organisms may have originated in the deeper ocean and lived there for up to ~15 million years before migrating into shelfal environments in the terminal Ediacaran. This indicates unique ecophysiological constraints likely shaped the initial habitat preference and later environmental expansion of the Ediacara biota.


Subject(s)
Biota , Fossils , Geologic Sediments , Geologic Sediments/chemistry , Geologic Sediments/analysis , Carbon Isotopes/analysis , Yukon Territory , Newfoundland and Labrador , Paleontology , Northwest Territories
9.
Am Nat ; 203(6): 668-680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781525

ABSTRACT

AbstractMaintaining the stability of ecological communities is critical for conservation, yet we lack a clear understanding of what attributes of metacommunity structure control stability. Some theories suggest that greater dispersal promotes metacommunity stability by stabilizing local populations, while others suggest that dispersal synchronizes fluctuations across patches and leads to global instability. These effects of dispersal on stability may be mediated by metacommunity structure: the number of patches, the pattern of connections across patches, and levels of spatiotemporal correlation in the environment. Thus, we need theory to investigate metacommunity dynamics under different spatial structures and ecological scenarios. Here, we use simulations to investigate whether stability is primarily affected by connectivity, including dispersal rate and topology of connectivity network, or by mechanisms related to the number of patches. We find that in competitive metacommunities with environmental stochasticity, network topology has little effect on stability on the metacommunity scale even while it could change spatial diversity patterns. In contrast, the number of connected patches is the dominant factor promoting stability through averaging stochastic fluctuations across more patches, rather than due to more habitat heterogeneity per se. These results broaden our understanding of how metacommunity structure changes metacommunity stability, which is relevant for designing effective conservation strategies.


Subject(s)
Ecosystem , Models, Biological , Population Dynamics , Biota , Animal Distribution , Stochastic Processes , Environment , Computer Simulation
10.
Ecotoxicology ; 33(4-5): 325-396, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38683471

ABSTRACT

An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.


Subject(s)
Biological Monitoring , Environmental Monitoring , Mercury , Mercury/analysis , Biological Monitoring/methods , Animals , Environmental Monitoring/methods , Biota , Water Pollutants, Chemical/analysis , Birds , Methylmercury Compounds/analysis , Fishes/metabolism
11.
Ecol Lett ; 27(4): e14413, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584579

ABSTRACT

Natural systems are built from multiple interconnected units, making their dynamics, functioning and fragility notoriously hard to predict. A fragility scenario of particular relevance concerns so-called regime shifts: abrupt transitions from healthy to degraded ecosystem states. An explanation for these shifts is that they arise as transitions between alternative stable states, a process that is well-understood in few-species models. However, how multistability upscales with system complexity remains a debated question. Here, we identify that four different multistability regimes generically emerge in models of species-rich communities and other archetypical complex biological systems assuming random interactions. Across the studied models, each regime consistently emerges under a specific interaction scheme and leaves a distinct set of fingerprints in terms of the number of observed states, their species richness and their response to perturbations. Our results help clarify the conditions and types of multistability that can be expected to occur in complex ecological communities.


Subject(s)
Ecosystem , Models, Biological , Biota
12.
Sci Total Environ ; 928: 172218, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38580109

ABSTRACT

In natural habitats, especially in arid and semi-arid areas that are fragile ecosystems, vegetation degradation is one of the most important factors affecting the variability of soil health. Studying physicochemical and biological parameters that serve as indicators of soil health offers important information on the potential risk of land degradation and the progression of changes in soil performance and health during recovery periods. This study specifically examines the impact of vegetation degradation on soil health indicators and the duration needed to improve the physical, chemical, and biological parameters in a semi-arid mountainous area site types with the dominance of Quercus macranthera Fisch & C.A. Mey and Carpinus orientalis Miller in northern Iran. In different years (2003, 2013, and 2023), litter and soil samples (at depths of 0-10, 10-20, and 20-30 cm) were collected in different types of degraded sites. Additionally, in 2023, a non-degraded site was chosen as a control and similar samples were collected. A total of 48 litter (12 samples for each of the study site types) and 144 soil (4 study site types × 3 depths × 12 samples) samples were collected. In order to investigate the spatial changes of soil basal respiration (or CO2 emission), which is involved in global warming, from each site type, 50 soil samples were taken along two 250-meter transects. The findings showed that litter P and Mg contents in the non-degraded site were 1.6 times higher than in degraded site types (2003). Following vegetation degradation, soil fertility indicators decreased by 2-4 times. The biota population was lower by about 80 % under the degraded site types (2003) than in the non-degraded site, and the density of fungi and bacteria in the degraded site types was almost half that of the non-degraded site types. Geostatistics showed the high variance (linear model) of CO2 emissions in areas without degradation. In addition, vegetation degradation significantly reduced soil carbon and nitrogen mineralization. Although soil health indicators under the degraded vegetation have improved over time (30 years), results showed that even thirty years is not enough for the full recovery of a degraded ecosystem, and more time is needed for the degraded area to reach the same conditions as the non-degraded site. Considering the time required for natural restoration in degraded site types, it is necessary to prioritize the conservation of vegetation and improve the ecosystem restoration process with adequate interventions.


Subject(s)
Environmental Restoration and Remediation , Forests , Soil , Soil/chemistry , Climate , Environment , Iran , Quercus , Betulaceae , Time , Biota , Conservation of Natural Resources
13.
BMC Biol ; 22(1): 96, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679748

ABSTRACT

BACKGROUND: The early Cambrian arthropod clade Megacheira, also referred to as great appendage arthropods, comprised a group of diminutive and elongated predators during the early Palaeozoic era, around 518 million years ago. In addition to those identified in the mid-Cambrian Burgess Shale biota, numerous species are documented in the renowned 518-million-year-old Chengjiang biota of South China. Notably, one species, Tanglangia longicaudata, has remained inadequately understood due to limited available material and technological constraints. In this study, we, for the first time, examined eight fossil specimens (six individuals) utilizing state-of-the-art µCT and computer-based 3D rendering techniques to unveil the hitherto hidden ventral and appendicular morphology of this species. RESULTS: We have identified a set of slender endopodites gradually narrowing distally, along with a leaf-shaped exopodite adorned with fringed setae along its margins, and a small putative exite attached to the basipodite. Our techniques have further revealed the presence of four pairs of biramous appendages in the head, aligning with the recently reported six-segmented head in other early euarthropods. Additionally, we have discerned two peduncle elements for the great appendage. These findings underscore that, despite the morphological diversity observed in early euarthropods, there exists similarity in appendicular morphology across various groups. In addition, we critically examine the existing literature on this taxon, disentangling previous mislabelings, mentions, descriptions, and, most importantly, illustrations. CONCLUSIONS: The µCT-based investigation of fossil material of Tanglangia longicaudata, a distinctive early Cambrian euarthropod from the renowned Chengjiang biota, enhances our comprehensive understanding of the evolutionary morphology of the Megacheira. Its overall morphological features, including large cup-shaped eyes, raptorial great appendages, and a remarkably elongated telson, suggest its potential ecological role as a crepuscular predator and adept swimmer in turbid waters.


Subject(s)
Arthropods , Fossils , Animals , Fossils/anatomy & histology , Arthropods/anatomy & histology , China , Biological Evolution , Biota , X-Ray Microtomography
14.
Glob Chang Biol ; 30(4): e17283, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38663017

ABSTRACT

Stratospheric ozone, which has been depleted in recent decades by the release of anthropogenic gases, is critical for shielding the biosphere against ultraviolet-B (UV-B) radiation. Although the ozone layer is expected to recover before the end of the 21st century, a hole over Antarctica continues to appear each year. Ozone depletion usually peaks between September and October, when fortunately, most Antarctic terrestrial vegetation and soil biota is frozen, dormant and protected under snow cover. Similarly, much marine life is protected by sea ice cover. The ozone hole used to close before the onset of Antarctic summer, meaning that most biota were not exposed to severe springtime UV-B fluxes. However, in recent years, ozone depletion has persisted into December, which marks the beginning of austral summer. Early summertime ozone depletion is concerning: high incident UV-B radiation coincident with snowmelt and emergence of vegetation will mean biota is more exposed. The start of summer is also peak breeding season for many animals, thus extreme UV-B exposure (UV index up to 14) may come at a vulnerable time in their life cycle. Climate change, including changing wind patterns and strength, and particularly declining sea ice, are likely to compound UV-B exposure of Antarctic organisms, through earlier ice and snowmelt, heatwaves and droughts. Antarctic field research conducted decades ago tended to study UV impacts in isolation and more research that considers multiple climate impacts, and the true magnitude and timing of current UV increases is needed.


Subject(s)
Biota , Climate Change , Ice Cover , Ozone Depletion , Snow , Antarctic Regions , Animals , Ultraviolet Rays , Seasons , Stratospheric Ozone/analysis
15.
Sci Total Environ ; 928: 172504, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38636865

ABSTRACT

Marine litter and more specifically plastic marine litter is nowadays considered a global issue with unprecedented impact and consequences to the entire marine ecosystem and biota. The current situation that has been created worldwide due to the abundance of plastic litter in the Earth's Seas has been characterized as alarming, necessitating the immediate action for an overall reduction of plastic waste, better collection and recycling schemes and beach-shoreline clean-ups. In this article we attempt to delve into the details of the magnitude of the impact that plastic litter have caused to marine biota via a meta-research analysis, by compiling, combining, analysing and presenting data from various relative works, using primarily scientific and, secondarily, grey literature. Apart from the threats that plastic marine litter pose to the marine ecosystem, they present potential threats to humans, as well, via food chain. Aside from understating the risks and uncertainties contained in the hereby collected and presenting information, this study can provide an evidence base for decision and policy makers into implementing the appropriate action plans for reducing and, in time, mitigating this immense problem.


Subject(s)
Aquatic Organisms , Environmental Monitoring , Plastics , Biota , Water Pollutants, Chemical/analysis , Animals , Ecosystem
16.
PeerJ ; 12: e17230, 2024.
Article in English | MEDLINE | ID: mdl-38638159

ABSTRACT

Pectocaris species are intermediate- to large-sized Cambrian bivalved arthropods. Previous studies have documented Pectocaris exclusively from the Cambrian Series 2 Stage 3 Chengjiang biota in Yu'anshan Formation, Chiungchussu Stage in SW China. In this study, we report Pectocaris paraspatiosa sp. nov., and three other previously known Pectocaris from the Xiazhuang section in Kunming, which belongs to the Hongjingshao Formation and is a later phase within Cambrian Stage 3 than the Yu'anshan Formation. The new species can be distinguished from its congeners by the sparsely arranged endopodal endites and the morphologies of the abdomen, telson, and telson processes. We interpret P. paraspatiosa sp. nov. as a filter-feeder and a powerful swimmer adapted to shallow, agitated environments. Comparison among the Pectocaris species reinforces previous views that niche differentiation had been established among the congeneric species based on morphological differentiation. Our study shows the comprehensive occurrences of Pectocaris species outside the Chengjiang biota for the first time. With a review of the shared fossil taxa of Chengjiang and Xiaoshiba biotas, we identify a strong biological connection between the Yu'anshan and Hongjingshao Formations.


Subject(s)
Arthropods , Bivalvia , Animals , Arthropods/anatomy & histology , Fossils , China , Biota
17.
Environ Res ; 251(Pt 2): 118746, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38513751

ABSTRACT

Understanding the relative role of dispersal dynamics and niche constraints is not only a core task in community ecology, but also becomes an important prerequisite for bioassessment. Despite the recent progress in our knowledge of community assembly in space and time, patterns and processes underlying biotic communities in alpine glacierized catchments remain mostly ignored. To fill this knowledge gap, we combined the recently proposed dispersal-niche continuum index (DNCI) with traditional constrained ordinations and idealized patterns of species distributions to unravel community assembly mechanisms of different key groups of primary producers and consumers (i.e., phytoplankton, epiphytic algae, zooplankton, macroinvertebrates, and fishes) in rivers in the Qinghai-Tibet Plateau, the World's Third Pole. We tested whether organismal groups with contrasting body sizes differed in their assembly processes, and discussed their applicability in bioassessment in alpine zones. We found that community structure of alpine river biotas was always predominantly explained in terms of dispersal dynamics and historical biogeography. These patterns are most likely the result of differences in species-specific functional attributes, the stochastic colonization-extinction dynamics driven by multi-year glacier disturbances and the repeated hydrodynamic separation among alpine catchments after the rising of the Qilian mountains. Additionally, we found that the strength of dispersal dynamics and niche constraints was partially mediated by organismal body sizes, with dispersal processes being more influential for microscopic primary producers. Finding that zooplankton and macroinvertebrate communities followed clumped species replacement structures (i.e., Clementsian gradients) supports the notion that environmental filtering also contributes to the structure of high-altitude animal communities in glacierized catchments. In terms of the applied fields, we argue that freshwater bioassessment in glacierized catchments can benefit from incorporating the metacommunity perspective and applying novel approaches to (i) detect the optimal spatial scale for species sorting and (ii) identify and eliminate the species that are sensitive to dispersal-related processes.


Subject(s)
Rivers , Animals , Tibet , Zooplankton/physiology , Zooplankton/classification , Invertebrates/physiology , Ice Cover , Fishes/physiology , Ecosystem , Aquatic Organisms , Biota , Phytoplankton/physiology , Biodiversity , Animal Distribution
18.
New Phytol ; 242(3): 1018-1028, 2024 May.
Article in English | MEDLINE | ID: mdl-38436203

ABSTRACT

Biodiversity world-wide has been under increasing anthropogenic pressure in the past century. The long-term response of biotic communities has been tackled primarily by focusing on species richness, community composition and functionality. Equally important are shifts between entire communities and habitat types, which remain an unexplored level of biodiversity change. We have resurveyed > 2000 vegetation plots in temperate forests in central Europe to capture changes over an average of five decades. The plots were assigned to eight broad forest habitat types using an algorithmic classification system. We analysed transitions between the habitat types and interpreted the trend in terms of changes in environmental conditions. We identified a directional shift along the combined gradients of canopy openness and soil nutrients. Nutrient-poor open-canopy forest habitats have declined strongly in favour of fertile closed-canopy habitats. However, the shift was not uniform across the whole gradients. We conclude that the shifts in habitat types represent a century-long successional trend with significant consequences for forest biodiversity. Open forest habitats should be urgently targeted for plant diversity restoration through the implementation of active management. The approach presented here can be applied to other habitat types and at different spatio-temporal scales.


Subject(s)
Ecosystem , Forests , Biodiversity , Plants , Biota
19.
Sci Rep ; 14(1): 5261, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438419

ABSTRACT

Drivers and dynamics of initial human migrations across individual islands and archipelagos are poorly understood, hampering assessments of subsequent modification of island biodiversity. We developed and tested a new statistical-simulation approach for reconstructing the pattern and pace of human migration across islands at high spatiotemporal resolutions. Using Polynesian colonisation of New Zealand as an example, we show that process-explicit models, informed by archaeological records and spatiotemporal reconstructions of past climates and environments, can provide new and important insights into the patterns and mechanisms of arrival and establishment of people on islands. We find that colonisation of New Zealand required there to have been a single founding population of approximately 500 people, arriving between 1233 and 1257 AD, settling multiple areas, and expanding rapidly over both North and South Islands. These verified spatiotemporal reconstructions of colonisation dynamics provide new opportunities to explore more extensively the potential ecological impacts of human colonisation on New Zealand's native biota and ecosystems.


Subject(s)
Biodiversity , Ecosystem , Humans , Biota , Archaeology , Human Activities
20.
Sci Total Environ ; 926: 171786, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38508248

ABSTRACT

Despite the important role that biocrust communities play in maintaining ecosystem structure and functioning in deglaciated barren soil, few studies have been conducted on the dynamics of biotic communities and the impact of physicochemical characteristics in shaping the different successional stages. In this study an integrated approach encompassing physicochemical parameters and molecular taxonomy was used for identifying the indicator taxa and the presence of intra- and inter-kingdom interactions in five different crust/biocrust successional stages: i) physical crust, ii) cyanobacteria-dominated biocrust, iii) cyanobacteria/moss-dominated biocrust, iv) moss-dominated biocrust and v) bryophyte carpet. The phylum Gemmatimonadota was the bacterial indicator taxon in the early stage, promoting both inter- and intra-kingdom interactions, while Cyanobacteria and Nematoda phyla played a pivotal role in formation and dynamics of cyanobacteria-dominated biocrusts. A multitrophic community, characterized by a shift from oligotrophic to copiotrophic bacteria and the presence of saproxylic arthropod and herbivore insects was found in the cyanobacteria/moss-dominated biocrust, while a more complex biota, characterized by an increased fungal abundance (classes Sordariomycetes, Leotiomycetes, and Dothideomycetes, phylum Ascomycota), associated with highly trophic consumer invertebrates (phyla Arthropoda, Rotifera, Tardigrada), was observed in moss-dominated biocrusts. The class Bdelloidea and the family Hypsibiidae (phyla Rotifera and Tardigrada, respectively) were metazoan indicator taxon in bryophyte carpet, suggesting their potential role in shaping structure and function of this late successional stage. Nitrogen and phosphorus were the main physicochemical limiting factors driving the shift among different crust/biocrust successional stages. Identification and characterization of indicator taxa, biological intra- and inter-kingdom interactions and abiotic factors driving the shift among different crust/biocrust successional stages provide a detailed picture on crust/biocrust dynamics, revealing a strong interconnection among micro- and macrobiota systems. These findings enhance our understanding of biocrust ecosystems in High Arctic, providing valuable insights for their conservation and management in response to environmental shifts due to climate change.


Subject(s)
Bryophyta , Cyanobacteria , Animals , Ecosystem , Soil/chemistry , Biota , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...