Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.275
Filter
2.
Microb Biotechnol ; 17(8): e14535, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39075758

ABSTRACT

We here explore the potential of the fungal genus Aureobasidium as a prototype for a microbial chassis for industrial biotechnology in the context of a developing circular bioeconomy. The study emphasizes the physiological advantages of Aureobasidium, including its polyextremotolerance, broad substrate spectrum, and diverse product range, making it a promising candidate for cost-effective and sustainable industrial processes. In the second part, recent advances in genetic tool development, as well as approaches for up-scaled fermentation, are described. This review adds to the growing body of scientific literature on this remarkable fungus and reveals its potential for future use in the biotechnological industry.


Subject(s)
Aureobasidium , Biotechnology , Industrial Microbiology , Industrial Microbiology/trends , Industrial Microbiology/methods , Biotechnology/methods , Biotechnology/trends , Aureobasidium/genetics , Aureobasidium/metabolism , Fermentation
3.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928115

ABSTRACT

In recent years, as biotechnological advancements have continued to unfold, our understanding of plant molecular biology has undergone a remarkable transformation [...].


Subject(s)
Plants , Plants/genetics , Plants/metabolism , Molecular Biology , Biotechnology/trends
4.
Nat Commun ; 15(1): 4715, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830860

ABSTRACT

Plastic waste is an environmental challenge, but also presents a biotechnological opportunity as a unique carbon substrate. With modern biotechnological tools, it is possible to enable both recycling and upcycling. To realize a plastics bioeconomy, significant intrinsic barriers must be overcome using a combination of enzyme, strain, and process engineering. This article highlights advances, challenges, and opportunities for a variety of common plastics.


Subject(s)
Biodegradation, Environmental , Plastics , Recycling , Plastics/chemistry , Biotechnology/methods , Biotechnology/trends
5.
Curr Opin Biotechnol ; 87: 103143, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781699

ABSTRACT

Synthetic biology is a rapidly emerging field with broad underlying applications in health, industry, agriculture, or environment, enabling sustainable solutions for unmet needs of modern society. With the very recent addition of artificial intelligence (AI) approaches, this field is now growing at a rate that can help reach the envisioned goals of bio-based society within the next few decades. Integrating AI with plant-based technologies, such as protein engineering, phytochemicals production, plant system engineering, or microbiome engineering, potentially disruptive applications have already been reported. These include enzymatic synthesis of new-to-nature molecules, bioelectricity generation, or biomass applications as construction material. Thus, in the not-so-distant future, synthetic biologists will help attain the overarching goal of a sustainable yet efficient production system for every aspect of society.


Subject(s)
Artificial Intelligence , Synthetic Biology , Synthetic Biology/methods , Synthetic Biology/trends , Biotechnology/trends , Biotechnology/methods , Plants/metabolism , Humans
7.
Curr Opin Biotechnol ; 87: 103126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554641

ABSTRACT

Molecular optogenetics utilizes genetically encoded, light-responsive protein switches to control the function of molecular processes. Over the last two years, there have been notable advances in the development of novel optogenetic switches, their utilization in elucidating intricate signaling pathways, and their progress toward practical applications in biotechnological processes, material sciences, and therapeutic applications. In this review, we discuss these areas, offer insights into recent developments, and contemplate future directions.


Subject(s)
Optogenetics , Optogenetics/methods , Humans , Biotechnology/methods , Biotechnology/trends , Light , Animals , Signal Transduction
8.
Folia Microbiol (Praha) ; 69(3): 491-520, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38421484

ABSTRACT

The field of nanotechnology has the mysterious capacity to reform every subject it touches. Nanotechnology advancements have already altered a variety of scientific and industrial fields. Nanoparticles (NPs) with sizes ranging from 1 to 100 nm (nm) are of great scientific and commercial interest. Their functions and characteristics differ significantly from those of bulk metal. Commercial quantities of NPs are synthesized using chemical or physical methods. The use of the physical and chemical approaches remained popular for many years; however, the recognition of their hazardous effects on human well-being and conditions influenced serious world perspectives for the researchers. There is a growing need in this field for simple, non-toxic, clean, and environmentally safe nanoparticle production methods to reduce environmental impact and waste and increase energy productivity. Microbial nanotechnology is relatively a new field. Using various microorganisms, a wide range of nanoparticles with well-defined chemical composition, morphology, and size have been synthesized, and their applications in a wide range of cutting-edge technological areas have been investigated. Green synthesis of the nanoparticles is cost-efficient and requires low maintenance. The present review highlights the synthesis of the nanoparticles by different microbes, their characterization, and their biotechnological potential. It further deals with the applications in biomedical, food, and textile industries as well as its role in biosensing, waste recycling, and biofuel production.


Subject(s)
Agriculture , Nanoparticles , Nanotechnology , Nanotechnology/trends , Agriculture/methods , Nanoparticles/chemistry , Biotechnology/trends , Bacteria/metabolism
12.
Science ; 383(6681): 349, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38271530

ABSTRACT

The power and accuracy of computational protein design have been increasing rapidly with the incorporation of artificial intelligence (AI) approaches. This promises to transform biotechnology, enabling advances across sustainability and medicine. DNA synthesis plays a critical role in materializing designed proteins. However, as with all major revolutionary changes, this technology is vulnerable to misuse and the production of dangerous biological agents. To enable the full benefits of this revolution while mitigating risks that may emerge, all synthetic gene sequence and synthesis data should be collected and stored in repositories that are only queried in emergencies to ensure that protein design proceeds in a safe, secure, and trustworthy manner.


Subject(s)
Artificial Intelligence , Biosecurity , Genes, Synthetic , Protein Engineering , Biotechnology/trends , Medicine/trends
13.
Trends Biotechnol ; 42(6): 671-673, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38129216

ABSTRACT

Biomanufacturing practitioners and researchers describe the norms that should govern the growing, global field, to include safety, security, sustainability, and social responsibility. These '4S Principles' should be broadly adopted so that the future of the field may provide the greatest benefits to society.


Subject(s)
Biotechnology , Social Responsibility , Biotechnology/trends , Biotechnology/economics , Humans , United States , Safety
14.
Nature ; 623(7987): 601-607, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853129

ABSTRACT

Many bacteria use CRISPR-Cas systems to combat mobile genetic elements, such as bacteriophages and plasmids1. In turn, these invasive elements have evolved anti-CRISPR proteins to block host immunity2,3. Here we unveil a distinct type of CRISPR-Cas Inhibition strategy that is based on small non-coding RNA anti-CRISPRs (Racrs). Racrs mimic the repeats found in CRISPR arrays and are encoded in viral genomes as solitary repeat units4. We show that a prophage-encoded Racr strongly inhibits the type I-F CRISPR-Cas system by interacting specifically with Cas6f and Cas7f, resulting in the formation of an aberrant Cas subcomplex. We identified Racr candidates for almost all CRISPR-Cas types encoded by a diverse range of viruses and plasmids, often in the genetic context of other anti-CRISPR genes5. Functional testing of nine candidates spanning the two CRISPR-Cas classes confirmed their strong immune inhibitory function. Our results demonstrate that molecular mimicry of CRISPR repeats is a widespread anti-CRISPR strategy, which opens the door to potential biotechnological applications6.


Subject(s)
Bacteria , Bacteriophages , CRISPR-Cas Systems , Molecular Mimicry , RNA, Viral , Bacteria/genetics , Bacteria/immunology , Bacteria/virology , Bacteriophages/genetics , Bacteriophages/immunology , Biotechnology/methods , Biotechnology/trends , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/immunology , Plasmids/genetics , Prophages/genetics , Prophages/immunology , RNA, Viral/genetics
15.
J Prim Care Community Health ; 14: 21501319231204580, 2023.
Article in English | MEDLINE | ID: mdl-37902498

ABSTRACT

A clinical nutritionist (CN) is a university-educated professional trained to perform preventive and recovery functions in the health of patients. The actions of these professionals, both worldwide and in Latin America, may face barriers and opportunities that require careful identification and examination. The main objective of this study is to identify the most important barriers and opportunities for the clinical nutritionist in 13 Latin American countries. A qualitative study was carried out; the initial phase involved conducting in-depth individual interviews with 89 informants, experienced CNs from 13 Latin American countries. After calculating the mean and standard deviation, we ranked the top 10 most frequently reported barriers by assigning a score ranging from 1 to 10. Additionally, 3 opportunities were identified with a lower score from 1 to 3. Means and standard deviation were calculated to sort the responses. Results: the most important barrier was the absence of public policies that regulate and/or monitor compliance with the staffing of CNs according to the number of hospital beds, while the most important opportunity was the advances in technology such as software, body analysis equipment and other tools used in Nutritional Care. The identified barriers can interfere with the professional performance of CNs and, moreover, make it difficult to monitor the good nutritional status of patients. It is recommended to consider the barriers identified in this study, as well as the opportunities, with a view to improving the quality of hospital services with an adequate supply of nutritionists.


Subject(s)
Health Policy , Nutritional Sciences , Nutritionists , Humans , Latin America , Nutritionists/standards , Public Policy , Qualitative Research , Health Workforce/standards , Nutritional Sciences/standards , Biotechnology/trends
16.
Am J Physiol Cell Physiol ; 325(3): C580-C591, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37486066

ABSTRACT

Bioreactors are advanced biomanufacturing tools that have been widely used to develop various applications in the fields of health care and cellular agriculture. In recent years, there has been a growing interest in the use of bioreactors to enhance the efficiency and scalability of these technologies. In cell therapy, bioreactors have been used to expand and differentiate cells into specialized cell types that can be used for transplantation or tissue regeneration. In cultured meat production, bioreactors offer a controlled and efficient means of producing meat without the need for animal farming. Bioreactors can support the growth of muscle cells by providing the necessary conditions for cell proliferation, differentiation, and maturation, including the provision of oxygen and nutrients. This review article aims to provide an overview of the current state of bioreactor technology in both cell therapy and cultured meat production. It will examine the various bioreactor types and their applications in these fields, highlighting their advantages and limitations. In addition, it will explore the future prospects and challenges of bioreactor technology in these emerging fields. Overall, this review will provide valuable insights for researchers and practitioners interested in using bioreactor technology to develop innovative solutions in the biomanufacturing of therapeutic cells and cultured meat.


Subject(s)
Bioreactors , Biotechnology , Cell- and Tissue-Based Therapy , Meat Products , Cell- and Tissue-Based Therapy/economics , Cell- and Tissue-Based Therapy/methods , Meat Products/economics , Biotechnology/economics , Biotechnology/methods , Biotechnology/trends , Cell Culture Techniques
17.
Nature ; 620(7972): 122-127, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37407813

ABSTRACT

Possessing only essential genes, a minimal cell can reveal mechanisms and processes that are critical for the persistence and stability of life1,2. Here we report on how an engineered minimal cell3,4 contends with the forces of evolution compared with the Mycoplasma mycoides non-minimal cell from which it was synthetically derived. Mutation rates were the highest among all reported bacteria, but were not affected by genome minimization. Genome streamlining was costly, leading to a decrease in fitness of greater than 50%, but this deficit was regained during 2,000 generations of evolution. Despite selection acting on distinct genetic targets, increases in the maximum growth rate of the synthetic cells were comparable. Moreover, when performance was assessed by relative fitness, the minimal cell evolved 39% faster than the non-minimal cell. The only apparent constraint involved the evolution of cell size. The size of the non-minimal cell increased by 80%, whereas the minimal cell remained the same. This pattern reflected epistatic effects of mutations in ftsZ, which encodes a tubulin-homologue protein that regulates cell division and morphology5,6. Our findings demonstrate that natural selection can rapidly increase the fitness of one of the simplest autonomously growing organisms. Understanding how species with small genomes overcome evolutionary challenges provides critical insights into the persistence of host-associated endosymbionts, the stability of streamlined chassis for biotechnology and the targeted refinement of synthetically engineered cells2,7-9.


Subject(s)
Evolution, Molecular , Genes, Essential , Genome, Bacterial , Mycoplasma mycoides , Synthetic Biology , Biotechnology/methods , Biotechnology/trends , Cell Division , Genome, Bacterial/genetics , Mutation , Mycoplasma mycoides/cytology , Mycoplasma mycoides/genetics , Mycoplasma mycoides/growth & development , Synthetic Biology/methods , Cell Size , Epistasis, Genetic , Selection, Genetic , Genetic Fitness , Symbiosis , Tubulin/chemistry
20.
Curr Opin Biotechnol ; 79: 102868, 2023 02.
Article in English | MEDLINE | ID: mdl-36563481

ABSTRACT

In the vision to realize a circular economy aiming for net carbon neutrality or even negativity, cell-free bioconversion of sustainable and renewable resources emerged as a promising strategy. The potential of in vitro systems is enormous, delivering technological, ecological, and ethical added values. Innovative concepts arose in cell-free enzymatic conversions to reduce process waste production and preserve fossil resources, as well as to redirect and assimilate released industrial pollutions back into the production cycle again. However, the great challenge in the near future will be the jump from a concept to an industrial application. The transition process in industrial implementation also requires economic aspects such as productivity, scalability, and cost-effectiveness. Here, we briefly review the latest proof-of-concept cascades using carbon dioxide and other C1 or lignocellulose-derived chemicals as blueprints to efficiently recycle greenhouse gases, as well as cutting-edge technologies to maturate these concepts to industrial pilot plants.


Subject(s)
Biotechnology , Carbon Dioxide , Cell-Free System , Enzymes , Enzymes/chemistry , Biotechnology/trends
SELECTION OF CITATIONS
SEARCH DETAIL