Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 540
Filter
1.
Sci Rep ; 14(1): 17018, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39043828

ABSTRACT

Urban areas, i.e. dense housing and reduced green spaces, can significantly impact avian health, through altering land use and increasing biotic and abiotic stress. This study assessed the association of urbanization on haemosporidian infections, vectors, immune response, and body condition in Parus major nestlings, across four classes of urbanization along an urban-to-rural gradient in Vienna, Austria. Contrary to our expectations, vector abundance remained consistent across the gradient, while an increase in leukocyte count is positively associated with total parasite intensity. We found that nestlings in more urbanized areas exhibited higher parasite intensity and altered immune response, as evidenced by variations in the heterophil to lymphocyte ratio and leukocyte counts. Culicidae female vectors were associated with nestlings' total parasites, scaled mass index, and industrial units. Nestlings in highly developed areas had higher infection rates than those in forests, suggesting increased exposure to infections. However, there was no clear relationship between total female vectors and total parasites. The level of urbanization negatively affected nestling body condition, with a decrease in fat deposits from forested to highly urbanized areas. Our findings highlight the complex interplay between urbanization, vector-borne parasite transmission, and host immune response, emphasizing the need for comprehensive urban planning to improve wildlife health and guarantee ecosystem functioning. Understanding how urbanization affects bird immunity and parasite infections is critical for adapting urban landscapes for wildlife health and ecosystem integrity.


Subject(s)
Bird Diseases , Haemosporida , Urbanization , Animals , Haemosporida/physiology , Bird Diseases/parasitology , Bird Diseases/immunology , Bird Diseases/epidemiology , Female , Austria , Ecosystem
2.
Sci Rep ; 14(1): 13815, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38877168

ABSTRACT

This study was aimed to investigate the frequency of PiCV recombination, the kinetics of PiCV viremia and shedding and the correlation between viral replication and host immune response in young pigeons subclinically infected with various PiCV variants and kept under conditions mimicking the OLR system. Fifteen racing pigeons originating from five breeding facilities were housed together for six weeks. Blood and cloacal swab samples were collected from birds every seven days to recover complete PiCV genomes and determine PiCV genetic diversity and recombination dynamics, as well as to assess virus shedding rate, level of viremia, expression of selected genes and level of anti-PiCV antibodies. Three hundred and eighty-eight complete PiCV genomes were obtained and thirteen genotypes were distinguished. Twenty-five recombination events were detected. Recombinants emerged during the first three weeks of the experiment which was consistent with the peak level of viremia and viral shedding. A further decrease in viremia and shedding partially corresponded with IFN-γ and MX1 gene expression and antibody dynamics. Considering the role of OLR pigeon rearing system in spreading infectious agents and allowing their recombination, it would be reasonable to reflect on the relevance of pigeon racing from both an animal welfare and epidemiological perspective.


Subject(s)
Bird Diseases , Circoviridae Infections , Circovirus , Columbidae , Virus Shedding , Animals , Columbidae/virology , Circovirus/genetics , Circovirus/immunology , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Circoviridae Infections/epidemiology , Circoviridae Infections/immunology , Bird Diseases/virology , Bird Diseases/epidemiology , Bird Diseases/immunology , Viremia/epidemiology , Viremia/virology , Viremia/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Genome, Viral , Recombination, Genetic , Genotype , Virus Replication , Phylogeny
3.
Dev Comp Immunol ; 159: 105213, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38880215

ABSTRACT

Regulation of neuroimmune interactions varies across avian species. Little is presently known about the interplay between periphery and central nervous system (CNS) in parrots, birds sensitive to neuroinflammation. Here we investigated the systemic and CNS responses to dextran sulphate sodium (DSS)- and lipopolysaccharide (LPS)-induced subclinical acute peripheral inflammation in budgerigar (Melopsittacus undulatus). Three experimental treatment groups differing in DSS and LPS stimulation were compared to controls. Individuals treated with DSS showed significant histological intestinal damage. Through quantitative proteomics we described changes in plasma (PL) and cerebrospinal fluid (CSF) composition. In total, we identified 180 proteins in PL and 978 proteins in CSF, with moderate co-structure between the proteomes. Between treatments we detected differences in immune, coagulation and metabolic pathways. Proteomic variation was associated with the levels of pro-inflammatory cytokine mRNA expression in intestine and brain. Our findings shed light on systemic impacts of peripheral low-grade inflammation in birds.


Subject(s)
Central Nervous System , Dextran Sulfate , Inflammation , Lipopolysaccharides , Melopsittacus , Proteome , Animals , Proteome/metabolism , Inflammation/immunology , Inflammation/metabolism , Lipopolysaccharides/immunology , Melopsittacus/immunology , Central Nervous System/metabolism , Central Nervous System/immunology , Proteomics/methods , Cytokines/metabolism , Avian Proteins/metabolism , Avian Proteins/genetics , Brain/metabolism , Brain/immunology , Neuroimmunomodulation , Intestines/immunology , Neuroinflammatory Diseases/immunology , Bird Diseases/immunology , Bird Diseases/metabolism
4.
J Parasitol ; 110(3): 206-209, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38802105

ABSTRACT

Toxoplasma gondii is a zoonotic protozoan parasite that infects most warm-blooded animals, including birds. Scavenging birds are epidemiologically important hosts because they can serve as indicators of environmental T. gondii levels. A rapid point-of-care (POC) test that detects antibodies to T. gondii in humans is commercially available. In this research, we assessed the ability of the human POC test to detect anti-T. gondii antibodies in 106 black vultures (Coragyps atratus) and 23 ring-billed gulls (Larus delawarensis) from Pennsylvania, USA. Serum samples were tested with the POC test and compared to the modified agglutination test (MAT) in a blinded study. Overall, anti-T. gondii antibodies were detected in 2.8% (3/106) of black vultures and 60.9% (14/23) of ring-billed gulls by the POC test. One false-positive POC test occurred in a black vulture that was negative by MAT. False-negative results were obtained in 2 black vultures and 4 ring-billed gulls that had MAT titers of 1:25 or 1:50. The sensitivity and specificity of the POC for both black vultures and ring-billed gulls combined were 95.7% and 95.5%, respectively. This is the first study using human POC tests to detect antibodies to T. gondii in birds. Further study of the rapid test as a screening tool for serological surveillance of T. gondii in birds is warranted.


Subject(s)
Agglutination Tests , Antibodies, Protozoan , Bird Diseases , Charadriiformes , Falconiformes , Toxoplasma , Toxoplasmosis, Animal , Animals , Antibodies, Protozoan/blood , Toxoplasma/immunology , Charadriiformes/parasitology , Pennsylvania/epidemiology , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/immunology , Bird Diseases/parasitology , Bird Diseases/diagnosis , Bird Diseases/epidemiology , Bird Diseases/immunology , Falconiformes/parasitology , Agglutination Tests/veterinary , Sensitivity and Specificity , Point-of-Care Testing
5.
Poult Sci ; 101(2): 101596, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34929441

ABSTRACT

Parasitism is a divesting problem that is frequently overlooked and may result in severe prominent clinical manifestation. This study aimed to investigate the seasonal and sexual prevalence of the gastrointestinal nematode Ascaridia columbae (A. columbae) infection among domestic pigeons in Giza governorate, Egypt, during the period from 2020 to 2021. One hundred and sixty suspected pigeons were clinically investigated. Blood & tissue samples were collected from infected birds to estimate serum zinc concentration, malondialdehyde (MDA), and nitric oxide levels. As well as tumor necrosis factor-alpha (TNF-α), interleukin 1ß (IL1ß) activity, and histopathological examination were estimated; also, worms were collected for morphological identification using electron microscope (SEM) and molecularly identified using polymerase chain reaction (PCR), further sequenced, and submitted in GenBank with accession number MZ343369. The average ascarid (length × breadth) were 72.4 ± 3.3 µm (70.5 - 79.9 µm) × 39.9 ± 2.5 µm (37.6 - 42.3 µm). The distinguishing morphological characteristics that have been noticed in ascarid worms were creamy white, cylindrical worm with triradiate lips with wide cephalic alae extending on both the lateral sides and filariform esophagus. In males, spicules were almost equal with the presence of precloacal chitinous-rimmed sucker. The prevalence of A. columbae infection was (63.1%) with a higher incidence in females (79.2%) than males (46.1%). The highest seasonal prevalence was observed in winter (92.5%), followed by summer and spring (87.5% and 55%), respectively while, the lowest prevalence was observed in autumn (17.5%). The intensity of worms in the infected intestine varied from 5 to 120 adult worms. The histopathological examination revealed the presence of chronic diffuse moderate catarrhal enteritis with roundworms in the lumen. Infected birds showed a significant increase in nitric oxide and MDA levels while serum zinc levels were lowered in infected pigeons. Infected pigeons revealed a marked increase in IL1-ß and TNFα than apparently healthy ones.


Subject(s)
Ascaridia/anatomy & histology , Ascaridiasis/veterinary , Bird Diseases , Columbidae , Animals , Bird Diseases/immunology , Bird Diseases/parasitology , Columbidae/immunology , Columbidae/parasitology , Egypt , Female , Gastrointestinal Tract , Male , Seasons
6.
PLoS One ; 16(10): e0258500, 2021.
Article in English | MEDLINE | ID: mdl-34644359

ABSTRACT

Chlamydial infections, caused by a group of obligate, intracellular, gram-negative bacteria, have health implications for animals and humans. Due to their highly infectious nature and zoonotic potential, staff at wildlife rehabilitation centers should be educated on the clinical manifestations, prevalence, and risk factors associated with Chlamydia spp. infections in raptors. The objectives of this study were to document the prevalence of chlamydial DNA shedding and anti-chlamydial antibodies in raptors admitted to five wildlife rehabilitation centers in California over a one-year period. Chlamydial prevalence was estimated in raptors for each center and potential risk factors associated with infection were evaluated, including location, species, season, and age class. Plasma samples and conjunctiva/choana/cloaca swabs were collected for serology and qPCR from a subset of 263 birds of prey, representing 18 species. Serologic assays identified both anti-C. buteonis IgM and anti-chlamydial IgY antibodies. Chlamydial DNA and anti-chlamydial antibodies were detected in 4.18% (11/263) and 3.14% (6/191) of patients, respectively. Chamydial DNA was identified in raptors from the families Accipitridae and Strigidae while anti-C.buteonis IgM was identified in birds identified in Accipitridae, Falconidae, Strigidae, and Cathartidae. Two of the chlamydial DNA positive birds (one Swainson's hawk (Buteo swainsoni) and one red-tailed hawk (Buteo jamaicensis)) were necropsied, and tissues were collected for culture. Sequencing of the cultured elementary bodies revealed a chlamydial DNA sequence with 99.97% average nucleotide identity to the recently described Chlamydia buteonis. Spatial clusters of seropositive raptors and raptors positive for chlamydial DNA were detected in northern California. Infections were most prevalent during the winter season. Furthermore, while the proportion of raptors testing positive for chlamydial DNA was similar across age classes, seroprevalence was highest in adults. This study questions the current knowledge on C. buteonis host range and highlights the importance of further studies to evaluate the diversity and epidemiology of Chlamydia spp. infecting raptor populations.


Subject(s)
Bird Diseases/epidemiology , Chlamydia Infections/epidemiology , Chlamydia/isolation & purification , Raptors/microbiology , Animals , Animals, Wild , Antibodies, Bacterial/blood , Bird Diseases/immunology , Bird Diseases/microbiology , California/epidemiology , Chlamydia/classification , Chlamydia/genetics , Chlamydia/immunology , Chlamydia Infections/immunology , Chlamydia Infections/microbiology , Cloaca/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Immunoglobulin M/blood , Immunoglobulins/blood , Phylogeny , Prevalence , Rehabilitation Centers , Risk Factors , Sequence Analysis, DNA
7.
Front Immunol ; 12: 621803, 2021.
Article in English | MEDLINE | ID: mdl-34149685

ABSTRACT

Feeding practices have been found to influence gut microbiota which play a major role in immunity of poultry. In the present study, changes in cecal microbiota and humoral responses resulting in the 55 ppm bacitracin (BACI), 1% each of cranberry (CP1) and wild blueberry (BP1) pomace alone or in combination (CP+BP) feeding in broiler Cobb 500 vaccinated or not against coccidiosis were investigated. In the non-vaccinated group, no significant treatment effects were observed on performance parameters. Vaccination significantly affected bird's performance parameters particularly during the growing phase from 10 to 20 days of age. In general, the prevalence of coccidiosis and necrotic enteritis (NE) was reduced by vaccination (P < 0.05). BACI-treated birds showed low intestinal lesion scores, and both CP1 and BP1 feed supplementations reduced Eimeria acervulina and Clostridium perfringens incidences similar to BACI. Vaccination induced change in serum enzymes, minerals, and lipid levels in 21-day old birds while, levels of triglyceride (TRIG) and non-esterified fatty acids (NEFA) were higher (P < 0.05) in CP1 treated non-vaccinated group than in the control. The levels of NEFA were lower in BACI- and CP1-fed birds than in the control in non-vaccinated day 28 old birds. The highest levels of all estimated three immunoglobulins (IgY, IgM, and IgA) were found in the vaccinated birds. Metagenomics analysis of the cecal bacterial community in 21-day old birds showed the presence of Firmicutes (90%), Proteobacteria (5%), Actinobacteria (2%), and Bacteroidetes (2%). In the vaccinated group, an effect of BACI was noted on Proteobacteria (P = 0.03). Vaccination and/or dietary treatments influenced the population of Lactobacillaceae, Enterobacteriaceae, Clostridiaceae, and Streptococcaceae which were among the most abundant families. Overall, this study revealed that besides their beneficial effects on performance, alike bacitracin, berry pomaces in poultry feed have profound impacts on the chicken cecal microbiota and blood metabolites that could be influenced by vaccination against coccidiosis.


Subject(s)
Bacterial Infections/immunology , Bird Diseases/immunology , Cecum/microbiology , Chickens/immunology , Coccidia/physiology , Coccidiosis/immunology , Eimeria/physiology , Gastrointestinal Microbiome/immunology , Protozoan Vaccines/immunology , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Bacitracin , Blueberry Plants , Immunity, Humoral , Lipid Metabolism , Vaccination , Vaccinium macrocarpon
8.
Front Immunol ; 12: 671471, 2021.
Article in English | MEDLINE | ID: mdl-34079553

ABSTRACT

Our previous studies reported that duck Tembusu virus nonstructural protein 2A (NS2A) is a major inhibitor of the IFNß signaling pathway through competitively binding to STING with TBK1, leading to a reduction in TBK1 phosphorylation. Duck TMUV NS2B3 could cleave and bind STING to subvert the IFNß signaling pathway. Here, we found that overexpression of duck TMUV NS4B could compete with TBK1 in binding to STING, reducing TBK1 phosphorylation and inhibiting the IFNß signaling pathway by using the Dual-Glo® Luciferase Assay System and the NanoBiT protein-protein interaction (PPI) assay. We further identified the E2, M3, G4, W5, K10 and D34 residues in NS4B that were important for its interaction with STING and its inhibition of IFNß induction, which were subsequently introduced into a duck TMUV replicon and an infectious cDNA clone. We found that the NS4B M3A mutant enhanced RNA replication and exhibited significantly higher titer levels than WT at 48-72 hpi but significantly decreased mortality (80%) in duck embryos compared to WT (100%); the NS4B G4A and R36A mutants slightly reduced RNA replication but exhibited the same titer levels as WT. However, the NS4B R36A mutant did not attenuate the virulence in duck embryos, whereas the G4A mutant significantly decreased the mortality (70%) of duck embryos. In addition, the NS4B W5A mutant did not affect viral replication, whereas the D34A mutant slightly reduced RNA replication, and both mutants exhibited significantly lower titer levels than the WT and significantly decreased mortality (90% and 70%, respectively) in duck embryos. Hence, our findings provide new insight into the development of attenuated flaviviruses by targeting the disabling viral strategies used to evade the innate defense mechanisms.


Subject(s)
Bird Diseases/immunology , Ducks/virology , Flavivirus Infections/virology , Flavivirus/pathogenicity , Interferon-beta/immunology , Viral Nonstructural Proteins/immunology , Animals , Ducks/immunology , Flavivirus Infections/immunology , Virulence
9.
Sci Rep ; 11(1): 8209, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859241

ABSTRACT

Quantifying variation in the ability to fight infection among free-living hosts is challenging and often constrained to one or a few measures of immune activity. While such measures are typically taken to reflect host resistance, they can also be shaped by pathogen effects, for example, if more virulent strains trigger more robust immune responses. Here, we test the extent to which pathogen-specific antibody levels, a commonly used measure of immunocompetence, reflect variation in host resistance versus pathogen virulence, and whether these antibodies effectively clear infection. House finches (Haemorhous mexicanus) from resistant and susceptible populations were inoculated with > 50 isolates of their novel Mycoplasma gallisepticum pathogen collected over a 20-year period during which virulence increased. Serum antibody levels were higher in finches from resistant populations and increased with year of pathogen sampling. Higher antibody levels, however, did not subsequently give rise to greater reductions in pathogen load. Our results show that antibody responses can be shaped by levels of host resistance and pathogen virulence, and do not necessarily signal immune clearance ability. While the generality of this novel finding remains unclear, particularly outside of mycoplasmas, it cautions against using antibody levels as implicit proxies for immunocompetence and/or host resistance.


Subject(s)
Antibody Formation/physiology , Bacterial Infections/immunology , Finches , Virulence/physiology , Animals , Bacterial Infections/pathology , Behavior, Animal/physiology , Bird Diseases/immunology , Bird Diseases/microbiology , Disease Progression , Disease Resistance/immunology , Female , Finches/immunology , Finches/microbiology , Host-Pathogen Interactions/immunology , Male , Mycoplasma Infections/immunology , Mycoplasma Infections/microbiology , Mycoplasma gallisepticum/immunology , Mycoplasma gallisepticum/pathogenicity
10.
Sci Rep ; 11(1): 1046, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441657

ABSTRACT

Avian cholera, caused by the bacterium Pasteurella multocida, is a common and important infectious disease of wild birds in North America. Between 2005 and 2012, avian cholera caused annual mortality of widely varying magnitudes in Northern common eiders (Somateria mollissima borealis) breeding at the largest colony in the Canadian Arctic, Mitivik Island, Nunavut. Although herd immunity, in which a large proportion of the population acquires immunity to the disease, has been suggested to play a role in epidemic fadeout, immunological studies exploring this hypothesis have been missing. We investigated the role of three potential drivers of fadeout of avian cholera in eiders, including immunity, prevalence of infection, and colony size. Each potential driver was examined in relation to the annual real-time reproductive number (Rt) of P. multocida, previously calculated for eiders at Mitivik Island. Each year, colony size was estimated and eiders were closely monitored, and evaluated for infection and serological status. We demonstrate that acquired immunity approximated using antibody titers to P. multocida in both sexes was likely a key driver for the epidemic fadeout. This study exemplifies the importance of herd immunity in influencing the dynamics and fadeout of epidemics in a wildlife population.


Subject(s)
Bird Diseases/epidemiology , Ducks/immunology , Epidemics/veterinary , Immunity, Herd , Pasteurella Infections/veterinary , Pasteurella multocida , Animals , Arctic Regions/epidemiology , Bird Diseases/immunology , Bird Diseases/microbiology , Ducks/microbiology , Female , Male , Pasteurella Infections/epidemiology , Pasteurella Infections/immunology , Pasteurella multocida/immunology
11.
J Appl Microbiol ; 130(5): 1695-1704, 2021 May.
Article in English | MEDLINE | ID: mdl-33048404

ABSTRACT

AIMS: In this study, we aimed to isolate and evaluate the efficacy of Bacillus velezensis as a probiotic and to assess its activity towards pigeons infected with pigeon circovirus (PiCV). METHODS AND RESULTS: Bacillus velezensis, isolated from pigeon faeces, was orally administered to pigeons for 60 days. After pigeons were challenged with PiCV, the PiCV viral load and expression of indicator genes for innate immunity were detected in spleen tissue and faeces of pigeons. Bacillus velezensis significantly reduced the PiCV viral load in the faeces and spleen of pigeons 5 days post-challenge (dpc). The mRNA expression levels of treated pigeons showed that interferon-gamma (IFN-γ), myxovirus resistance 1 (Mx1), and signal transducers and activators of transcription 1 (STAT1) genes were upregulated, whereas no expression of interleukin-4 (IL-4) was detected. Moreover, toll-like receptor 2 (TLR2) and 4 (TLR4) were significantly upregulated in probiotic-treated pigeons (P < 0·05). CONCLUSIONS: This is the first report showing that probiotic supplementation can effectively enhance the T-helper type 1 immune response and decrease the PiCV viral loads in pigeons. SIGNIFICANCE AND IMPACT OF THE STUDY: This study proposes that the administration of a probiotic strain, B. velezensis, to pigeons can protect against PiCV infection.


Subject(s)
Bacillus , Circoviridae Infections/immunology , Circovirus/immunology , Columbidae/immunology , Immunity, Innate/genetics , Probiotics/pharmacology , Animals , Antiviral Agents/pharmacology , Bird Diseases/immunology , Bird Diseases/virology , Circoviridae Infections/veterinary , Circovirus/drug effects , Columbidae/genetics , Columbidae/virology , Cytokines/genetics , Cytokines/metabolism , DNA, Viral , Dietary Supplements/microbiology , Feces/microbiology , Gene Expression Regulation , Interferon-gamma , Spleen , Viral Load
12.
Dev Comp Immunol ; 115: 103880, 2021 02.
Article in English | MEDLINE | ID: mdl-33022353

ABSTRACT

IκB kinase α (IKKα) is a vital component of the IKK complex, which is involved in innate immune response, inflammation, cell death and proliferation. Although the functional characteristics of IKKα have been extensively studied in mammals and fish, the roles of IKKα in avian remain largely unknown. In this study, we cloned and characterized the duck IKKα (duIKKα) gene for the first time. DuIKKα encoded a protein of 757 amino acid residues and showed high sequence identities with the goose IKKα. The duIKKα was expressed in all tested tissues, and a relatively high expression of duIKKα mRNA was detected in liver and heart. Overexpression of duIKKα dramatically increased NF-κB activity and induced the expression of duck cytokines IFN-ß, IL-1ß, IL-6, IL-8 and RANTES in DEFs. Knockdown of duIKKα by small interfering RNA significantly decreased LPS-, poly(I:C)-, poly(dA:dT)-, duck enteritis virus (DEV)-, or duck Tembusu virus (DTMUV)-induced NF-κB activation. Moreover, duIKKα exhibited antiviral activity against DTMUV infection. These findings provide important insights into the roles of duIKKα in avian innate immunity.


Subject(s)
Avian Proteins/metabolism , Bird Diseases/immunology , Ducks/immunology , Flavivirus/immunology , I-kappa B Kinase/metabolism , Animals , Avian Proteins/genetics , Bird Diseases/virology , Cloning, Molecular , Ducks/metabolism , Ducks/virology , Fibroblasts , Gene Knockdown Techniques , I-kappa B Kinase/genetics , Immunity, Innate , NF-kappa B/metabolism , Poly I-C/immunology , Protein Domains
13.
J Immunol ; 206(2): 355-365, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33310873

ABSTRACT

Hypersensitivity pneumonitis (HP) typically presents with interstitial inflammation and granulomas induced by an aberrant immune response to inhaled Ags in sensitized individuals. Although IL-17A is involved in the development of HP, the cellular sources of IL-17A and the mechanisms by which IL-17A contributes to granuloma formation remain unclear. Recent studies report that γδ T cells produce IL-17A and exhibit memory properties in various diseases. Therefore, we focused on IL-17A-secreting memory γδ T cells in the sensitization phase and aimed to elucidate the mechanisms by which IL-17A contributes to granuloma formation in HP. We induced a mouse model of HP using pigeon dropping extract (PDE) in wild-type and IL-17A knockout (IL-17A-/-) mice. IL-17A-/- mice exhibited reduced granulomatous areas, attenuated aggregation of CD11b+ alveolar macrophages, and reduced levels of CCL2, CCL4, and CCL5 in the bronchoalveolar lavage fluid. Among IL-17A+ cells, more γδ T cells than CD4+ cells were detected after intranasal PDE administration. Interestingly, the expansion of IL-17A-secreting Vγ4+ or Vγ1-Vγ4- cells of convalescent mice was enhanced in response to the sensitizing Ag. Additionally, coculture of macrophages with PDE and Vγ4+ cells purified from PDE-exposed convalescent mice produced significantly more IL-17A than coculture with Vγ4+ cells from naive mice. Our findings demonstrate that in the sensitization phase of HP, IL-17A-secreting memory γδ T cells play a pivotal role. Furthermore, we characterized the IL-17A/CCL2, CCL4, CCL5/CD11b+ alveolar macrophage axis, which underlies granuloma formation in HP. These findings may lead to new clinical examinations or therapeutic targets for HP.


Subject(s)
Alveolitis, Extrinsic Allergic/immunology , Granuloma/immunology , Interleukin-17/metabolism , Macrophages/immunology , T-Lymphocytes/immunology , Animals , Bird Diseases/immunology , Birds , Coculture Techniques , Disease Models, Animal , Humans , Immunologic Memory , Interleukin-17/genetics , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, gamma-delta/metabolism
14.
Sci Rep ; 10(1): 21764, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303774

ABSTRACT

Immunity and parasites have been linked to the success of invasive species. Especially lower parasite burden in invasive populations has been suggested to enable a general downregulation of immune investment (Enemy Release and Evolution of Increased Competitive Ability Hypotheses). Simultaneously, keeping high immune competence towards potentially newly acquired parasites in the invasive range is essential to allow population growth. To investigate the variation of immune effectors of invasive species, we compared the mean and variance of multiple immune effectors in the context of parasite prevalence in an invasive and a native Egyptian goose (Alopochen aegyptiacus) population. Three of ten immune effectors measured showed higher variance in the invasive population. Mean levels were higher in the invasive population for three effectors but lower for eosinophil granulocytes. Parasite prevalence depended on the parasite taxa investigated. We suggest that variation of specific immune effectors, which may be important for invasion success, may lead to higher variance and enable invasive species to reduce the overall physiological cost of immunity while maintaining the ability to efficiently defend against novel parasites encountered.


Subject(s)
Bird Diseases/epidemiology , Bird Diseases/parasitology , Geese/immunology , Geese/parasitology , Host-Parasite Interactions/immunology , Introduced Species , Parasitic Diseases, Animal/epidemiology , Parasitic Diseases, Animal/parasitology , Animals , Bird Diseases/immunology , Female , Male , Namibia/epidemiology , Parasitic Diseases, Animal/immunology , Prevalence
15.
Sci Rep ; 10(1): 18152, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33097768

ABSTRACT

Environmental challenges are integrated in the inmunoneuroendocrine interplay, impacting the immune system of the challenged individuals, and potentially implying transgenerational effects on their offspring. This study addressed whether dietary supplementation with thymol can modulate the immune response of adult Japanese quail when simultaneously exposed to an inoculum of inactivated Salmonella Enteritidis and a chronic heat stress (CHS). We also evaluated whether the experienced situations by adults can affect the immune response of their undisturbed offspring. In the parental generation, supplemented quail exposed to CHS had a higher inflammatory response and similar values of the heterophil/lymphocyte (H/L) ratio than those that were not supplemented. In their offspring, those chicks whose parents were exposed to CHS showed higher inflammatory response and lower antibody production. Regarding the H/L ratio, chicks whose parents were supplemented showed lower H/L ratio values. Dietary supplementation with thymol partially and positively modulated the inflammatory response and avoided H/L ratio alteration in the parental generation exposed to high environmental temperatures, suggesting these adults were better at dealing with the challenge. The lower H/L ratio values in the offspring suggests that chicks are more capable to deal with potential stressful situations associated with conventional breeding conditions.


Subject(s)
Animal Feed , Bird Diseases/prevention & control , Coturnix/immunology , Heat Stress Disorders/veterinary , Salmonella enteritidis/immunology , Thymol/administration & dosage , Animals , Bird Diseases/blood , Bird Diseases/immunology , Bird Diseases/microbiology , Coturnix/microbiology , Female , Heat Stress Disorders/blood , Heat Stress Disorders/immunology , Heat Stress Disorders/prevention & control , Hot Temperature/adverse effects , Lymphocyte Count , Lymphocytes/immunology , Male , Maternal Exposure , Neuroimmunomodulation/drug effects , Ovum/immunology , Paternal Exposure , Sex Factors
16.
Viruses ; 12(5)2020 05 14.
Article in English | MEDLINE | ID: mdl-32423052

ABSTRACT

Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, remarkable progress has been made in the understanding of the pathogenesis of IBDV infection and the host response, including apoptosis, autophagy and the inhibition of innate immunity. Not only a number of host proteins interacting with or targeted by viral proteins participate in these processes, but microRNAs (miRNAs) are also involved in the host response to IBDV infection. If an IBDV-host interaction at the protein level is taken imaginatively as the front line of the battle between invaders (pathogens) and defenders (host cells), their fight at the RNA level resembles the hidden front line. miRNAs are a class of non-coding single-stranded endogenous RNA molecules with a length of approximately 22 nucleotides (nt) that play important roles in regulating gene expression at the post-transcriptional level. Insights into the roles of viral proteins and miRNAs in host response will add to the understanding of the pathogenesis of IBDV infection. The interaction of viral proteins with cellular targets during IBDV infection were previously well-reviewed. This review focuses mainly on the current knowledge of the host response to IBDV infection at the RNA level, in particular, of the nine well-characterized miRNAs that affect cell apoptosis, the innate immune response and viral replication.


Subject(s)
Bird Diseases/immunology , Birnaviridae Infections/veterinary , Infectious bursal disease virus/physiology , MicroRNAs/immunology , Animals , Apoptosis , Bird Diseases/genetics , Bird Diseases/virology , Birnaviridae Infections/genetics , Birnaviridae Infections/immunology , Birnaviridae Infections/virology , Host-Pathogen Interactions , Immunity, Innate , MicroRNAs/genetics , Viral Proteins/genetics , Viral Proteins/immunology , Virus Replication
17.
Biochem Biophys Res Commun ; 527(1): 1-7, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32446351

ABSTRACT

Bats are potential natural hosts of Encephalomyocarditis virus (EMCV) and Japanese encephalitis virus (JEV). Bats appear to have some unique features in their innate immune system that inhibit viral replication causing limited clinical symptoms, and thus, contributing to the virus spill over to humans. Here, kidney epithelial cell lines derived from four bat species (Pteropus dasymallus, Rousettus leschenaultii, Rhinolophus ferrumequinum, and Miniopterus fuliginosus) and two non-bat species (Homo sapiens and Mesocricetus auratus) were infected with EMCV and JEV. The replication of EMCV and JEV was lower in the bat cell lines derived from R. leschenaultii, R. ferrumequinum, and M. fuliginosus with a higher expression level of pattern recognition receptors (PRRs) (TLR3, RIG-I, and MDA5) and interferon-beta (IFN-ß) than that in the non-bat cell lines and a bat cell line derived from P. dasymallus. The knockdown of TLR3, RIG-I, and MDA5 in Rhinolophus bat cell line using antisense RNA oligonucleotide led to decrease IFN-ß expression and increased viral replication. These results suggest that TLR3, RIG-I, and MDA5 are important for antiviral response against EMCV and JEV in Rhinolophus bats.


Subject(s)
Cardiovirus Infections/veterinary , Chiroptera/virology , Encephalitis Virus, Japanese/immunology , Encephalitis, Japanese/veterinary , Encephalomyocarditis virus/immunology , Interferon-beta/immunology , Receptors, Pattern Recognition/immunology , Animals , Bird Diseases/immunology , Bird Diseases/virology , Cardiovirus Infections/immunology , Cell Line , Chiroptera/immunology , Encephalitis, Japanese/immunology , Humans , Immunity, Innate
18.
Dev Comp Immunol ; 111: 103745, 2020 10.
Article in English | MEDLINE | ID: mdl-32470560

ABSTRACT

In the present study, we developed an O-antigen-deficient, live, attenuated Salmonella Typhimurium (ST) strain (JOL2377) and assessed its safety, macrophage toxicity, invasion into lymphoid tissues, immunogenicity, and protection against Salmonella infection in chickens. The JOL2377 induced significantly lower cytotoxicity and higher level of cytokine response in IL-2, IL-10, IL-4, and IFN- γ than the WT strain upon macrophage uptake. It did not persist in macrophages or in chicken organs and rapidly cleared without systemic infection. None of the chicken were found to secrete Salmonella in feces into the environment exacerbating its attenuation. Interestingly JOL2377 successfully arrived in immunological hot-spots such as spleen, liver and bursa of Fabricius for an efficient antigen presentation and immune stimulation. Mucosal and parenteral immunization with JOL2377 significantly elicit antigen-specific humoral (IgY) and cell mediated responses marked by peripheral blood mononuclear cell proliferation, cytokine induction, increase in T-cell responses than non-immunized control. JOL2377 did not generate significant levels of LPS specific antibodies as compared to the WT strain due to the lack of immunogenic O-antigen component from its LPS structure. Upon virulent challenge, route dependent efficacy differences were leaving the intramuscular route is superior to the oral route on reducing splenic and liver colonization of the challenge ST. The least cytotoxicity, virulence, and superior immunogenicity of JL2377 that effectively engage both humoral and IFN- γ mediated CMI responses present an ideal scenario in host immune modulation to fight against intracellular pathogen Salmonella.


Subject(s)
Bird Diseases/immunology , Chickens/immunology , Macrophages/immunology , Salmonella Infections/immunology , Salmonella Vaccines/immunology , Salmonella typhimurium/physiology , T-Lymphocytes/immunology , Animals , Antigen Presentation , Cell Movement , Cells, Cultured , Cytotoxicity, Immunologic , Disease Resistance , Endocytosis , Immunity, Cellular , Immunity, Humoral , Immunoglobulins/metabolism , Lymphocyte Activation , Macrophages/microbiology , O Antigens/genetics , Salmonella Vaccines/genetics , Vaccines, Live, Unattenuated
19.
Vet Microbiol ; 242: 108591, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32122595

ABSTRACT

Pigeon circovirus (PiCV) is the most diagnosed virus in pigeons (Columba livia) and have been studied and reported globally. PiCV infections can lead to immunosuppression and pigeons infected with PiCV can result to lymphocyte apoptosis and atrophy of immune organs. Young pigeon disease syndrome (YPDS) is a complex disease and believed that PiCV could be one of the agents leading to this syndrome. An effective treatment regimen is needed to control the spread of PiCV in pigeons. In this study pigeon interferon alpha (PiIFN-α) was cloned and expressed and its antiviral effects were tested against fowl adenovirus type 4 (FAdV-4) in vitro and PiCV in vivo. No detectable levels of FAdV-4 viral genome in LMH cells stimulated with 300 µg/mL PiIFN-α were found. Additionally, PiIFN-α was stable at different temperature and pH for 4 h, and no reduction in antiviral activity was observed in untreated and treated cells. In pigeons naturally and experimentally infected by PiCV, no detectable levels of PiCV virus titers were found after treatment with PiIFN-α. Cytokine and ISG expression levels in liver and spleen samples were detected and IFN-γ and Mx1 genes were dominantly up-regulated following PiIFN-α treatment (p < 0.05). This study demonstrated that PiCV can be inhibited by administration of PiIFN-α and PiFN-α can be used as a therapeutic approach to prevent the spread of PiCV in pigeons.


Subject(s)
Bird Diseases/virology , Circoviridae Infections/veterinary , Circovirus/physiology , Cytokines/immunology , Interferon-alpha/pharmacology , Virus Replication/immunology , Animals , Bird Diseases/immunology , Cell Line , Circoviridae Infections/immunology , Circovirus/genetics , Circovirus/immunology , Columbidae/immunology , Columbidae/virology , Escherichia coli/genetics , Female , Genome, Viral , Hydrogen-Ion Concentration , Liver/immunology , Liver/virology , Male , Protein Stability , Spleen/immunology , Spleen/virology , Temperature , Viral Load/immunology , Virus Replication/drug effects
20.
Trop Anim Health Prod ; 52(4): 1977-1984, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31981052

ABSTRACT

Newcastle disease (ND), caused by virulent Avian avulavirus 1 (AAvV 1), affects variety of avian species around the globe. Several AAvV 1 viruses of different genotypes have recently emerged with varying clinical impacts on their susceptible hosts. Although experimental infection with velogenic and mesogenic strains in chickens and pigeons is well-studied, nevertheless, there exists a paucity of data for comparative variations in serum biochemistry profile of susceptible hosts upon challenge with isolates of varying pathogenicities. With this background, a comparative assessment of a range of serum biochemical parameters was made following challenge with duck-originated velogenic strain (sub-genotype VIIi; MF437287) and pigeon-originated mesogenic strain (sub-genotype VIm; KU885949) in chickens and pigeons. For each of the isolate, commercial broiler chickens and wild pigeons were challenged (10-6.51 EID50/0.1 mL for sub-genotype VIIi and 10-6.87 EID50/0.1 mL sub-genotype Vim) separately via intranasal and intraocular route. Sera were collected on 0, 3rd, 5th, 7th, and 9th day post-infection (dpi), and processed for quantitative analysis of different biochemical parameters. By day 3 post-infection (pi), a substantial decrease (p < 0.0001) in serum alkaline phosphatase (ALP) was observed in chickens and pigeons challenged with velogenic isolate. On the other hand, from day 5 pi and onward, a significant increase (p < 0.001) in serum ALP and total protein concentration was observed exclusively in pigeons challenged with mesogenic isolate. For serum aspartate aminotransferase (AST), a significant increase (p < 0.05) in concentration was observed on day 3 pi which decreased from day 5 pi and onward in pigeons and chickens challenged with mesogenic isolate. Also, to reveal antigenic differences among homologous and heterologous vaccine and field-prevalent strains, cross-hemagglutination inhibition assay demonstrated antigenically diverse nature (R-value < 0.5) of both strains from vaccine strain (LaSota, genotype II). The study concludes antigenic differences among prevalent genotypes than vaccine strain and, although requires further studies to ascertain study outcomes, the serum biochemical profile may facilitate presumptive diagnosis of disease in their susceptible hosts.


Subject(s)
Bird Diseases/virology , Chickens , Columbidae , Newcastle Disease/virology , Newcastle disease virus/physiology , Animals , Bird Diseases/blood , Bird Diseases/immunology , Blood Chemical Analysis/veterinary , Hemagglutination Inhibition Tests/veterinary , Newcastle Disease/blood , Newcastle disease virus/genetics , Poultry Diseases/blood , Poultry Diseases/immunology , Poultry Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL