Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.063
Filter
1.
PeerJ ; 12: e17753, 2024.
Article in English | MEDLINE | ID: mdl-39119103

ABSTRACT

Symbionts dominate planetary diversity and three primary symbiont diversification processes have been proposed: co-speciation with hosts, speciation by host-switching, and within-host speciation. The last mechanism is prevalent among members of an extraordinary marine symbiosis in the Indian River Lagoon, Florida, composed of a host mantis shrimp, Lysiosquilla scabricauda, and seven host-specific commensal vasconielline "yoyo" clams (Galeommatoidea) that collectively occupy two distinct niches: burrow-wall-attached, and host-attached/ectocommensal. This within-host symbiont radiation provides a natural experiment to test how symbiont coexistence patterns are regulated in a common ancestral habitat. The competitive exclusion principle predicts that sister taxa produced by adaptive speciation (with distinct morphologies and within-burrow niches) are most likely to coexist whereas the neutral theory predicts no difference among adaptive and non-adaptive sister taxa co-occurrence. To test these predictions, we engaged in (1) field-censusing commensal species assemblages; (2) trophic niche analyses; (3) laboratory behavioral observations. Although predicted by both models, the field census found no mixed-niche commensal assemblages: multi-species burrows were exclusively composed of burrow-wall commensals. Their co-occurrence matched random assembly process expectations, but presence of the single ectocommensal species had a highly significant negative effect on recruitment of all burrow-wall commensal species (P < 0.001), including on its burrow-wall commensal sister species (P < 0.001). Our stable isotope data indicated that commensals are suspension feeders and that co-occurring burrow-wall commensals may exhibit trophic niche differentiation. The artificial burrow behavioral experiment yielded no evidence of spatial segregation among burrow-wall commensals, and it was terminated by a sudden breakdown of the host-commensal relationship resulting in a mass mortality of all commensals unattached to the host. This study system appears to contain two distinct, superimposed patterns of commensal distribution: (1) all burrow-wall commensal species; (2) the ectocommensal species. Burrow-wall commensals (the plesiomorphic condition) broadly adhere to neutral theory expectations of species assembly but the adaptive evolution of ectocommensalism has apparently led to ecological exclusion rather than coexistence, an inverse outcome of theoretical expectations. The ecological factors regulating the observed burrow-wall/ectocommensal exclusion are currently obscure but potentially include differential recruitment to host burrows and/or differential survival in "mixed" burrow assemblages, the latter potentially due to changes in host predatory behavior. Resampling host burrows during commensal recruitment peak periods and tracking burrow-wall commensal survival in host burrows with and without added ectocommensals could resolve this outstanding issue.


Subject(s)
Bivalvia , Symbiosis , Animals , Bivalvia/microbiology , Bivalvia/genetics , Bivalvia/physiology , Florida , Ecosystem , Genetic Speciation
2.
Food Res Int ; 192: 114789, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147464

ABSTRACT

Yersinia enterocolitica (Ye) is a foodborne pathogen isolated from humans, food, animals, and the environment. Yersiniosis is the third most frequently reported foodborne zoonosis in the European Union. Ye species are divided into six biotypes 1A, 1B, 2, 3, 4, and 5, based on biochemical reactions and about 70 serotypes. Biotype 1A is non-pathogenic, 1B is highly pathogenic, and biotypes 2-5 have moderate or low pathogenicity. The reference analysis method for detecting pathogenic Ye species underestimates the presence of the pathogen due to similarities between Yersinia enterocolitica-like species and other Yersiniaceae and/or Enterobacteriaceae, low concentrations of distribution pathogenic strains and the heterogeneity of Yersinia enterocolitica species. In this study, the real-time PCR method ISO/TS 18867 to identify pathogenic biovars of Ye in bivalve molluscs was validated. The sensitivity, specificity and accuracy of the molecular method were evaluated using molluscs experimentally contaminated. The results fully agree with those obtained with the ISO 10273 method. Finally, we evaluated the presence of Ye in seventy commercial samples of bivalve molluscs collected in the Gulf of Naples using ISO/TS 18867. Only one sample tested resulted positive for the ail gene, which is considered the target gene for detection of pathogenic Ye according to ISO/TS 18867. Additionally, the presence of the ystB gene, used as target for Ye biotype 1A, was assessed in all samples using a real-time PCR SYBR Green platform. The results showed amplification ystB gene aim two samples.


Subject(s)
Bivalvia , Real-Time Polymerase Chain Reaction , Yersinia enterocolitica , Yersinia enterocolitica/genetics , Yersinia enterocolitica/isolation & purification , Yersinia enterocolitica/classification , Animals , Real-Time Polymerase Chain Reaction/methods , Bivalvia/microbiology , Italy , Food Microbiology , Benzothiazoles , DNA, Bacterial/genetics , Organic Chemicals , Diamines , Reproducibility of Results , Food Contamination/analysis , Sensitivity and Specificity , Shellfish/microbiology , Quinolines
3.
Sci Total Environ ; 949: 175185, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39089385

ABSTRACT

Marine mussels inhabit a wide range of ocean depths, necessitating unique adaptations to cope with varying hydrostatic pressures. This study investigates the transcriptomic responses and evolutionary adaptations of the deep-sea mussel Gigantidas platifrons and the shallow-water mussel Mytilus galloprovincialis to high hydrostatic pressure (HHP) conditions. By exposing atmospheric pressure (AP) acclimated G. platifrons and M. galloprovincialis to HHP, we aim to simulate extreme environmental challenges and assess their adaptive mechanisms. Through comparative transcriptomic analysis, we identified both conserved and species-specific mechanisms of adaptation, with a notable change in gene expression associated with immune system, substance transport, protein ubiquitination, apoptosis, lipid metabolism and antioxidant processes in both species. G. platifrons demonstrated an augmented lipid metabolism, whereas M. galloprovincialis exhibited a dampened immune function. Additionally, the expressed pattern of deep-sea mussel G. platifrons were more consistent than shallow-water mussel M. galloprovincialis under hydrostatic pressures changed conditions which corresponding the long-term living stable deep-sea environment. Moreover, evolutionary analysis pinpointed positively selected genes in G. platifrons that are linked to transmembrane transporters, DNA repair and replication, apoptosis, ubiquitination which are important to cell structural integrity, substances transport, and cellular growth regulation. This indicates a specialized adaptation strategy in G. platifrons to cope with the persistent HHP conditions of the deep sea. These results offer significant insights into the molecular underpinnings of mussel adaptation to varied hydrostatic conditions and enhance our comprehension of the evolutionary forces driving their depth-specific adaptations.


Subject(s)
Hydrostatic Pressure , Transcriptome , Animals , Adaptation, Physiological , Biological Evolution , Mytilus/physiology , Mytilus/genetics , Bivalvia/genetics , Bivalvia/physiology
4.
Sci Total Environ ; 949: 175258, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39098415

ABSTRACT

Environmental impacts are a cause for concern when developing and expanding aquaculture and to be sustainable potential negative effects need to be addressed. The intensity and extent of these impacts likely vary among sites and seasons, depending on multiple factors including the physical and biological setting and operational aspects. Using a combination of sampling techniques, we investigated the spatial variability in epibenthic impacts in eleven commercial mussel farms, on the Swedish west coast. We found increased levels of organic content, changes in epibenthic macrofauna and increased cover of Beggiatoa sp., a documented indicator of hypoxia. The extent of these impacts was generally limited to the extent of the farms. Because the cover of Beggiatoa sp. was particularly clear and because oxygen conditions in the sediment is of great importance to the structure and function of these habitats, we analysed spatial patterns using an index of the benthic footprint (BFI) accounting for both intensity and extent of impacts. In the summer, the BFI varied strongly among farm-sites and subsequent analyses showed that it highly correlated with ambient bottom oxygen concentration. Repeated sampling during early spring, however, showed that impacts were quickly reversible also in the most impacted sites. Thus, we conclude that in Swedish coastal waters the benthic footprint calculated on the % cover of Beggiatoa sp. is highly dependent on ambient oxygen concentration. We suggest that knowledge about spatial and temporal patterns of oxygen in the bottom water can be used to predict the severity of impacts and provide an important criterion in a site-selection process aimed at developing a sustainable food industry.


Subject(s)
Aquaculture , Environmental Monitoring , Oxygen , Seasons , Animals , Sweden , Oxygen/analysis , Environmental Monitoring/methods , Bivalvia , Ecosystem
5.
Elife ; 122024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102287

ABSTRACT

Bathymodioline mussels dominate deep-sea methane seep and hydrothermal vent habitats and obtain nutrients and energy primarily through chemosynthetic endosymbiotic bacteria in the bacteriocytes of their gill. However, the molecular mechanisms that orchestrate mussel host-symbiont interactions remain unclear. Here, we constructed a comprehensive cell atlas of the gill in the mussel Gigantidas platifrons from the South China Sea methane seeps (1100 m depth) using single-nucleus RNA-sequencing (snRNA-seq) and whole-mount in situ hybridisation. We identified 13 types of cells, including three previously unknown ones, and uncovered unknown tissue heterogeneity. Every cell type has a designated function in supporting the gill's structure and function, creating an optimal environment for chemosynthesis, and effectively acquiring nutrients from the endosymbiotic bacteria. Analysis of snRNA-seq of in situ transplanted mussels clearly showed the shifts in cell state in response to environmental oscillations. Our findings provide insight into the principles of host-symbiont interaction and the bivalves' environmental adaption mechanisms.


Subject(s)
Symbiosis , Animals , Gills/microbiology , Sequence Analysis, RNA/methods , Bivalvia/microbiology , Bivalvia/genetics , Mytilidae/genetics , Mytilidae/microbiology , Bacteria/genetics
6.
J Morphol ; 285(8): e21762, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39129184

ABSTRACT

Siphons are tubular organs formed by fusion and posterior extension of the marginal mantle folds. They are supposed to have performed key roles in the evolution of bivalves by enabling these animals to occupy several ecological niches. However, anatomical details of these organs are scarce for one of the most diverse lineages of tropical bivalves, the superfamily Tellinoidea. We investigated the siphonal morphology of 15 species, sampling five tellinoidean families, by integrating scanning electron microscopy, confocal microscopy, and histology. The siphons revealed variations in length, pigmentation, tentacles, papillae, and number of nerve cords. Due to the presence of sensorial structures, such as papillae and tentacles, we reclassify the siphons of Tellinoidea from type A to A+. Additional anatomical patterns were identified at family and genus levels. For example, the incurrent siphon shorter than the excurrent and 24 tentacles are putative synapomorphies of Donacidae. We also highlight shared siphonal traits between Donacidae and Solecurtidae as well as between Semelidae and Tellinidae. In addition, our data support the idea of Psammobiidae as a paraphyletic lineage. Overall, we provide an extensive comparative data set on siphonal traits with significant relevance for bivalve taxonomy, functional anatomy, and evolutionary investigations.


Subject(s)
Bivalvia , Animals , Bivalvia/anatomy & histology , Microscopy, Electron, Scanning , Biological Evolution , Phylogeny , Anatomy, Comparative
7.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000014

ABSTRACT

Based on the nucleotide sequences of the mitochondrial genome (mitogenome) of specimens taken from two mussel species (Arcuatula senhousia and Mytilus coruscus), an investigation was performed by means of the complex approaches of the genomics, molecular phylogenetics, and evolutionary genetics. The mitogenome structure of studied mussels, like in many other invertebrates, appears to be much more variable than in vertebrates and includes changing gene order, duplications, and deletions, which were most frequent for tRNA genes; the mussel species' mitogenomes also have variable sizes. The results demonstrate some of the very important properties of protein polypeptides, such as hydrophobicity and its determination by the purine and pyrimidine nucleotide ratio. This fact might indirectly indicate the necessity of purifying natural selection for the support of polypeptide functionality. However, in accordance with the widely accepted and logical concept of natural cutoff selection for organisms living in nature, which explains its action against deleterious nucleotide substitutions in the nonsynonymous codons (mutations) and its holding of the active (effective) macromolecules of the polypeptides in a population, we were unable to get unambiguous evidence in favor of this concept in the current paper. Here, the phylogeny and systematics of mussel species from one of the largest taxons of bivalve mollusks are studied, the family known as Mytilidae. The phylogeny for Mytilidae (order Mytilida), which currently has no consensus in terms of systematics, is reconstructed using a data matrix of 26-27 mitogenomes. Initially, a set of 100 sequences from GenBank were downloaded and checked for their gender: whether they were female (F) or male (M) in origin. Our analysis of the new data confirms the known drastic differences between the F/M mitogenome lines in mussels. Phylogenetic reconstructions of the F-lines were performed using the combined set of genetic markers, reconstructing only protein-coding genes (PCGs), only rRNA + tRNA genes, and all genes. Additionally, the analysis includes the usage of nucleotide sequences composed of other data matrices, such as 20-68 mitogenome sequences. The time of divergence from MRCA, estimated via BEAST2, for Mytilidae is close to 293 Mya, suggesting that they originate in the Silurian Period. From all these data, a consensus for the phylogeny of the subfamily of Mytilinae and its systematics is suggested. In particular, the long-debated argument on mussel systematics was resolved as to whether Mytilidae, and the subfamily of Mytilinae, are monophyletic. The topology signal, which was strongly resolved in this paper and in the literature, has refuted the theory regarding the monophyly of Mytilinae.


Subject(s)
Evolution, Molecular , Genome, Mitochondrial , Phylogeny , Animals , Genome, Mitochondrial/genetics , Mytilidae/genetics , Mytilidae/classification , RNA, Transfer/genetics , Bivalvia/genetics , Bivalvia/classification , Mytilus/genetics , Mytilus/classification
8.
Mar Biotechnol (NY) ; 26(4): 810-826, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39046591

ABSTRACT

This study aimed to investigate the inherent molecular regulatory mechanisms of Ruditapes philippinarum in response to extremely high-temperature environments and to enhance the sustainable development of the R. philippinarum aquaculture industry. In this study, we established a differential expression profile of miRNA under acute heat stress and identified a total of 46 known miRNAs and 80 novel miRNAs, three of which were detected to be significantly differentially expressed. We analyzed the functions of target genes regulated by differentially expressed miRNAs (DEMs) of R. philippinarum. The findings of the KEGG enrichment analysis revealed that 29 enriched pathways in the group were subjected to acute heat stress. Notably, fatty acid metabolism, FoxO signaling pathway, TGF-ß signaling pathway, and ubiquitin-mediated proteolysis were found to play significant roles in response to acute heat stress. We established a regulatory map of DEMs and their target genes in response to heat stress and constructed the miRNA-mRNA regulation network. This study provides valuable insights into the response of R. philippinarum to high temperature, helping to understand its underlying molecular regulatory mechanisms under high-temperature stress.


Subject(s)
Bivalvia , Gene Expression Regulation , Heat-Shock Response , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Bivalvia/genetics , Bivalvia/metabolism , Heat-Shock Response/genetics , Hot Temperature , Gene Expression Profiling , RNA, Messenger/metabolism , RNA, Messenger/genetics , Signal Transduction
9.
Sci Total Environ ; 948: 174764, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39004357

ABSTRACT

Biological invasions cause biodiversity erosion on a global scale. Invasive species spreading beyond their natural range compete with native fauna for food and space, push native species to suboptimal habitats, impairing their behaviour and thus limiting their occurrence. Freshwater ecosystems are especially vulnerable to biological invasions and their ecological and economic impacts. The invasive Asian clams (Corbicula spp.), due to their opportunistic life style, can occur at densities of thousands ind. m-2. They act as ecosystem engineers transforming bottom substrata through accumulation of shells. Our goal was to determine the effect of substratum modification by living Corbicula and their shells on substratum choice and behaviour of Unio tumidus and Anodonta anatina, two European freshwater mussel species of the highly imperilled Unionidae family. We assessed their substratum selection in pairwise choice tests (pure sand vs. sand modified by living Corbicula or their shells, sand modified by shells vs. living Corbicula). Next, we tested locomotion and burrowing of unionids on pure substratum and substrata modified by Corbicula. Unionids avoided sand modified by living Corbicula and their empty shells, not distinguishing between these two types of substratum modification. In the presence of Corbicula, their burrowing was shallower or it took them longer to obtain the same depth as in the pure sand. Additionally, on sand modified by Corbicula shells, we observed a locomotion increase (U. tumidus) or slowing down (A. anatina). Our research showed a novel mechanism of negative impact of Corbicula on unionids, consisting in pushing them away from their optimal habitats. This may contribute to their habitat loss and future declines in invaded ecosystems.


Subject(s)
Corbicula , Ecosystem , Introduced Species , Animals , Corbicula/physiology , Unionidae/physiology , Bivalvia/physiology , Biodiversity
10.
J Hazard Mater ; 476: 135088, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39018596

ABSTRACT

Microplastics (MPs) pose risks to both aquatic ecosystems and human health. This study investigated MPs in the shells and soft tissues of hard clams (Meretrix taiwanica) cultured in the inland waters of Taiwan. This study further developed two novel risk indices for assessing the potential ecological and health consequences of MPs. Moreover, the metal concentrations in the clam's soft tissues and the associated consumption health risks were investigated. Clamshells contained significant amounts of MPs with an average abundance of 16.6 ± 6.9 MPs/ind., which was higher than in the soft tissues (2.7 ± 1.7 MPs/ind.). The distribution and sizes of MPs in shells and soft tissues were similar, primarily small-sized (<2 mm, >99 %), blue (>65 %), and fibrous (>99 %). Dominant MP polymer types included rayon (83.5 %), polyethylene terephthalate (11.8 %), and polyacrylonitrile (3.6 %). The proposed MP potential ecological risk index indicates a higher potential ecological MP risk in soft tissues (302-423) than in shells (270-278) of the clams. The MP potential hazard risk index showed that the risk of exposure to MP through shellfish consumption decreased with age. The total hazard index (THI) value suggested negligible health hazards from metal exposure through shellfish consumption. Moreover, there was no significant correlation between MPs and metal concentrations in soft tissues, suggesting that metals bound to MPs contribute minimally to the total accumulated metals in clam's soft tissues. This study confirms the presence of MPs in clam shells and provides a novel tool to assess the potential ecological and health risks associated with MPs in shellfish.


Subject(s)
Bivalvia , Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Microplastics/analysis , Water Pollutants, Chemical/analysis , Risk Assessment , Animal Shells/chemistry , Metals/analysis , Metals/toxicity , Taiwan , Environmental Monitoring
11.
Carbohydr Polym ; 342: 122388, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048196

ABSTRACT

Chitosan (CS) has physicochemical properties including solubility, crystallinity, swellability, viscosity, and cohesion, along with biological properties like biocompatibility, biodegradation, antioxidant, antibacterial, and antitumor effects. However, these characteristics of CS are greatly affected by its degree of deacetylation, molecular weight, pH and other factors, which limits the application of CS in biomedicine. The modification of CS with catechol-containing substances inspired by mussels can not only improve these properties of CS, but also endow it with self-healing property, providing an environmentally friendly and sustainable way to promote the application of CS in biomedicine. In this paper, the properties of CS and its limitation in the biomedical filed are introduced in detail. Then, the modification methods and properties of substances with catechol groups inspired by mussels on CS are reviewed. Finally, the applications of modified CS in the biomedical field of wound healing, drug delivery, anticancer therapy, biosensor and 3D printing are further discussed. This review can provide valuable information for the design and exploitation of mussel-inspired CS in the biomedical field.


Subject(s)
Bivalvia , Chitosan , Wound Healing , Chitosan/chemistry , Animals , Bivalvia/chemistry , Humans , Wound Healing/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biosensing Techniques/methods , Drug Delivery Systems/methods , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Printing, Three-Dimensional
12.
Int J Mol Sci ; 25(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063236

ABSTRACT

Water molecules pose a significant obstacle to conventional adhesive materials. Nevertheless, some marine organisms can secrete bioadhesives with remarkable adhesion properties. For instance, mussels resist sea waves using byssal threads, sandcastle worms secrete sandcastle glue to construct shelters, and barnacles adhere to various surfaces using their barnacle cement. This work initially elucidates the process of underwater adhesion and the microstructure of bioadhesives in these three exemplary marine organisms. The formation of bioadhesive microstructures is intimately related to the aquatic environment. Subsequently, the adhesion mechanisms employed by mussel byssal threads, sandcastle glue, and barnacle cement are demonstrated at the molecular level. The comprehension of adhesion mechanisms has promoted various biomimetic adhesive systems: DOPA-based biomimetic adhesives inspired by the chemical composition of mussel byssal proteins; polyelectrolyte hydrogels enlightened by sandcastle glue and phase transitions; and novel biomimetic adhesives derived from the multiple interactions and nanofiber-like structures within barnacle cement. Underwater biomimetic adhesion continues to encounter multifaceted challenges despite notable advancements. Hence, this work examines the current challenges confronting underwater biomimetic adhesion in the last part, which provides novel perspectives and directions for future research.


Subject(s)
Adhesives , Aquatic Organisms , Biomimetic Materials , Bivalvia , Animals , Biomimetic Materials/chemistry , Adhesives/chemistry , Bivalvia/chemistry , Bivalvia/physiology , Biomimetics/methods , Adhesiveness , Thoracica/physiology , Hydrogels/chemistry
13.
Mikrochim Acta ; 191(8): 456, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38980419

ABSTRACT

Polydopamine (PDA) has garnered significant interest for applications in biosensors, drug delivery, and tissue engineering. However, similar polycatecholamines like polynorepinephrine (PNE) with additional hydroxyl groups and poly-α-methylnorepinephrine (PAMN) with additional hydroxyl and methyl groups remain unexplored in the biosensing domain. This research introduces three innovative biosensing platforms composed of ternary nanocomposite based on reduced graphene oxide (RGO), gold nanoparticles (Au NPs), and three sister polycatecholamine compounds (PDA, PNE, and PAMN). The study compares and evaluates the performance of the three biosensing systems for the ultrasensitive detection of Mycobacterium tuberculosis (MTB). The formation of the nanocomposites was meticulously examined through UV-Visible, Raman, XRD, and FT-IR studies with FE-SEM and HR-TEM analysis. Cyclic voltammetry and differential pulse voltammetry measurements were also performed to determine the electrochemical characteristics of the modified electrodes. Electrochemical biosensing experiments reveal that the RGO-PDA-Au, RGO-PNE-Au, and RGO-PAMN-Au-based biosensors detected target DNA up to a broad detection range of 0.1 × 10-8 to 0.1 × 10-18 M, with a low detection limit (LOD) of 0.1 × 10-18, 0.1 × 10-16, and 0.1 × 10-17 M, respectively. The bioelectrodes were proved to be highly selective with excellent sensitivities of 3.62 × 10-4 mA M-1 (PDA), 7.08 × 10-4 mA M-1 (PNE), and 6.03 × 10-4 mA M-1 (PAMN). This study pioneers the exploration of two novel mussel-inspired polycatecholamines in biosensors, opening avenues for functional nanocoatings that could drive further advancements in this field.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Gold , Graphite , Indoles , Limit of Detection , Metal Nanoparticles , Polymers , Biosensing Techniques/methods , Indoles/chemistry , Polymers/chemistry , Electrochemical Techniques/methods , Graphite/chemistry , Gold/chemistry , Animals , Metal Nanoparticles/chemistry , Mycobacterium tuberculosis , Bivalvia/chemistry , Nanocomposites/chemistry , Electrodes , Norepinephrine/analysis
14.
PeerJ ; 12: e17697, 2024.
Article in English | MEDLINE | ID: mdl-38993978

ABSTRACT

Rocky intertidal habitats occur worldwide and are mainly characterized by primary space holders such as seaweeds and sessile invertebrates. Some of these organisms are foundation species, as they can form structurally complex stands that host many small invertebrates. The abundance of primary space holders is known to vary along coastlines driven directly or indirectly by environmental variation. However, it is less clear if the invertebrate assemblages associated to a foundation species may remain relatively unchanged along coastlines, as similar stands of a foundation species can generate similar microclimates. We examined this question using abundance data for invertebrate species found in mussel stands of a similar structure in wave-exposed rocky habitats at mid-intertidal elevations along the Atlantic coast of Nova Scotia (Canada). While the most abundant invertebrate species were found at three locations spanning 315 km of coastline, species composition (a combined measure of species identity and their relative abundance) differed significantly among the locations. One of the species explaining the highest amount of variation among locations (a barnacle) exhibited potential signs of bottom-up regulation involving pelagic food supply, suggesting benthic-pelagic coupling. The abundance of the species that explained the highest amount of variation (an oligochaete) was positively related to the abundance of their predators (mites), further suggesting bottom-up forcing in these communities. Overall, we conclude that species assemblages associated to structurally similar stands of a foundation species can show clear changes in species composition at a regional scale.


Subject(s)
Bivalvia , Ecosystem , Invertebrates , Animals , Nova Scotia , Invertebrates/physiology , Bivalvia/physiology , Biodiversity
15.
Sci Total Environ ; 946: 174471, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38964384

ABSTRACT

Rising ocean temperatures, a consequence of anthropogenic climate change, are increasing the frequency, intensity, and magnitude of extreme marine heatwaves (MHWs). These persistent anomalous warming events can have severe ecological and socioeconomic impacts, threatening ecologically and economically vital organisms such as bivalves and the ecosystems they support. Developing robust environmental and social frameworks to enhance the resilience and adaptability of bivalve aquaculture is critical to ensuring the sustainability of this crucial food source. This review synthesizes the current understanding of the physiological and ecological impacts of MHWs on commercially important bivalve species farmed globally. We propose an integrated risk assessment framework that encompasses environmental monitoring, farm-level preparedness planning, and community-level social support systems to safeguard bivalve aquaculture. Specifically, we examine heatwave prediction models, local mitigation strategies, and social programs that could mitigate the impacts on bivalve farms and vulnerable coastal communities economically dependent on this fishery. At the farm level, adaptation strategies such as selective breeding for heat-tolerant strains, optimized site selection, and adjustments to culture practices can improve survival outcomes during MHWs. Robust disease surveillance and management programs are essential for early detection and rapid response. Furthermore, we highlight the importance of stakeholder engagement, knowledge exchange, and collaborative governance in developing context-specific, inclusive, and equitable safeguard systems. Proactive measures, such as advanced forecasting tools like the California Current Marine Heat Wave Tracker developed by NOAA's Southwest Fisheries Science Center, enable preemptive action before losses occur. Coordinated preparation and response, underpinned by continuous monitoring and adaptive management, promise to protect these climate-vulnerable food systems and coastal communities. However, sustained research, innovation, and cross-sector collaboration are imperative to navigate the challenges posed by our rapidly changing oceans.


Subject(s)
Aquaculture , Bivalvia , Climate Change , Animals , Bivalvia/physiology , Extreme Weather , Environmental Monitoring , Ecosystem , Conservation of Natural Resources/methods
16.
Sci Rep ; 14(1): 16967, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043878

ABSTRACT

This study is based on a natural experiment carried out in the Biebrza National Park, Poland. The study site was a channel inhabited by Anodonta anatina, A. cygnea, Unio pictorum and U. tumidus. The deepening of the channel to restore ecosystem connectivity provided an opportunity to conduct this study. Mussels were collected before dredging, held in captivity for 48 h, measured, individually tagged and released post-dredging to the same 5-m channel sections they originated from. They were subsequently monitored for three consecutive years. Mussel survival remained high throughout the study, and no increased mortality in the year following reintroduction was observed. There was no growth retardation. Mussel mobility was low, with most individuals remaining in the same channel section in which they were released. Recolonisation patterns were consistent with the composition of mussel communities in adjacent unaffected habitats. Although dredging drastically changes mussel habitat, some characteristics: microclimate, water chemistry, nutrient availability and host fish can remain adequate. Our study shows that reintroducing mussels to the same site can serve as an effective mitigation conservation measure and can be preferable to translocation, particularly when carried out under time pressure with limited possibilities of assigning appropriate destination sites.


Subject(s)
Bivalvia , Conservation of Natural Resources , Ecosystem , Fresh Water , Animals , Bivalvia/physiology , Conservation of Natural Resources/methods , Poland , Anodonta/physiology
17.
PeerJ ; 12: e17305, 2024.
Article in English | MEDLINE | ID: mdl-38952984

ABSTRACT

Juan Fernández and Desventuradas are two oceanic archipelagos located in the southeastern Pacific Ocean far off the Chilean coast that received protected status as marine parks in 2016. Remoteness and access difficulty contributed to historically poor biodiversity sampling and limited associated research. This is particularly noticeable for bivalves, with most prior regional publications focused on single taxa or un-illustrated checklists. This study investigates marine bivalves collected between the intertidal and 415 m depth during (1) the 1997 IOC97 expedition aboard the M/V Carlos Porter, with special focus on scuba-collected micro-mollusks of both archipelagos, (2) two expeditions by the R/V Anton Bruun (Cruise 12/1965 and Cruise 17/1966), and (3) Cruise 21 of USNS Eltanin under the United States Antarctic Program, which sampled at Juan Fernández in 1965. Also, relevant historical material of the British H.M.S. Challenger Expedition (1873-1876), the Swedish Pacific Expedition (1916-1917), and by German zoologist Ludwig H. Plate (1893-1895) is critically revised. A total of 48 species are recognized and illustrated, including 19 new species (described herein) and six other potentially new species. The presence of two species mentioned in the literature for the region (Aulacomya atra and Saccella cuneata) could not be confirmed. The genera Verticipronus and Halonympha are reported for the first time from the Eastern Pacific, as are Anadara and Condylocardia from Chilean waters. Lectotypes are designated for Arca (Barbatia) platei and Mytilus algosus. These findings double the number of extant bivalve species known from the Juan Fernández and Desventuradas archipelagos, highlighting the lack of attention these islands groups have received in the past. A high percentage of species endemic to one or both archipelagos are recognized herein, accounting for almost 78% of the total. The newly recognized level of bivalve endemism supports the consideration of Juan Fernández and Desventuradas as two different biogeographic units (Provinces or Ecoregions) of the Eastern Pacific Ocean.


Subject(s)
Biodiversity , Bivalvia , Animals , Pacific Ocean , Bivalvia/classification , Bivalvia/anatomy & histology , Chile , Islands
18.
Sci Data ; 11(1): 723, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956059

ABSTRACT

The Indian black clam Villorita cyprinoides Gray, 1825, is an economically valuable estuarine bivalve that faces challenges from multiple stressors and anthropogenic pressures. However, limited genomic resources have hindered molecular investigations into the impact of these stressors on clam populations. Here, we have generated the first transcriptomic reference datasets for V. cyprinoides to address this knowledge gap. A total of 25,040,592 and 22,486,217 million Illumina paired-end reads generated from two individuals were assembled using Trinity and rnaSPAdes. From the 47,607 transcripts identified as Coding Domain Sequences, 37,487 returned positive BLAST hits against six different databases. Additionally, a total of 14,063 Single Sequence Repeats were identified using GMATA. This study significantly enhances the genetic understanding of V. cyprinoides, a potential candidate for aquaculture that supports the livelihoods of many people dependent on small-scale fisheries. The data generated provides insights into broader genealogical connections within the family Cyrenidae through comparative transcriptomics. Furthermore, this transcriptional profile serves as baseline data for future studies in toxicological and conservation genetics.


Subject(s)
Bivalvia , Transcriptome , Animals , Bivalvia/genetics
19.
ACS Appl Mater Interfaces ; 16(28): 36168-36193, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38954488

ABSTRACT

In the intricate landscape of Traumatic Brain Injury (TBI), the management of TBI remains a challenging task due to the extremely complex pathophysiological conditions and excessive release of reactive oxygen species (ROS) at the injury site and the limited regenerative capacities of the central nervous system (CNS). Existing pharmaceutical interventions are limited in their ability to efficiently cross the blood-brain barrier (BBB) and expeditiously target areas of brain inflammation. In response to these challenges herein, we designed novel mussel inspired polydopamine (PDA)-coated mesoporous silica nanoparticles (PDA-AMSNs) with excellent antioxidative ability to deliver a new potential therapeutic GSK-3ß inhibitor lead small molecule abbreviated as Neuro Chemical Modulator (NCM) at the TBI site using a neuroprotective peptide hydrogel (PANAP). PDA-AMSNs loaded with NCM (i.e., PDA-AMSN-D) into the matrix of PANAP were injected into the damaged area in an in vivo cryogenic brain injury model (CBI). This approach is specifically built while keeping the logic AND gate circuit as the primary focus. Where NCM and PDA-AMSNs act as two input signals and neurological functional recovery as a single output. Therapeutically, PDA-AMSN-D significantly decreased infarct volume, enhanced neurogenesis, rejuvenated BBB senescence, and accelerated neurological function recovery in a CBI.


Subject(s)
Antioxidants , Bivalvia , Brain Injuries, Traumatic , Indoles , Nanocomposites , Neurogenesis , Oxidative Stress , Polymers , Indoles/chemistry , Indoles/pharmacology , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Polymers/chemistry , Polymers/pharmacology , Animals , Oxidative Stress/drug effects , Antioxidants/chemistry , Antioxidants/pharmacology , Nanocomposites/chemistry , Bivalvia/chemistry , Neurogenesis/drug effects , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Silicon Dioxide/chemistry , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Male
20.
Braz J Biol ; 84: e282016, 2024.
Article in English | MEDLINE | ID: mdl-38985069

ABSTRACT

Aspects of the reproductive biology of Donax striatus were studied from individuals collected from Gado Bravo Beach in the municipality of Tibau do Norte, state of Rio Grande do Norte, Brazil. Donax striatus is a dioic species without external (on the shell) or internal (gonads) macroscopic dimorphism. Thus, a microscopic examination of the reproductive cells is necessary. For the characterization of the gonadal development stages and determination of the size at first sexual maturity (L50), 30 specimens were selected monthly between February 2021 and January 2022 and submitted to histological processing. The condition index (CI) of each individual was estimated and monthly variations were statistically assessed. The size at first maturity (L50) was estimated to be 14.2 mm in shell length. To foster conservation of the species, catches of individuals larger than 14.2 mm is recommended. The lowest condition indices were found in the dry season, with a greater occurrence of organisms in the elimination stage and exhibiting gonad tissue reorganization. Higher indices were found in the rainy season, with the presence of mature individuals. The continuous nature of gametogenesis in Donax stritatus reflects the influence of rainfall in the region. Males and females have peak gamete elimination with pauses during the year, but with the presence of maturing and eliminating individuals throughout the year. As shellfish gathering targeting Donax striatus is excessive on Gado Bravo Beach in the state of Rio Grande do Norte, it is hoped that the results of the present study can contribute to the establishment of management measures for the activity and conservation strategies for the species.


Subject(s)
Bivalvia , Reproduction , Seasons , Animals , Brazil , Male , Reproduction/physiology , Female , Bivalvia/physiology , Bivalvia/classification , Sexual Maturation/physiology , Gonads/growth & development , Gonads/anatomy & histology , Gonads/physiology
SELECTION OF CITATIONS
SEARCH DETAIL