Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47.174
Filter
1.
Sci Rep ; 14(1): 15193, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956145

ABSTRACT

Birds maintain some of the highest body temperatures among endothermic animals. Often deemed a selective advantage for heat tolerance, high body temperatures also limits birds' thermal safety margin before reaching lethal levels. Recent modelling suggests that sustained effort in Arctic birds might be restricted at mild air temperatures, which may require reductions in activity to avoid overheating, with expected negative impacts on reproductive performance. We measured within-individual changes in body temperature in calm birds and then in response to an experimental increase in activity in an outdoor captive population of Arctic, cold-specialised snow buntings (Plectrophenax nivalis), exposed to naturally varying air temperatures (- 15 to 36 °C). Calm buntings exhibited a modal body temperature range from 39.9 to 42.6 °C. However, we detected a significant increase in body temperature within minutes of shifting calm birds to active flight, with strong evidence for a positive effect of air temperature on body temperature (slope = 0.04 °C/ °C). Importantly, by an ambient temperature of 9 °C, flying buntings were already generating body temperatures ≥ 45 °C, approaching the upper thermal limits of organismal performance (45-47 °C). With known limited evaporative heat dissipation capacities in these birds, our results support the recent prediction that free-living buntings operating at maximal sustainable rates will increasingly need to rely on behavioural thermoregulatory strategies to regulate body temperature, to the detriment of nestling growth and survival.


Subject(s)
Cold Temperature , Songbirds , Animals , Arctic Regions , Songbirds/physiology , Body Temperature Regulation/physiology , Body Temperature/physiology , Breeding , Reproduction/physiology , Female , Male , Temperature
2.
Sensors (Basel) ; 24(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000914

ABSTRACT

The acquisition of the body temperature of animals kept in captivity in biology laboratories is crucial for several studies in the field of animal biology. Traditionally, the acquisition process was carried out manually, which does not guarantee much accuracy or consistency in the acquired data and was painful for the animal. The process was then switched to a semi-manual process using a thermal camera, but it still involved manually clicking on each part of the animal's body every 20 s of the video to obtain temperature values, making it a time-consuming, non-automatic, and difficult process. This project aims to automate this acquisition process through the automatic recognition of parts of a lizard's body, reading the temperature in these parts based on a video taken with two cameras simultaneously: an RGB camera and a thermal camera. The first camera detects the location of the lizard's various body parts using artificial intelligence techniques, and the second camera allows reading of the respective temperature of each part. Due to the lack of lizard datasets, either in the biology laboratory or online, a dataset had to be created from scratch, containing the identification of the lizard and six of its body parts. YOLOv5 was used to detect the lizard and its body parts in RGB images, achieving a precision of 90.00% and a recall of 98.80%. After initial calibration, the RGB and thermal camera images are properly localised, making it possible to know the lizard's position, even when the lizard is at the same temperature as its surrounding environment, through a coordinate conversion from the RGB image to the thermal image. The thermal image has a colour temperature scale with the respective maximum and minimum temperature values, which is used to read each pixel of the thermal image, thus allowing the correct temperature to be read in each part of the lizard.


Subject(s)
Artificial Intelligence , Body Temperature , Lizards , Animals , Lizards/physiology , Body Temperature/physiology , Video Recording/methods , Image Processing, Computer-Assisted/methods
3.
Sci Rep ; 14(1): 16205, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003355

ABSTRACT

Previous studies have explored the effect of differing heat and relative humidity (RH) environments on the performance of multiple anaerobic high-intensity interval training (HIIT). Still, its impact on physiological responses and performance following aerobic HIIT has not been well studied. This study examined the effects of differing RH environments on physiological responses and performance in college football players following HIIT. Twelve college football completed HIIT under four different environmental conditions: (1) 25 °C/20% RH (Control group); (2) 35 °C/20% RH (H20 group); (3) 35 °C/40% RH (H40 group); (4) 35 °C/80% RH (H80 group). The heart rate (HR), mean arterial pressure (MAP), lactate, tympanic temperature (TT), skin temperature (TS), thermal sensation (TS), and rating of perceived exertion (RPE) were recorded continuously throughout the exercise. The heart rate variability (HRV): including root mean squared differences of the standard deviation (RMSSD)、standard deviation differences of the standard deviation (SDNN)、high frequency (HF), low frequency (LF), squat jump height (SJH), cycling time to exhaustion (TTE), and sweat rate (SR) were monitored pre-exercise and post-exercise. The HR, MAP, lactate, TT, Ts, TS, and RPE in the 4 groups showed a trend of rapid increase, then decreased gradually. There was no significant difference in HR, MAP, TT, or RPE between the 4 groups at the same time point (p > 0.05), in addition to this, when compared to the C group, the lactate, Ts, TS in the other 3 groups significant differences were observed at the corresponding time points (p < 0.05). The RMSSD, SDNN, HF, and LF levels in the 4 groups before exercise were not significantly different. The RMSSD and HF in the H40 and H80 groups were significantly decreased and other HRV indicators showed no significant difference after exercise. In sports performance measurement, the SJH and TTE were significantly decreased, but there was no significant difference in the 4 groups. The SR was no significant difference in the 4 groups after exercise. In conclusion, heat and humidity environments elicited generally greater physiological effects compared with the normal environment but did not affect sports performance in college football players.


Subject(s)
Athletic Performance , Heart Rate , High-Intensity Interval Training , Humidity , Humans , Male , High-Intensity Interval Training/methods , Heart Rate/physiology , Young Adult , Athletic Performance/physiology , Exercise/physiology , Universities , Football/physiology , Athletes , Lactic Acid/blood , Body Temperature/physiology
4.
Biomark Med ; 18(9): 441-448, 2024.
Article in English | MEDLINE | ID: mdl-39007838

ABSTRACT

Aim: To evaluate the difference between core temperature and surface temperature (ΔT) as an index for the prognosis of heart failure (HF). Patients & methods: Core temperature and surface temperature were measured in 253 patients with HF. The association of ΔT with prognostic indicators of HF was analyzed. Results: Patients with ΔT ≥2°C were more likely to have lower left ventricular ejection fraction and lower estimated glomerular filtration rate, higher levels of troponin T, brain natriuretic peptide and procalcitonin, and high blood urea nitrogen/creatinine ratio. The risk of death increased by 32% for a 1°C increase in ΔT and was 4.36-times higher in the ΔT ≥2°C group than in the ΔT <2°C group. Conclusion: ΔT may be used to predict the prognosis of patients with HF.


[Box: see text].


Subject(s)
Heart Failure , Humans , Heart Failure/blood , Heart Failure/diagnosis , Heart Failure/mortality , Heart Failure/physiopathology , Male , Female , Aged , Prognosis , Middle Aged , Troponin T/blood , Body Temperature , Natriuretic Peptide, Brain/blood , Stroke Volume , Creatinine/blood , Aged, 80 and over , Blood Urea Nitrogen , Glomerular Filtration Rate , Procalcitonin/blood
5.
Bull Exp Biol Med ; 177(1): 104-108, 2024 May.
Article in English | MEDLINE | ID: mdl-38960957

ABSTRACT

Association was assessed between the data harvested by a long-baseline laser interference deformograph and the dynamics of body temperature (BT) in hamsters deprived of natural daily light-darkness changes. The power spectral data revealed the positive correlation between simultaneous time series of hamster BT and the Earth's crust deformation (ECD). The superposed epoch analysis established an association between abrupt upstrokes of hamster BT and ECD increments. Thus, the direct relationships between BT dynamics (reflecting predominance of sympathetic part of autonomic nervous system) and ECD (according to long-baseline laser interference deformography) were established. The study observed synchronization of the free-running circadian rhythm of hamster BT with the tidal stress in Earth's lithosphere. Further studies are needed to find the physical factor underlying the revealed relationships.


Subject(s)
Body Temperature , Circadian Rhythm , Ultradian Rhythm , Animals , Ultradian Rhythm/physiology , Body Temperature/physiology , Cricetinae , Circadian Rhythm/physiology , Male , Earth, Planet , Mesocricetus
6.
Appl Ergon ; 120: 104342, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38959633

ABSTRACT

This research sought to evaluate the thermal zones of the upper body and firefighter personal protective equipment (PPE) immediately following uncompensable heat stress (0.03 °C increase/min). We hypothesized that the frontal portion of the head and the inside of the firefighter helmet would be the hottest as measured by infrared thermography. This hypothesis was due to previous research demonstrating that the head accounts for ∼8-10% of the body surface area, but it accounts for ∼20% of the overall body heat dissipation during moderate exercise. Twenty participants performed a 21-min graded treadmill exercise protocol (Altered Modified Naughton) in an environmental chamber (35 °C, 50 % humidity) in firefighter PPE. The body areas analyzed were the frontal area of the head, chest, abdomen, arm, neck, upper back, and lower back. The areas of the PPE that were analyzed were the inside of the helmet and the jacket. The hottest areas of the body post-exercise were the frontal area of the head (mean: 37.3 ± 0.4 °C), chest (mean: 37.5 ± 0.3 °C), and upper back (mean: 37.3 ± 0.4 °C). The coldest area of the upper body was the abdomen (mean: 36.1 ± 0.4 °C). The peak temperature of the inside of the helmet increased (p < 0.001) by 9.8 °C from 27.7 ± 1.6 °C to 37.4 ± 0.7 °C, and the inside of the jacket increased (p < 0.001) by 7.3 °C from 29.2 ± 1.7 °C to 36.5 ± 0.4 °C. The results of this study are relevant for cooling strategies for firefighters.


Subject(s)
Firefighters , Heat Stress Disorders , Thermography , Humans , Thermography/methods , Male , Adult , Heat Stress Disorders/prevention & control , Heat Stress Disorders/etiology , Head Protective Devices , Body Temperature/physiology , Personal Protective Equipment , Infrared Rays , Head/physiology , Female , Young Adult , Exercise Test/methods , Body Temperature Regulation/physiology , Thorax/physiology , Abdomen/physiology , Hot Temperature
7.
Proc Biol Sci ; 291(2026): 20241137, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981525

ABSTRACT

Torpor is widespread among bats presumably because most species are small, and torpor greatly reduces their high mass-specific resting energy expenditure, especially in the cold. Torpor has not been recorded in any bat species larger than 50 g, yet in theory could be beneficial even in the world's largest bats (flying-foxes; Pteropus spp.) that are exposed to adverse environmental conditions causing energy bottlenecks. We used temperature telemetry to measure body temperature in wild-living adult male grey-headed flying-foxes (P. poliocephalus; 799 g) during winter in southern Australia. We found that all individuals used torpor while day-roosting, with minimum body temperature reaching 27°C. Torpor was recorded following a period of cool, wet and windy weather, and on a day with the coldest maximum air temperature, suggesting it is an adaptation to reduce energy expenditure during periods of increased thermoregulatory costs and depleted body energy stores. A capacity for torpor among flying-foxes has implications for understanding their distribution, behavioural ecology and life history. Furthermore, our discovery increases the body mass of bats known to use torpor by more than tenfold and extends the documented use of this energy-saving strategy under wild conditions to all bat superfamilies, with implications for the evolutionary maintenance of torpor among bats and other mammals.


Subject(s)
Chiroptera , Torpor , Animals , Chiroptera/physiology , Torpor/physiology , Male , Energy Metabolism , Telemetry , Body Temperature , Seasons , South Australia
8.
Cell Metab ; 36(7): 1482-1493.e7, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959862

ABSTRACT

Although human core body temperature is known to decrease with age, the age dependency of facial temperature and its potential to indicate aging rate or aging-related diseases remains uncertain. Here, we collected thermal facial images of 2,811 Han Chinese individuals 20-90 years old, developed the ThermoFace method to automatically process and analyze images, and then generated thermal age and disease prediction models. The ThermoFace deep learning model for thermal facial age has a mean absolute deviation of about 5 years in cross-validation and 5.18 years in an independent cohort. The difference between predicted and chronological age is highly associated with metabolic parameters, sleep time, and gene expression pathways like DNA repair, lipolysis, and ATPase in the blood transcriptome, and it is modifiable by exercise. Consistently, ThermoFace disease predictors forecast metabolic diseases like fatty liver with high accuracy (AUC > 0.80), with predicted disease probability correlated with metabolic parameters.


Subject(s)
Aging , Face , Metabolic Diseases , Humans , Middle Aged , Aged , Adult , Male , Female , Aged, 80 and over , Young Adult , Deep Learning , Body Temperature , Image Processing, Computer-Assisted
9.
Sci Rep ; 14(1): 14557, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914736

ABSTRACT

The study aims to develop an abnormal body temperature probability (ABTP) model for dairy cattle, utilizing environmental and physiological data. This model is designed to enhance the management of heat stress impacts, providing an early warning system for farm managers to improve dairy cattle welfare and farm productivity in response to climate change. The study employs the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm to analyze environmental and physiological data from 320 dairy cattle, identifying key factors influencing body temperature anomalies. This method supports the development of various models, including the Lyman Kutcher-Burman (LKB), Logistic, Schultheiss, and Poisson models, which are evaluated for their ability to predict abnormal body temperatures in dairy cattle effectively. The study successfully validated multiple models to predict abnormal body temperatures in dairy cattle, with a focus on the temperature-humidity index (THI) as a critical determinant. These models, including LKB, Logistic, Schultheiss, and Poisson, demonstrated high accuracy, as measured by the AUC and other performance metrics such as the Brier score and Hosmer-Lemeshow (HL) test. The results highlight the robustness of the models in capturing the nuances of heat stress impacts on dairy cattle. The research develops innovative models for managing heat stress in dairy cattle, effectively enhancing detection and intervention strategies. By integrating advanced technologies and novel predictive models, the study offers effective measures for early detection and management of abnormal body temperatures, improving cattle welfare and farm productivity in changing climatic conditions. This approach highlights the importance of using multiple models to accurately predict and address heat stress in livestock, making significant contributions to enhancing farm management practices.


Subject(s)
Body Temperature , Dairying , Animals , Cattle , Body Temperature/physiology , Dairying/methods , Risk Factors , Cattle Diseases/diagnosis , Cattle Diseases/physiopathology , Heat Stress Disorders/veterinary , Heat Stress Disorders/physiopathology , Female , Climate Change , Probability , Risk Assessment/methods
10.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38860702

ABSTRACT

Study objectives were to determine the effects of mitoquinol (MitoQ, a mitochondrial-targeted antioxidant) on biomarkers of metabolism and inflammation during acute heat stress (HS). Crossbred barrows [n = 32; 59.0 ±â€…5.6 kg body weight (BW)] were blocked by BW and randomly assigned to 1 of 4 environmental-therapeutic treatments: 1) thermoneutral (TN) control (n = 8; TNCon), 2) TN and MitoQ (n = 8; TNMitoQ), 3) HS control (n = 8; HSCon), or 4) HS and MitoQ (n = 8; HSMitoQ). Pigs were acclimated for 6 d to individual pens before study initiation. The trial consisted of two experimental periods (P). During P1 (2 d), pigs were fed ad libitum and housed in TN conditions (20.6 ±â€…0.8 °C). During P2 (24 h), HSCon and HSMitoQ pigs were exposed to continuous HS (35.2 ±â€…0.2 °C), while TNCon and TNMitoQ remained in TN conditions. MitoQ (40 mg/d) was orally administered twice daily (0700 and 1800 hours) during P1 and P2. Pigs exposed to HS had increased rectal temperature, skin temperature, and respiration rate (+1.5 °C, +6.8 °C, and +101 breaths per minute, respectively; P < 0.01) compared to their TN counterparts. Acute HS markedly decreased feed intake (FI; 67%; P < 0.01); however, FI tended to be increased in HSMitoQ relative to HSCon pigs (1.5 kg vs. 0.9 kg, respectively; P = 0.08). Heat-stressed pigs lost BW compared to their TN counterparts (-4.7 kg vs. +1.6 kg, respectively; P < 0.01); however, the reduction in BW was attenuated in HSMitoQ compared to HSCon pigs (-3.9 kg vs. -5.5 kg, respectively; P < 0.01). Total gastrointestinal tract weight (empty tissue and luminal contents) was decreased in HS pigs relative to their TN counterparts (6.2 kg vs. 8.6 kg, respectively; P < 0.01). Blood glucose increased in HSMitoQ relative to HSCon pigs (15%; P = 0.04). Circulating non-esterified fatty acids (NEFA) increased in HS compared to TN pigs (P < 0.01), although this difference was disproportionately influenced by elevated NEFA in HSCon relative to HSMitoQ pigs (251 µEq/L vs. 142 µEq/L; P < 0.01). Heat-stressed pigs had decreased circulating insulin relative to their TN counterparts (47%; P = 0.04); however, the insulin:FI ratio tended to increase in HS relative to TN pigs (P = 0.09). Overall, circulating leukocytes were similar across treatments (P > 0.10). Plasma C-reactive protein remained similar among treatments; however, haptoglobin increased in HS relative to TN pigs (48%; P = 0.03). In conclusion, acute HS exposure negatively altered animal performance, inflammation, and metabolism, which were partially ameliorated by MitoQ.


Heat stress (HS) compromises animal health and productivity, and this causes major economic losses in almost every livestock sector. The negative consequences of HS are thought to originate from intestinal barrier dysfunction and subsequent immune activation. The underlying causes of lost intestinal integrity during HS are likely multifactorial; however, intestinal ischemia, increased accumulation of reactive oxygen species, and the ensuing epithelial oxidative damage might be potential causes. Mitochondria-targeted antioxidants, such as mitoquinol (MitoQ), are probably more effective than traditional dietary antioxidants (i.e., selenium, vitamin E) at alleviating oxidative stress, as they localize and accumulate within the mitochondria, potentiating their antioxidant activity. Thus, the present study aimed to investigate MitoQ's role during a thermal event in growing pigs. Herein, HS increased all body temperature indices, decreased feed intake (FI), and induced substantial body weight (BW) loss. Interestingly, the reduction in FI and BW was less dramatic in pigs receiving MitoQ. Changes in circulating metabolism and the acute phase response were observed due to the HS challenge; however, contrary to our expectations, these changes were not offset by MitoQ administration. Although our results suggest a positive MitoQ effect on growth performance, future studies are needed to corroborate the replicability of this response during HS.


Subject(s)
Ubiquinone , Animals , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Ubiquinone/administration & dosage , Male , Swine , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/administration & dosage , Antioxidants/pharmacology , Hot Temperature/adverse effects , Heat-Shock Response/drug effects , Swine Diseases/drug therapy , Heat Stress Disorders/veterinary , Heat Stress Disorders/drug therapy , Random Allocation , Body Temperature/drug effects
11.
Neuron ; 112(11): 1727-1729, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38843778

ABSTRACT

While effective analgesics, TRPV1 antagonists can dangerously alter thermoregulation. In this issue of Neuron, Huang et al.1 demonstrate that interaction with the S4-S5 linker of TRPV1 determines whether an antagonist affects core body temperature, with promising implications for analgesic development.


Subject(s)
Body Temperature Regulation , Hyperthermia , TRPV Cation Channels , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism , Hyperthermia/chemically induced , Animals , Body Temperature Regulation/drug effects , Body Temperature Regulation/physiology , Humans , Body Temperature/drug effects , Analgesics/pharmacology
12.
Poult Sci ; 103(7): 103821, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823160

ABSTRACT

The aim of the current study was to investigate the potential of in ovo-fed amino acids (AA) to reduce the effects of heat stress on finishing broiler chickens. To achieve this, a total of 1,400 fertile hatching eggs were randomly distributed into 5 groups (n = 280/group) and injected with one of the following in ovo treatments on embryonic day 18: 52 µL of sterile diluent/egg (CTRL), CTRL + 1.0 mg of L-Leucine (T1), CTRL + 0.45 mg of leucine + 1.15 mg of methionine (T2), CTRL + 3.0 mg of methionine + 2.0 mg of cysteine (T3), and CTRL + 0.40 mg of leucine + 1.60 mg of methionine + 1.60 mg of cysteine (T4). After hatch, chicks were allocated according to a complete randomized block design comprising 2 thermal conditions: thermoneutral (24°C, 45% RH) and heat stress (34°C, 55-60% RH) with 5 pens/group/condition. The cyclical heat stress regimen (10 h/d) was then applied from d 29 to d 34. Compared to the CTRL group, T3 and T4 exhibited a higher BW during the starter phase (P < 0.001). T4 also had a lower feed conversion ratio (FCR) than CTRL during this same phase (P = 0.03). During the grower phase, males of all treatment groups consistently exhibited higher BW compared to the CTRL group, which was not observed among female birds (PSex × TRT = 0.005). During the finisher phase, the in ovo treatment effect on performance was not significant. However, heat-stressed birds from treatment group T3 and T4 exhibited lower facial temperatures (Pday × TRT < 0.001) as well as lower plasma (Pcondition x TRT = 0.039) and liver (Pcondition x TRT < 0.001) malonaldehyde concentrations compared to the CTRL group. In conclusion, in ovo-fed AA have the potential to modulate the effects of heat stress on finishing broiler chickens by limiting its detrimental consequences, including increased body temperature and oxidative damage.


Subject(s)
Chickens , Oxidative Stress , Animals , Chickens/physiology , Chickens/growth & development , Male , Female , Oxidative Stress/drug effects , Amino Acids/administration & dosage , Body Temperature , Random Allocation , Heat-Shock Response/drug effects , Ovum/physiology , Ovum/drug effects , Hot Temperature/adverse effects , Chick Embryo/drug effects , Chick Embryo/physiology
13.
Article in English | MEDLINE | ID: mdl-38875451

ABSTRACT

PURPOSE: Surgical site infection (SSI) is the leading cause of nosocomial infections among surgical patients in the United States. Currently, there is compelling evidence suggesting that temperature dysregulation in surgical patients may be a risk factor for the development of SSI. We examined the relationship between perioperative hypothermia (PH) and SSI in a population of surgical patients with diabetes mellitus (DM). METHODS: This retrospective cohort review was conducted on patients with a history of DM undergoing orthopaedic surgery at our institution between May 1, 2018, and April 1, 2022. Inclusion criteria were age older than 15 years, a history of DM or recent hemoglobin A1c concentration of ≥6.5%, and operation of at least 60 minutes under general anesthesia. Perioperative hypothermia was defined as an intraoperative temperature ≤ 35.5°C. Continuous variables were compared using the t-test and Wilcoxon rank-sum test. Categorical variables were compared using the chi-squared test. We constructed a multivariable logistic regression model to estimate SSI risk while controlling for demographic variables. RESULTS: A total of 236 patients were included in the final analysis. The overall incidence of SSI was 5.93%. 99 patients (42%) experienced PH. No difference was observed in the risk of SSI between the normothermic and hypothermic cohorts. Among the 99 patients who experienced PH, increasing HbA1c was associated with increasing risk of SSI (OR = 2.39, 95% CI = 1.12 to 5.32, P-value = 0.0222). The multivariable logistic regression model had good discriminatory ability (c-statistic 0.74, 95% CI: 0.61 to 0.89) and good predictive accuracy (sensitivity 64%, specificity 73%). DISCUSSION: PH is not an independent risk factor of SSI. However, in the presence of elevated HbA1c, PH may more than double the risk of SSI. Perioperative hypothermia may be an additive risk factor in the setting of poor glycemic control and potentially in the setting of other known risk factors.


Subject(s)
Hypothermia , Surgical Wound Infection , Humans , Retrospective Studies , Surgical Wound Infection/epidemiology , Surgical Wound Infection/prevention & control , Male , Female , Middle Aged , Hypothermia/prevention & control , Risk Factors , Aged , Orthopedic Procedures , Body Temperature , Adult , Diabetes Mellitus/epidemiology , Glycated Hemoglobin , Incidence
14.
J Wound Care ; 33(6): 425-430, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38843011

ABSTRACT

OBJECTIVE: This study aimed to measure the effectiveness of neuromuscular taping (NMT) form I (a polyacrylate tape 0.6cm wide and 30cm long) on wound temperature and erythema in diabetic foot ulcers (DFUs) as an initial study in NMT intervention trials. METHOD: The study employed a quasi-experimental pretest and post-test design with a seven-day observation. The research sample was 38 patients with DFU grades 2 and 3. The sample was divided into two groups: the control group (n=19) and the intervention group (n=19). In wound care, the modern dressing was applied to both groups while NMT was applied to the intervention group in form I with 30cm long and 6mm wide strips, and on the proximal, distal and lateral sides. The wound bed temperature was measured with a non-contact infrared thermometer, and erythema was measured with Corel Photo-Paint X5 software (Corel Corp, Canada). Statistical analysis between the two groups was carried out using the Mann-Whitney test, independent t-test and Chi-squared test with p< 0.05 representing statistical significance. RESULTS: The preliminary results revealed that no statistically significant differences (p>0.05) were noted between the groups in sociodemographic or clinical characteristics, including age, body mass index, blood sugar, duration of diabetes, sex, smoking history, wound temperature and degree of erythema. Finally, it was also observed that, after seven days of application, NMT form I increased wound bed temperature, and reduced the level of erythema (p<0.05). CONCLUSION: In this study, NMT form I has been shown to increase the wound bed temperature and reduce the degree of erythema in DFUs.


Subject(s)
Diabetic Foot , Erythema , Humans , Male , Female , Erythema/etiology , Middle Aged , Diabetic Foot/therapy , Aged , Wound Healing , Surgical Tape , Body Temperature , Bandages , Adult , Treatment Outcome
15.
J Pediatr Nurs ; 77: e616-e624, 2024.
Article in English | MEDLINE | ID: mdl-38824078

ABSTRACT

BACKGROUND: This study was conducted to compare the accuracy of two noninvasive thermometers (axillary and infrared non-contact forehead thermometer) in measuring core temperature compared to the gold standard oral thermometer in the detection of fever in pediatric cancer patients with febrile neutropenia. METHODS: The study was conducted with a single group of 42 children with febrile neutropenia between 23 December 2020 and 25 January 2023 in the pediatric hematology and oncology clinic of a training and research hospital, which provides a specialized environment for both medical education and advanced scientific research in the field of pediatric hematology and oncology. The participants' body temperature was measured with an oral, axillary, and non-contact infrared forehead thermometer immediately after admission to the clinic and at 5 and 10 min after admission. The inter-rater agreement for each method and inter-method agreement between axillary and non-contact infrared temperature readings and oral readings were analyzed for each time point using intraclass correlation coefficients (ICC). RESULTS: The children in the study had a mean age of 11.62 ± 3.00 years and 28 (66.7%) were boys, 19 (45.2%) were younger children (5-10 years of age), and 23 (54.8%) were adolescents (11-16 years of age). In the analysis of agreement between the thermometers at admission and at 5 and 10 min after admission in children with febrile neutropenia, the highest agreement was between the oral and axillary thermometers (ICC: 0.584, 0.835, 0.536, respectively) and the lowest agreement was between the oral and non-contact infrared thermometers (ICC: 0.219, 0.022, 0.473, respectively). CONCLUSION: Compared to orally measured body temperature, axillary temperature readings showed better agreement than non-contact infrared temperature readings from the forehead in pediatric patients with febrile neutropenia. PRACTICE IMPLICATIONS: The research findings may guide nurses and families caring for pediatric patients with febrile neutropenia and should contribute to the prevention of false findings of fever and the reduction of its adverse consequences.


Subject(s)
Body Temperature , Febrile Neutropenia , Neoplasms , Thermometers , Humans , Child , Male , Female , Adolescent , Febrile Neutropenia/diagnosis , Neoplasms/complications , Body Temperature/physiology , Child, Preschool , Axilla , Fever/diagnosis
16.
Urolithiasis ; 52(1): 86, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869637

ABSTRACT

Ho: YAG laser lithotripsy is widely used for urinary stone treatment, but concerns persist regarding its thermal effects on renal tissues. This study aimed to monitor intrarenal temperature changes during kidney stone treatment using retrograde intrarenal surgery with Ho: YAG laser. Fifteen patients were enrolled. Various laser power settings (0.8 J/10 Hz, 1.2 J/12 Hz) and irrigation modes (10 cc/min, 15 cc/min, 20 cc/min, gravity irrigation, and manual pump irrigation) were used. A sterile thermal probe was attached to a flexible ureterorenoscope and delivered into the calyceal system via the ureteral access sheath. Temperature changes were recorded with a T-type thermal probe with ± 0.1 °C accuracy. Laser power significantly influenced mean temperature, with a 4.981 °C difference between 14 W and 8 W laser power (p < 0.001). The mean temperature was 2.075 °C higher with gravity irrigation and 2.828 °C lower with manual pump irrigation (p = 0.038 and p = 0.005, respectively). Body mass index, laser power, irrigation model, and operator duty cycle explained 49.5% of mean temperature variability (Adj. R2 = 0.495). Laser power and operator duty cycle positively impacted mean temperature, while body mass index and specific irrigation models affected it negatively. Laser power and irrigation rate are critical for intrarenal temperature during Ho: YAG laser lithotripsy. Optimal settings and irrigation strategies are vital for minimizing thermal injury risk. This study underscores the need for ongoing research to understand and mitigate thermal effects during laser lithotripsy.


Subject(s)
Kidney Calculi , Kidney , Lasers, Solid-State , Lithotripsy, Laser , Humans , Pilot Projects , Lithotripsy, Laser/methods , Lithotripsy, Laser/instrumentation , Kidney Calculi/surgery , Kidney Calculi/therapy , Male , Middle Aged , Female , Lasers, Solid-State/therapeutic use , Kidney/surgery , Kidney/physiopathology , Adult , Aged , Body Temperature , Monitoring, Intraoperative/methods , Monitoring, Intraoperative/instrumentation , Therapeutic Irrigation/methods , Therapeutic Irrigation/instrumentation
17.
Genet Sel Evol ; 56(1): 44, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858613

ABSTRACT

BACKGROUND: Longitudinal records of automatically-recorded vaginal temperature (TV) could be a key source of data for deriving novel indicators of climatic resilience (CR) for breeding more resilient pigs, especially during lactation when sows are at an increased risk of suffering from heat stress (HS). Therefore, we derived 15 CR indicators based on the variability in TV in lactating sows and estimated their genetic parameters. We also investigated their genetic relationship with sows' key reproductive traits. RESULTS: The heritability estimates of the CR traits ranged from 0.000 ± 0.000 for slope for decreased rate of TV (SlopeDe) to 0.291 ± 0.047 for sum of TV values below the HS threshold (HSUB). Moderate to high genetic correlations (from 0.508 ± 0.056 to 0.998 ± 0.137) and Spearman rank correlations (from 0.431 to 1.000) between genomic estimated breeding values (GEBV) were observed for five CR indicators, i.e. HS duration (HSD), the normalized median multiplied by normalized variance (Nor_medvar), the highest TV value of each measurement day for each individual (MaxTv), and the sum of the TV values above (HSUA) and below (HSUB) the HS threshold. These five CR indicators were lowly to moderately genetically correlated with shoulder skin surface temperature (from 0.139 ± 0.008 to 0.478 ± 0.048) and respiration rate (from 0.079 ± 0.011 to 0.502 ± 0.098). The genetic correlations between these five selected CR indicators and sow reproductive performance traits ranged from - 0.733 to - 0.175 for total number of piglets born alive, from - 0.733 to - 0.175 for total number of piglets born, and from - 0.434 to - 0.169 for number of pigs weaned. The individuals with the highest GEBV (most climate-sensitive) had higher mean skin surface temperature, respiration rate (RR), panting score (PS), and hair density, but had lower mean body condition scores compared to those with the lowest GEBV (most climate-resilient). CONCLUSIONS: Most of the CR indicators evaluated are heritable with substantial additive genetic variance. Five of them, i.e. HSD, MaxTv, HSUA, HSUB, and Nor_medvar share similar underlying genetic mechanisms. In addition, individuals with higher CR indicators are more likely to exhibit better HS-related physiological responses, higher body condition scores, and improved reproductive performance under hot conditions. These findings highlight the potential benefits of genetically selecting more heat-tolerant individuals based on CR indicators.


Subject(s)
Heat-Shock Response , Lactation , Animals , Female , Lactation/genetics , Swine/genetics , Swine/physiology , Heat-Shock Response/genetics , Vagina , Body Temperature , Climate , Breeding/methods , Quantitative Trait, Heritable
18.
Physiol Rep ; 12(11): e16107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849294

ABSTRACT

July 2023 has been confirmed as Earth's hottest month on record, and it was characterized by extraordinary heatwaves across southern Europe. Field data collected under real heatwave periods could add important evidence to understand human adaptability to extreme heat. However, field studies on human physiological responses to heatwave periods remain limited. We performed field thermo-physiological measurements in a healthy 37-years male undergoing resting and physical activity in an outdoor environment in the capital of Sicily, Palermo, during (July 21; highest level of local heat-health alert) and following (August 10; lowest level of local heat-health alert) the peak of Sicily's July 2023 heatwave. Results indicated that ~40 min of outdoor walking and light running in 33.8°C Wet Bulb Globe Temperature (WBGT) conditions (July 21) resulted in significant physiological stress (i.e., peak heart rate: 209 bpm; core temperature: 39.13°C; mean skin temperature: 37.2°C; whole-body sweat losses: 1.7 kg). Importantly, significant physiological stress was also observed during less severe heat conditions (August 10; WBGT: 29.1°C; peak heart rate: 190 bpm; core temperature: 38.48°C; whole-body sweat losses: 2 kg). These observations highlight the physiological strain that current heatwave conditions pose on healthy young individuals. This ecologically-valid empirical evidence could inform more accurate heat-health planning.


Subject(s)
Extreme Heat , Heart Rate , Humans , Male , Adult , Sicily , Heart Rate/physiology , Extreme Heat/adverse effects , Sweating/physiology , Body Temperature/physiology , Body Temperature Regulation/physiology , Skin Temperature/physiology , Hot Temperature/adverse effects
19.
J Exp Biol ; 227(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38826104

ABSTRACT

Once a year, penguins undergo a catastrophic moult, replacing their entire plumage during a fasting period on land or on sea-ice during which time individuals can lose 45% of their body mass. In penguins, new feather synthesis precedes the loss of old feathers, leading to an accumulation of two feather layers (double coat) before the old plumage is shed. We hypothesized that the combination of the high metabolism required for new feather synthesis and the potentially high thermal insulation linked to the double coat could lead to a thermal challenge requiring additional peripheral circulation to thermal windows to dissipate the extra heat. To test this hypothesis, we measured the surface temperature of different body regions of captive gentoo penguins (Pygoscelis papua) throughout the moult under constant environmental conditions. The surface temperature of the main body trunk decreased during the initial stages of the moult, suggesting greater thermal insulation. In contrast, the periorbital region, a potential proxy of core temperature in birds, increased during these same early moulting stages. The surface temperature of the bill, flipper and foot (thermal windows) tended to initially increase during the moult, highlighting the likely need for extra heat dissipation in moulting penguins. These results raise questions regarding the thermoregulatory capacities of penguins in the wild during the challenging period of moulting on land in the current context of global warming.


Subject(s)
Body Temperature , Feathers , Molting , Spheniscidae , Animals , Spheniscidae/physiology , Molting/physiology , Feathers/physiology , Body Temperature Regulation/physiology , Male , Female
SELECTION OF CITATIONS
SEARCH DETAIL