Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Neurochem Res ; 49(11): 3043-3059, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39105899

ABSTRACT

Noradrenaline (NA) levels are altered during the first hours and several days after cortical injury. NA modulates motor functional recovery. The present study investigated whether iron-induced cortical injury modulated noradrenergic synthesis and dopamine beta-hydroxylase (DBH) activity in response to oxidative stress in the brain cortex, pons and cerebellum of the rat. Seventy-eight rats were divided into two groups: (a) the sham group, which received an intracortical injection of a vehicle solution; and (b) the injured group, which received an intracortical injection of ferrous chloride. Motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, the rats were euthanized to measure oxidative stress indicators (reactive oxygen species (ROS), reduced glutathione (GSH) and oxidized glutathione (GSSG)) and catecholamines (NA, dopamine (DA)), plus DBH mRNA and protein levels. Our results showed that iron-induced brain cortex injury increased noradrenergic synthesis and DBH activity in the brain cortex, pons and cerebellum at 3 days post-injury, predominantly on the ipsilateral side to the injury, in response to oxidative stress. A compensatory increase in contralateral noradrenergic activity was observed, but without changes in the DBH mRNA and protein levels in the cerebellum and pons. In conclusion, iron-induced cortical injury increased the noradrenergic response in the brain cortex, pons and cerebellum, particularly on the ipsilateral side, accompanied by a compensatory response on the contralateral side. The oxidative stress was countered by antioxidant activity, which favored functional recovery following motor deficits.


Subject(s)
Brain Injuries , Dopamine beta-Hydroxylase , Norepinephrine , Oxidative Stress , Animals , Oxidative Stress/drug effects , Oxidative Stress/physiology , Dopamine beta-Hydroxylase/metabolism , Male , Norepinephrine/metabolism , Norepinephrine/biosynthesis , Brain Injuries/metabolism , Brain Injuries/chemically induced , Rats, Wistar , Rats , Iron/metabolism , Reactive Oxygen Species/metabolism , Ferrous Compounds
2.
Mol Neurobiol ; 61(9): 6366-6382, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38296901

ABSTRACT

Obesity causes inflammation in the adipose tissue and can affect the central nervous system, leading to oxidative stress and mitochondrial dysfunction. Therefore, it becomes necessary to seek new therapeutic alternatives. Gold nanoparticles (GNPs) could take carnitine to the adipose tissue, thus increasing fatty acid oxidation, reducing inflammation, and, consequently, restoring brain homeostasis. The objective of this study was to investigate the effects of GNPs associated with carnitine on the neurochemical parameters of obesity-induced mice. Eighty male Swiss mice that received a normal lipid diet (control group) or a high-fat diet (obese group) for 10 weeks were used. At the end of the sixth week, the groups were divided for daily treatment with saline, GNPs (70 µg/kg), carnitine (500 mg/kg), or GNPs associated with carnitine, respectively. Body weight was monitored weekly. At the end of the tenth week, the animals were euthanized and the mesenteric fat removed and weighed; the brain structures were separated for biochemical analysis. It was found that obesity caused oxidative damage and mitochondrial dysfunction in brain structures. Treatment with GNPs isolated reduced oxidative stress in the hippocampus. Carnitine isolated decreased the accumulation of mesenteric fat and oxidative stress in the hippocampus. The combination of treatments reduced the accumulation of mesenteric fat and mitochondrial dysfunction in the striatum. Therefore, these treatments in isolation, become a promising option for the treatment of obesity.


Subject(s)
Brain , Carnitine , Disease Models, Animal , Gold , Metal Nanoparticles , Obesity , Oxidative Stress , Animals , Carnitine/pharmacology , Carnitine/administration & dosage , Carnitine/therapeutic use , Gold/pharmacology , Male , Obesity/drug therapy , Obesity/pathology , Obesity/complications , Mice , Oxidative Stress/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Diet, High-Fat , Mitochondria/drug effects , Mitochondria/metabolism , Brain Injuries/drug therapy , Brain Injuries/pathology , Brain Injuries/metabolism , Body Weight/drug effects
3.
Exp Biol Med (Maywood) ; 248(22): 2109-2119, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38058025

ABSTRACT

S100B is a 21-kDa protein that is produced and secreted by astrocytes and widely used as a marker of brain injury in clinical and experimental studies. The majority of these studies are based on measurements in blood serum, assuming an associated increase in cerebrospinal fluid and a rupture of the blood-brain barrier (BBB). Moreover, extracerebral sources of S100B are often underestimated. Herein, we will review these interpretations and discuss the routes by which S100B, produced by astrocytes, reaches the circulatory system. We discuss the concept of S100B as an alarmin and its dual activity as an inflammatory and neurotrophic molecule. Furthermore, we emphasize the lack of data supporting the idea that S100B acts as a marker of BBB rupture, and the need to include the glymphatic system in the interpretations of serum changes of S100B. The review is also dedicated to valorizing extracerebral sources of S100B, particularly adipocytes. Furthermore, S100B per se may have direct and indirect modulating roles in brain barriers: on the tight junctions that regulate paracellular transport; on the expression of its receptor, RAGE, which is involved in transcellular protein transport; and on aquaporin-4, a key protein in the glymphatic system that is responsible for the clearance of extracellular proteins from the central nervous system. We hope that the data on S100B, discussed here, will be useful and that it will translate into further health benefits in medical practice.


Subject(s)
Brain Injuries , Humans , Brain Injuries/metabolism , Blood-Brain Barrier/metabolism , Astrocytes , S100 Calcium Binding Protein beta Subunit/metabolism
4.
Mol Cell Neurosci ; 126: 103864, 2023 09.
Article in English | MEDLINE | ID: mdl-37268283

ABSTRACT

Oxygen deprivation is one of the main causes of morbidity and mortality in newborns, occurring with a higher prevalence in preterm infants, reaching 20 % to 50 % mortality in newborns in the perinatal period. When they survive, 25 % exhibit neuropsychological pathologies, such as learning difficulties, epilepsy, and cerebral palsy. White matter injury is one of the main features found in oxygen deprivation injury, which can lead to long-term functional impairments, including cognitive delay and motor deficits. The myelin sheath accounts for much of the white matter in the brain by surrounding axons and enabling the efficient conduction of action potentials. Mature oligodendrocytes, which synthesize and maintain myelination, also comprise a significant proportion of the brain's white matter. In recent years, oligodendrocytes and the myelination process have become potential therapeutic targets to minimize the effects of oxygen deprivation on the central nervous system. Moreover, evidence indicate that neuroinflammation and apoptotic pathways activated during oxygen deprivation may be influenced by sexual dimorphism. To summarize the most recent research about the impact of sexual dimorphism on the neuroinflammatory state and white matter injury after oxygen deprivation, this review presents an overview of the oligodendrocyte lineage development and myelination, the impact of oxygen deprivation and neuroinflammation on oligodendrocytes in neurodevelopmental disorders, and recent reports about sexual dimorphism regarding the neuroinflammation and white matter injury after neonatal oxygen deprivation.


Subject(s)
Brain Injuries , White Matter , Infant, Newborn , Humans , Pregnancy , Female , Oxygen/metabolism , Neuroinflammatory Diseases , Infant, Premature , Myelin Sheath/metabolism , Brain/metabolism , Oligodendroglia/metabolism , White Matter/metabolism , Brain Injuries/metabolism
5.
J Neuroinflammation ; 20(1): 5, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36609298

ABSTRACT

BACKGROUND: In response to brain injury or inflammation, astrocytes undergo hypertrophy, proliferate, and migrate to the damaged zone. These changes, collectively known as "astrogliosis", initially protect the brain; however, astrogliosis can also cause neuronal dysfunction. Additionally, these astrocytes undergo intracellular changes involving alterations in the expression and localization of many proteins, including αvß3 integrin. Our previous reports indicate that Thy-1, a neuronal glycoprotein, binds to this integrin inducing Connexin43 (Cx43) hemichannel (HC) opening, ATP release, and astrocyte migration. Despite such insight, important links and molecular events leading to astrogliosis remain to be defined. METHODS: Using bioinformatics approaches, we analyzed different Gene Expression Omnibus datasets to identify changes occurring in reactive astrocytes as compared to astrocytes from the normal mouse brain. In silico analysis was validated by both qRT-PCR and immunoblotting using reactive astrocyte cultures from the normal rat brain treated with TNF and from the brain of a hSOD1G93A transgenic mouse model. We evaluated the phosphorylation of Cx43 serine residue 373 (S373) by AKT and ATP release as a functional assay for HC opening. In vivo experiments were also performed with an AKT inhibitor (AKTi). RESULTS: The bioinformatics analysis revealed that genes of the PI3K/AKT signaling pathway were among the most significantly altered in reactive astrocytes. mRNA and protein levels of PI3K, AKT, as well as Cx43, were elevated in reactive astrocytes from normal rats and from hSOD1G93A transgenic mice, as compared to controls. In vitro, reactive astrocytes stimulated with Thy-1 responded by activating AKT, which phosphorylated S373Cx43. Increased pS373Cx43 augmented the release of ATP to the extracellular medium and AKTi inhibited these Thy-1-induced responses. Furthermore, in an in vivo model of inflammation (brain damage), AKTi decreased the levels of astrocyte reactivity markers and S373Cx43 phosphorylation. CONCLUSIONS: Here, we identify changes in the PI3K/AKT molecular signaling network and show how they participate in astrogliosis by regulating the HC protein Cx43. Moreover, because HC opening and ATP release are important in astrocyte reactivity, the phosphorylation of Cx43 by AKT and the associated increase in ATP release identify a potential therapeutic window of opportunity to limit the adverse effects of astrogliosis.


Subject(s)
Brain Injuries , Connexin 43 , Animals , Mice , Rats , Adenosine Triphosphate/pharmacology , Adenosine Triphosphate/metabolism , Astrocytes/metabolism , Brain Injuries/metabolism , Connexin 43/metabolism , Gliosis/metabolism , Inflammation/metabolism , Integrin beta3/genetics , Integrin beta3/metabolism , Integrin beta3/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation , Thy-1 Antigens/metabolism , Integrin alpha5/metabolism
6.
Nutr Neurosci ; 26(8): 680-695, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36039918

ABSTRACT

OBJECTIVES: Cerebral ischemia is the most common cause of disability, the second most common cause of dementia, and the fourth most common cause of death in the developed world [Sveinsson OA, Kjartansson O, Valdimarsson EM. Heilablóðþurrð/heiladrep: Faraldsfræði, orsakir og einkenni [Cerebral ischemia/infarction - epidemiology, causes and symptoms]. Laeknabladid. 2014 May;100(5):271-9. Icelandic. doi:10.17992/lbl.2014.05.543]. Obesity has been associated with worse outcomes after ischemia in rats, triggering proinflammatory cytokine production related to the brain microvasculature. The way obesity triggers these effects remains mostly unknown. Therefore, the aim of this study was to elucidate the cellular mechanisms of damage triggered by obesity in the context of cerebral ischemia. METHODS: We used a rat model of obesity induced by a 20% high fructose diet (HFD) and evaluated peripheral alterations in plasma (lipid and cytokine profiles). Then, we performed cerebral ischemia surgery using two-vessel occlusion (2VO) and analyzed neurological/motor performance and glial activation. Next, we treated endothelial cell line cultures with glutamate in vitro to simulate an excitotoxic environment, and we added 20% plasma from obese rats. Subsequently, we isolated EVs released from endothelial cells and treated primary cultures of astrocytes with them. RESULTS: Rats fed a HFD had an increased BMI with dyslipidemia and high levels of proinflammatory cytokines. Glia from the obese rats exhibited altered morphology, suggesting hyperreactivity related to neurological and motor deficits. Plasma from obese rats induced activation of endothelial cells, increasing proinflammatory signals and releasing more EVs. Similarly, these EVs caused an increase in NF-κB and astrocyte cytotoxicity. Together, the results suggest that obesity activates proinflammatory signals in endothelial cells, resulting in the release of EVs that simultaneously contribute to astrocyte activation.


Subject(s)
Brain Injuries , Brain Ischemia , Extracellular Vesicles , Rats , Animals , Endothelial Cells/metabolism , Brain Ischemia/complications , Brain Ischemia/metabolism , Brain/metabolism , Brain Injuries/metabolism , Obesity/metabolism , Astrocytes/metabolism , Glutamic Acid/metabolism , Endothelium/metabolism , Extracellular Vesicles/metabolism , Cytokines/metabolism
7.
Int J Neurosci ; 133(4): 375-388, 2023 Apr.
Article in English | MEDLINE | ID: mdl-33902404

ABSTRACT

Pupurpose of the study: Oxidative stress has been reported to be an important mechanism for brain damage following ischemic stroke. Recently, the involvement of cytosolic receptors capable of forming protein complexes called inflammasomes has been demonstrated to perpetuate oxidative stress. Herein, we report the effect of NLRP3 inhibition with MCC950 on brain oxidative stress in an animal model of transient global cerebral ischemia.Materials and methods: Male Wistar rats received an intracerebroventricularly (icv) injection of MCC950 (140 ng/kg) or saline and were subjected to sham procedure or ischemia/reperfusion (I/R). Twenty-four hours after I/R, myeloperoxidase (MPO) activity, nitrite/nitrate (N/N) concentration, lipid peroxidation, protein carbonyls formation, superoxide dismutase (SOD) and catalase (CAT) activity were determined in the prefrontal cortex, hippocampus, cortex, cerebellum and striatum. Results: After I/R, MPO activity increased in the prefrontal cortex, hippocampus, cortex and cerebellum and N/N concentration elevated in the prefrontal cortex, hippocampus and cortex, while MCC950 decreased this level except in hippocampus. After I/R, lipid peroxidation enhanced in the prefrontal cortex and cerebellum and increased the oxidative protein damage in both structures and hippocampus. MCC950 decreased lipid peroxidation in the prefrontal cortex and decreased protein oxidative damage in all brain structures except in the striatum. SOD activity decreased in the cortex after I/R and MCC950 reestablished these levels. CAT activity decreased in the prefrontal cortex, hippocampus and cerebellum after I/R and MCC950 reestablished these levels in the prefrontal cortex.Conclusion: Our data provide novel demonstration that inhibiting NLRP3 activation with MCC950 reduces brain oxidative damage after cerebral I/R in rats.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Attack, Transient , Rats , Male , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Wistar , Brain/metabolism , Oxidative Stress , Antioxidants/metabolism , Brain Injuries/metabolism , Superoxide Dismutase/metabolism
8.
Acta Cir Bras ; 37(6): e370605, 2022.
Article in English | MEDLINE | ID: mdl-36074398

ABSTRACT

PURPOSE: Traumatic brain injury (TBI) is a major cause of death and disability. Cerebrolysin (CBL) has been reported to be anti-inflammatory by reducing reactive oxygen species (ROS) production. However, the neuroprotection of CBL in TBI and the potential mechanism are unclear. We aimed to investigate the neuroprotection and mechanisms of CBL in TBI. METHODS: The TBI model was established in strict accordance with the Feeney weight-drop model of focal injury. The neurological score, brain water content, neuroinflammatory cytokine levels, and neuronal damage were evaluated. The involvement of the early brain injury modulatory pathway was also investigated. RESULTS: Following TBI, the results showed that CBL administration increased neurological scores and decreased brain edema by alleviating blood­brain barrier (BBB) permeability, upregulating tight junction protein (ZO­1) levels, and decreasing the levels of the inflammatory cytokines tumor necrosis factor­α (TNF­α), interleukin­1ß (IL­1ß), IL­6, and NF­κB. The TUNEL assay showed that CBL decreased hippocampal neuronal apoptosis after TBI and decreased the protein expression levels of caspase­3 and Bax, increasing the levels of Bcl­2. The levels of Toll­like receptor 2 (TLR2) and TLR4 were significantly decreased after CBL treatment. In TBI patients, CBL can also decrease TNF­α, IL­1ß, IL­6, and NF­κB levels. This result indicates that CBL­mediated inhibition of neuroinflammation and apoptosis ameliorated neuronal death after TBI. The neuroprotective capacity of CBL is partly dependent on the TLR signaling pathway. CONCLUSIONS: Taken together, the results of this study indicate that CBL can improve neurological outcomes and reduce neuronal death against neuroinflammation and apoptosis via the TLR signaling pathway in mice.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Neuroprotective Agents , Amino Acids , Animals , Apoptosis , Brain/metabolism , Brain Injuries/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Cytokines/metabolism , Disease Models, Animal , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Neuroinflammatory Diseases , Neuroprotective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
9.
Acta Cir Bras ; 37(3): e370301, 2022.
Article in English | MEDLINE | ID: mdl-35584533

ABSTRACT

PURPOSE: Spontaneous intracerebral hemorrhage (ICH) is a major public health problem with a huge economic burden worldwide. Ulinastatin (UTI), a serine protease inhibitor, has been reported to be anti-inflammatory, immune regulation, and organ protection by reducing reactive oxygen species production, and inflammation. Necroptosis is a programmed cell death mechanism that plays a vital role in neuronal cell death after ICH. However, the neuroprotection of UTI in ICH has not been confirmed, and the potential mechanism is unclear. The present study aimed to investigate the neuroprotection and potential molecular mechanisms of UTI in ICH-induced EBI in a C57BL/6 mouse model. METHODS: The neurological score, brain water content, neuroinflammatory cytokine levels, and neuronal damage were evaluated. The anti-inflammation effectiveness of UTI in ICH patients also was evaluated. RESULTS: UTI treatment markedly increased the neurological score, alleviate the brain edema, decreased the inflammatory cytokine TNF-α, interleukin­1ß (IL­1ß), IL­6, NF­κB levels, and RIP1/RIP3, which indicated that UTI-mediated inhibition of neuroinflammation, and necroptosis alleviated neuronal damage after ICH. UTI also can decrease the inflammatory cytokine of ICH patients. The neuroprotective capacity of UTI is partly dependent on the MAPK/NF-κB signaling pathway. CONCLUSIONS: UTI improves neurological outcomes in mice and reduces neuronal death by protecting against neural neuroinflammation, and necroptosis.


Subject(s)
Brain Injuries , MAP Kinase Signaling System , NF-kappa B , Animals , Anti-Inflammatory Agents/pharmacology , Brain Injuries/drug therapy , Brain Injuries/metabolism , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Cytokines/metabolism , Glycoproteins , Humans , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Necroptosis , Neuroinflammatory Diseases/metabolism
10.
Acta Cir Bras ; 37(1): e370108, 2022.
Article in English | MEDLINE | ID: mdl-35475892

ABSTRACT

PURPOSE: Traumatic brain injury (TBI) remains a major public health problem and cause of death. Ulinastatin (UTI), a serine protease inhibitor, has been reported to have an anti-inflammatory effect and play a role in immunoregulation and organ protection by reducing reactive oxygen species (ROS) production, oxidative stress and inflammation. However, the neuroprotective of UTI in TBI has not been confirmed. Therefore, this study aimed to investigate the neuroprotection and potential molecular mechanisms of UTI in TBI-induced EBI in a C57BL/6 mouse model. METHODS: The neurological score and brain water content were evaluated. Enzyme-linked immunosorbent assay was used to detect neuroinflammatory cytokine levels, ROS and malondialdehyde detection to evaluate oxidative stress levels, and TUNEL staining and western blotting to examine neuronal damages and their related mechanisms. RESULTS: Treatment with UTI markedly increased the neurological score; alleviated brain oedema; decreased the inflammatory cytokine tumour necrosis factor a, interleukin-1ß (IL-1ß), IL-6 and nuclear factor kappa B (NF-kB) levels; inhibited oxidative stress; decreased caspase-3 and Bax protein expressions; and increased the Bcl-2 levels, indicating that UTI-mediated inhibition of neuroinflammation, oxidative stress and apoptosis ameliorated neuronal death after TBI. The neuroprotective capacity of UTI is partly dependent on the TLR4/NF-kB/p65 signalling pathway. CONCLUSIONS: Therefore, this study reveals that UTI improves neurological outcomes in mice and reduces neuronal death by protecting against neural neuroinflammation, oxidative stress and apoptosis.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Animals , Apoptosis , Brain Injuries/drug therapy , Brain Injuries/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Cytokines/metabolism , Glycoproteins , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Oxidative Stress , Reactive Oxygen Species
11.
Cell Mol Neurobiol ; 42(3): 565-575, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33034777

ABSTRACT

Ethylmalonic encephalopathy (EE) is a severe intoxication disorder caused by mutations in the ETHE1 gene that encodes a mitochondrial sulfur dioxygenase involved in the catabolism of hydrogen sulfide. It is biochemically characterized by tissue accumulation of hydrogen sulfide and its by-product thiosulfate, as well as of ethylmalonic acid due to hydrogen sulfide-induced inhibition of short-chain acyl-CoA dehydrogenase. Patients usually present with early onset severe brain damage associated to encephalopathy, chronic hemorrhagic diarrhea and vascular lesions with petechial purpura and orthostatic acrocyanosis whose pathophysiology is poorly known. Current treatment aims to reduce hydrogen sulfide accumulation, but does not significantly prevent encephalopathy and most fatalities. In this review, we will summarize the present knowledge obtained from human and animal studies showing that disruption of mitochondrial and redox homeostasis may represent relevant pathomechanisms of tissue damage in EE. Mounting evidence show that hydrogen sulfide and ethylmalonic acid markedly disturb critical mitochondrial functions and induce oxidative stress. Novel therapeutic strategies using promising candidate drugs for this devastating disease are also discussed.


Subject(s)
Brain Injuries , Purpura , Animals , Brain/metabolism , Brain Diseases, Metabolic, Inborn , Brain Injuries/metabolism , Homeostasis , Humans , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , Oxidation-Reduction , Purpura/genetics , Purpura/metabolism , Purpura/pathology
12.
Neurochem Int ; 150: 105188, 2021 11.
Article in English | MEDLINE | ID: mdl-34536545

ABSTRACT

After different types of acute central nervous system insults, including stroke, subarachnoid haemorrhage and traumatic brain and spinal cord injuries, secondary damage plays a central role in the induction of cell death, neurodegeneration and functional deficits. Interestingly, secondary cell death presents an attractive target for clinical intervention because the temporal lag between injury and cell loss provides a potential window for effective treatment. While primary injuries are the direct result of the precipitating insult, secondary damage involves the activation of pathological cascades through which endogenous factors can exacerbate initial tissue damage. Secondary processes, usually interactive and overlapping, include oxidative stress, neuroinflammation and dysregulation of autophagy, ultimately leading to cell death. Resveratrol, a natural stilbene present at relatively high concentrations in grape skin and red wine, exerts a wide range of beneficial health effects. Within the central nervous system, in addition to its inherent free radical scavenging role, resveratrol increases endogenous cellular antioxidant defences thus modulating multiple synergistic pathways responsible for its antioxidant, anti-inflammatory and anti-apoptotic properties. During the last years, a growing body of in vitro and in vivo evidence has been built, indicating that resveratrol can induce a neuroprotective state and attenuate functional deficits when administered acutely after an experimental injury to the central nervous system. In this review, we summarize the most recent findings on the molecular pathways involved in the neuroprotective effects of this multi target polyphenol, and discuss its neuroprotective potential after brain or spinal cord injuries.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Brain Injuries/drug therapy , Neuroprotective Agents/therapeutic use , Resveratrol/therapeutic use , Spinal Cord Injuries/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Brain Injuries/metabolism , Cell Death/drug effects , Cell Death/physiology , Humans , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Resveratrol/pharmacology , Spinal Cord Injuries/metabolism
13.
Exp Neurol ; 340: 113643, 2021 06.
Article in English | MEDLINE | ID: mdl-33631199

ABSTRACT

Brain damage during early life is the main factor in the development of cerebral palsy (CP), which is one of the leading neurodevelopmental disorders in childhood. Few studies, however, have focused on the mechanisms of cell proliferation, migration, and differentiation in the brain of individuals with CP. We thus conducted a systematic review of preclinical evidence of structural neurogenesis in early brain damage and the underlying mechanisms involved in the pathogenesis of CP. Studies were obtained from Embase, Pubmed, Scopus, and Web of Science. After screening 2329 studies, 29 studies, covering a total of 751 animals, were included. Prenatal models based on oxygen deprivation, inflammatory response and infection, postnatal models based on oxygen deprivation or hypoxic-ischemia, and intraventricular hemorrhage models showed varying neurogenesis responses according to the nature of the brain damage, the time period during which the brain injury occurred, proliferative capacity, pattern of migration, and differentiation profile in neurogenic niches. Results mainly from rodent studies suggest that prenatal brain damage impacts neurogenesis and curbs generation of neural stem cells, while postnatal models show increased proliferation of neural precursor cells, improper migration, and reduced survival of new neurons.


Subject(s)
Brain Injuries/pathology , Cerebral Palsy/pathology , Disease Models, Animal , Neural Stem Cells/physiology , Neurogenesis/physiology , Animals , Biomarkers/metabolism , Brain Injuries/metabolism , Brain Injuries/physiopathology , Cell Movement/physiology , Cerebral Palsy/metabolism , Cerebral Palsy/physiopathology , Humans
14.
Peptides ; 135: 170425, 2021 01.
Article in English | MEDLINE | ID: mdl-33053420

ABSTRACT

Prolactin (PRL) is known to exert neuroprotective effects against excitotoxic damage in the hippocampus of female rats, both in vitro and in vivo. It is still unknown whether this effect can be seen in the male hippocampus and intracellular signaling mediating such action. To assess this, adult male CD-1 mice were subjected to excitotoxic damage with kainic acid (KA; i.c.v.), after a) no manipulation (control group), b) treatment with saline, and c) treatment with PRL (8 µg of PRL/100 µl of saline s.c.). Treatments consisted of one daily injection of the mentioned dosage for seven consecutive days until the day of the excitotoxic lesion. Neurodegeneration (Fluoro-Jade C), neuronal survival (NeuN) and astrogliosis (GFAP) markers were identified with immunohistochemistry in the CA1, CA3 and CA4 areas of the dorsal hippocampus, as well as PRL-related protein levels by Western blot in the whole hippocampus 48 h after excitotoxicity. Anatomical measurements revealed a preferential protective effect of PRL against excitotoxic damage in the CA3 hippocampal subfield, with lower levels of cell death and neurodegeneration, compared to controls. In CA4, the results were not conclusive, and no damage was observed in CA1 after KA administration. PRL treatment provoked an upregulation of active Akt, a well-known cell survival pathway, after KA administration. PRL also caused downregulation of active MAPK, independently of the excitotoxic damage. The present results indicate a neuroprotective role for PRL preferentially located in the CA3 area of the hippocampus of male mice, possibly mediated by Akt-related survival mechanisms.


Subject(s)
Brain Injuries/drug therapy , Hippocampus/drug effects , Neuroprotective Agents/pharmacology , Prolactin/pharmacology , Animals , Brain Injuries/chemically induced , Brain Injuries/metabolism , Brain Injuries/pathology , Cell Death/drug effects , Disease Models, Animal , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Kainic Acid/toxicity , Mice , Neurons/drug effects , Neurons/pathology , Neurotoxins/toxicity , Rats
15.
Int. j. morphol ; 38(5): 1217-1222, oct. 2020. graf
Article in English | LILACS | ID: biblio-1134428

ABSTRACT

SUMMARY: Repeated stress is a risk factor for memory impairment and neurological abnormalities in both humans and animals. We sought to investigate the extent of (i) brain tissue injury; (ii) nitrosative and oxidative stress in brain tissue homogenates; (iii) apoptotic and survival biomarkers in brain tissue homogenates; and (iv) immobility and climbing abilities, induced over a period of three weeks by chronic unpredictable stress (CUS). Wistar rats were either left untreated (Control group) or exposed to a variety of unpredictable stressors daily before being sacrificed after 3 weeks (model group). Assessment of depression-like behavior was performed and animals were then culled and harvested brain tissues were stained with basic histological staining and examined under light microscopy. In addition, brain tissue homogenates were prepared and assayed for these parameters; inducible nitric oxide synthase (iNOS), malondialdehyde (MDA), superoxide dismutase (SOD), caspase-3, and B-cell lymphoma 2 (Bcl-2). Histology images showed CUS induced profound damage to the cerebral cortex as demonstrated by severe neuronal damage with shrunken cells, disrupted atrophic nuclei, perineuronal vacuolation and swollen glial cells. CUS also significantly (p<0.05) induced iNOS, MDA, and caspase-3, whereas SOD and Bcl-2 brain tissue levels were inhibited by CUS. In addition, data from the depression-like behavior, forced swimming test showed significant (p<0.05) increase in animal immobility and decrease in climbing ability in the model group of rats. Thus, here we demonstrated a reliable rat model of chronic stress-induced brain injury, which can further be used to investigate beneficial drugs or agents used for a period of three weeks to protect against CUS-induced brain damage.


RESUMEN: El estrés crónico es un factor de riesgo para el deterioro de la memoria y las anomalías neurológicas tanto en humanos como en animales. Intentamos investigar el alcance de lesión del tejido cerebral; (ii) estrés nitrosativo y oxidativo en homogeneizados de tejido cerebral; (iii) biomarcadores apoptóticos y de supervivencia en homogeneizados de tejido cerebral; y (iv) inmovilidad y habilidades de escalada, inducidas durante un período de tres semanas por estrés crónico impredecible (ECI). Se dejaron sin tratamiento (grupo control) ratas Wistar, o se expusieron a una variedad de factores estresantes impredecibles diariamente antes de ser sacrificadas después de 3 semanas (grupo modelo). Se realizó una evaluación del comportamiento similar a la depresión y luego se sacrificaron los animales y se tiñeron los tejidos cerebrales con tinción histológica básica y se examinaron con microscopía óptica. Además, se prepararon homogeneizados de tejido cerebral y se analizaron los siguientes parámetros; óxido nítrico sintasa inducible (iNOS), malondialdehído (MDA), superóxido dismutasa (SOD), caspasa- 3 y linfoma de células B 2 (Bcl-2). Las imágenes histológicas mostraron que el CUS indujo un daño profundo en la corteza cerebral como lo demuestra el daño neuronal severo con células encogidas, núcleos atróficos alterados, vacuolación perineuronal y células gliales inflamadas. ECI también indujo significativamente (p <0,05) iNOS, MDA y caspase-3, mientras que los niveles de tejido cerebral SOD y Bcl-2 fueron inhibidos por ECI. Además, los datos del comportamiento similar a la de- presión, la prueba de natación forzada mostró un aumento significativo (p <0,05) en la inmovilidad animal y una disminución en la capacidad de escalada en el grupo modelo de ratas. Por lo tanto, aquí demostramos un modelo confiable de daño cerebral crónico en rata inducido por el estrés, que se puede utilizar para investigar medicamentos o agentes beneficiosos usados durante un período de tres semanas para proteger el daño cerebral inducido por ECI.


Subject(s)
Animals , Male , Rats , Stress, Psychological/complications , Brain Damage, Chronic/pathology , Superoxide Dismutase/analysis , Behavior, Animal , Brain Injuries/metabolism , Biomarkers , Cerebral Cortex , Chronic Disease , Analysis of Variance , Rats, Wistar , Apoptosis , Oxidative Stress , Nitric Oxide Synthase/analysis , Proto-Oncogene Proteins c-bcl-2 , Depression , Disease Models, Animal , Caspase 3/analysis , Nitrosative Stress , Malondialdehyde/analysis
16.
Mol Neurobiol ; 57(2): 879-895, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31522382

ABSTRACT

Reactive astrogliosis occurs upon focal brain injury and in neurodegenerative diseases. The mechanisms that propagate reactive astrogliosis to distal parts of the brain, in a rapid wave that activates astrocytes and other cell types along the way, are not completely understood. It is proposed that damage-associated molecular patterns (DAMP) released by necrotic cells from the injury core have a major role in the reactive astrogliosis initiation but whether they also participate in reactive astrogliosis propagation remains to be determined. We here developed a Bayesian computational model to define the most probable model for reactive astrogliosis propagation. Starting with experimental data from GFAP-immunostained reactive astrocytes, we defined five types of astrocytes based on morphometrical cues and registered the position of each reactive astrocyte cell type in the hemisphere ipsilateral to the injured site after 3 and 7 days post-ischemia. We developed equations for the changes in DAMP concentration (due to diffusion, binding to receptors or degradation), soluble mediators secretion, and for the evolution reactive astrogliosis. We tested four predefined models based on abovementioned previous hypothesis and modifications to it. Our results showed that DAMP diffusion alone has not justified the reactive astrogliosis propagation as previously assumed. Only two models succeeded in accurately reproducing the experimentally measured data and they highlighted the role of microglia and the glial secretion of soluble mediators to sustain the reactive signal and activating neighboring astrocytes. Thus, our in silico analysis proposes that glial cells behave as repeater stations of the injury signal in order to propagate reactive astrogliosis.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Gliosis/metabolism , Microglia/metabolism , Animals , Bayes Theorem , Brain Injuries/metabolism , Cells, Cultured , Glial Fibrillary Acidic Protein/metabolism , Inflammation/metabolism , Male , Rats, Wistar
17.
Acta Cir Bras ; 34(4): e201900401, 2019 May 06.
Article in English | MEDLINE | ID: mdl-31066785

ABSTRACT

PURPOSE: To investigate the relations of neuropeptide Y (NPY) and heme oxygenase-1 (HO-1) expressions with fetal brain injury in rats with intrahepatic cholestasis of pregnancy (ICP). METHODS: Sixty rats pregnant for 15 days were randomly divided into experimental and control groups. The ICP model was established in experimental group. On the 21st day, the blood biochemical test, histopathological examination of pregnant rat liver and fetal brain tissues and immunohistochemical analysis of fetal rat brain tissues were performed. RESULTS: On the 21st day, the alanineaminotransferase, aspartate aminotransferase and total bile acid levels in experimental group were significantly higher than control group (P<0.01). Compared with control group, there was obvious vacuolar degeneration in pregnant rat liver tissue and fetal brain tissue in experimental group. NPY expression in fetal brain tissue was negative in control group and positive in experimental group. HO-1 expression in fetal brain tissue was strongly positive in control group and positive in experimental group. There was significant difference of immunohistochemical staining optical density between two groups (P<0.01). CONCLUSION: In fetal brain of ICP rats, the NPY expression is increased, and the HO-1 expression is decreased, which may be related to the fetal brain injury.


Subject(s)
Brain Injuries/metabolism , Cholestasis, Intrahepatic/metabolism , Heme Oxygenase-1/metabolism , Neuropeptide Y/metabolism , Pregnancy Complications/metabolism , Animals , Brain Injuries/etiology , Brain Injuries/pathology , Cholestasis, Intrahepatic/complications , Cholestasis, Intrahepatic/pathology , Disease Models, Animal , Female , Immunohistochemistry , Pregnancy , Pregnancy Complications/pathology , Rats , Rats, Sprague-Dawley
18.
Crit Care Med ; 47(4): e292-e300, 2019 04.
Article in English | MEDLINE | ID: mdl-30855329

ABSTRACT

OBJECTIVES: Brain mitochondrial dysfunction limits neurologic recovery after cardiac arrest. Brain polyunsaturated cardiolipins, mitochondria-unique and functionally essential phospholipids, have unprecedented diversification. Since brain cardiolipins are not present in plasma normally, we hypothesized their appearance would correlate with brain injury severity early after cardiac arrest and return of spontaneous circulation. DESIGN: Observational case-control study. SETTING: Two medical centers within one city. PARTICIPANTS (SUBJECTS): We enrolled 41 adult cardiac arrest patients in whom blood could be obtained within 6 hours of resuscitation. Two subjects were excluded following outlier analysis. Ten healthy subjects were controls. Sprague-Dawley rats were used in asphyxial cardiac arrest studies. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We developed a high-resolution liquid chromatography/mass spectrometry method and determined cardiolipins speciation in human brain, heart, and plasma within 6 hours of (return of spontaneous circulation) from 39 patients with cardiac arrest, 5 with myocardial infarction, and 10 healthy controls. Cerebral score was derived from brain-specific cardiolipins identified in plasma of patients with varying neurologic injury and outcome. Using a rat model of cardiac arrest, cardiolipins were quantified in plasma, brain, and heart. Human brain exhibited a highly diverse cardiolipinome compared with heart that allowed the identification of brain-specific cardiolipins. Nine of 26 brain-specific cardiolipins were detected in plasma and correlated with brain injury. The cerebral score correlated with early neurologic injury and predicted discharge neurologic/functional outcome. Cardiolipin (70:5) emerged as a potential point-of-care marker predicting injury severity and outcome. In rat cardiac arrest, a significant reduction in hippocampal cardiolipins corresponded to their release from the brain into systemic circulation. Cerebral score was significantly increased in 10 minutes versus 5 minutes no-flow cardiac arrest and naïve controls. CONCLUSIONS: Brain-specific cardiolipins accumulate in plasma early after return of spontaneous circulation and proportional to neurologic injury representing a promising novel biomarker.


Subject(s)
Brain Injuries/metabolism , Cardiolipins/blood , Cardiomyopathies/metabolism , Mitochondria, Heart/metabolism , Animals , Cardiopulmonary Resuscitation/methods , Case-Control Studies , Female , Gas Chromatography-Mass Spectrometry/methods , Heart Arrest/metabolism , Humans , Male , Oxidation-Reduction , Rats , Rats, Sprague-Dawley
19.
Neurotox Res ; 35(4): 809-822, 2019 May.
Article in English | MEDLINE | ID: mdl-30850947

ABSTRACT

3-Methylglutaric acid (MGA) is an organic acid that accumulates in 3-methylglutaconic (MGTA) and 3-hydroxy-3-methylglutaric (HMGA) acidurias. Patients affected by these disorders present with neurological dysfunction that usually appears in the first years of life. In order to elucidate the pathomechanisms underlying the brain injury in these disorders, we evaluated the effects of MGA administration on redox homeostasis, mitochondrial respiratory chain activity, and biogenesis in the cerebral cortex of developing rats. Neural damage markers and signaling pathways involved in cell survival, and death were also measured after MGA administration. Furthermore, since the treatment for MGTA and HMGA is still limited, we tested whether a pre-treatment with the pan-peroxisome proliferator-activated receptor (PPAR) agonist bezafibrate could prevent the alterations caused by MGA. MGA provoked lipid peroxidation, increased heme oxygenase-1 content, and altered the activities of antioxidant enzymes, strongly suggestive of oxidative stress. MGA also impaired mitochondrial function and biogenesis by decreasing the activities of succinate dehydrogenase and various respiratory chain complexes, as well as the nuclear levels of PGC-1α and NT-PGC-1α, and cell content of Sirt1. AMPKα1 was further increased by MGA. Neural cell damage was also observed following the MGA administration, as verified by decreased Akt and synaptophysin content and reduced ERK phosphorylation, and by the increase of active caspase-3 and p38 and Tau phosphorylation. Importantly, bezafibrate prevented MGA-elicited toxic effects towards mitochondrial function, redox homeostasis, and neural cell injury, implying that this compound may be potentially used as an adjunct therapy for MGTA and HMGA and other disorders with mitochondrial dysfunction.


Subject(s)
Bezafibrate/administration & dosage , Brain Injuries/metabolism , Meglutol/analogs & derivatives , Organelle Biogenesis , Animals , Brain Injuries/chemically induced , Brain Injuries/prevention & control , Caspase 3/metabolism , MAP Kinase Signaling System/drug effects , Male , Meglutol/administration & dosage , Oxidation-Reduction , Oxidative Stress/drug effects , Rats, Wistar , Synaptophysin/metabolism , tau Proteins/metabolism
20.
Acta cir. bras ; Acta cir. bras;34(4): e201900401, 2019. tab, graf
Article in English | LILACS | ID: biblio-1001090

ABSTRACT

Abstract Purpose: To investigate the relations of neuropeptide Y (NPY) and heme oxygenase-1 (HO-1) expressions with fetal brain injury in rats with intrahepatic cholestasis of pregnancy (ICP). Methods: Sixty rats pregnant for 15 days were randomly divided into experimental and control groups. The ICP model was established in experimental group. On the 21st day, the blood biochemical test, histopathological examination of pregnant rat liver and fetal brain tissues and immunohistochemical analysis of fetal rat brain tissues were performed. Results: On the 21st day, the alanineaminotransferase, aspartate aminotransferase and total bile acid levels in experimental group were significantly higher than control group (P<0.01). Compared with control group, there was obvious vacuolar degeneration in pregnant rat liver tissue and fetal brain tissue in experimental group. NPY expression in fetal brain tissue was negative in control group and positive in experimental group. HO-1 expression in fetal brain tissue was strongly positive in control group and positive in experimental group. There was significant difference of immunohistochemical staining optical density between two groups (P<0.01). Conclusion: In fetal brain of ICP rats, the NPY expression is increased, and the HO-1 expression is decreased, which may be related to the fetal brain injury.


Subject(s)
Animals , Female , Pregnancy , Rats , Pregnancy Complications/metabolism , Neuropeptide Y/metabolism , Brain Injuries/metabolism , Cholestasis, Intrahepatic/metabolism , Heme Oxygenase-1/metabolism , Pregnancy Complications/pathology , Brain Injuries/etiology , Brain Injuries/pathology , Immunohistochemistry , Cholestasis, Intrahepatic/complications , Cholestasis, Intrahepatic/pathology , Rats, Sprague-Dawley , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL