Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.175
Filter
1.
Acta Cir Bras ; 39: e393124, 2024.
Article in English | MEDLINE | ID: mdl-39109777

ABSTRACT

PURPOSE: To investigate the neuroprotective effects of the SOD2 gene in cerebral ischemia reperfusion injury function and the underlying mechanisms in a mice model of middle cerebral artery ischemia reperfusion. METHODS: SOD2 transgenic mice were engineered using transcription activator-like effector nucleases, and the genotype was identified using PCR after every three generations. Transgenic and C57BL/6J wild type mice were simultaneously subjected to the middle cerebral artery occlusion model. RESULTS: SOD2 expression in the brain, heart, kidney, and skeletal muscle of transgenic mice was significantly higher than that in the wild type. Following ischemia reperfusion, the infarct volume of wild type mice decreased after treatment with fenofibrate compared to the CMC group. Infarction volume in SOD2 transgenic mice after CMC and fenofibrate treatment was significantly reduced. The recovery of cerebral blood flow in wild type mice treated with fenofibrate was significantly enhanced compared with that in the CMC group. CONCLUSIONS: The expression of SOD2 in transgenic mice was significantly higher than that in wild type mice, the neuroprotective role of fenofibrate depends on an increase in SOD2 expression.


Subject(s)
Disease Models, Animal , Fenofibrate , Mice, Inbred C57BL , Mice, Transgenic , Reperfusion Injury , Superoxide Dismutase , Animals , Reperfusion Injury/genetics , Superoxide Dismutase/genetics , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Brain Ischemia/genetics , Humans , Male , Mice , Infarction, Middle Cerebral Artery/genetics , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
2.
Mamm Genome ; 35(3): 346-361, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39115562

ABSTRACT

Pyroptosis has been regarded as caspase-1-mediated monocyte death that induces inflammation, showing a critical and detrimental role in the development of cerebral ischemia-reperfusion injury (IRI). MARCH1 is an E3 ubiquitin ligase that exerts potential anti-inflammatory functions. Therefore, the study probed into the significance of MARCH1 in inflammation and pyroptosis elicited by cerebral IRI. Middle cerebral artery occlusion/reperfusion (MCAO/R)-treated mice and oxygen glucose deprivation/reoxygenation (OGD/R)-treated hippocampal neurons were established to simulate cerebral IRI in vivo and in vitro. MARCH1 and PCSK9 expression was tested in MCAO/R-operated mice, and their interaction was identified by means of the cycloheximide assay and co-immunoprecipitation. The functional roles of MARCH1 and PCSK9 in cerebral IRI were subsequently determined by examining the neurological function, brain tissue changes, neuronal viability, inflammation, and pyroptosis through ectopic expression and knockdown experiments. PCSK9 expression was increased in the brain tissues of MCAO/R mice, while PCSK9 knockdown reduced brain damage and neurological deficits. Additionally, inflammation and pyroptosis were inhibited in OGD/R-exposed hippocampal neurons upon PCSK9 knockdown, accompanied by LDLR upregulation and NLRP3 inflammasome inactivation. Mechanistic experiments revealed that MARCH1 mediated ubiquitination and degradation of PCSK9, lowering PCSK9 protein expression. Furthermore, it was demonstrated that MARCH1 suppressed inflammation and pyroptosis after cerebral IRI by downregulating PCSK9 both in vivo and in vitro. Taken together, the present study demonstrate the protective effect of MARCH1 against cerebral IRI through PCSK9 downregulation, which might contribute to the discovery of new therapies for improving cerebral IRI.


Subject(s)
Inflammation , Proprotein Convertase 9 , Pyroptosis , Reperfusion Injury , Ubiquitin-Protein Ligases , Animals , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Pyroptosis/genetics , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Mice , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Neurons/metabolism , Neurons/pathology , Male , Brain Ischemia/genetics , Brain Ischemia/metabolism , Down-Regulation , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Hippocampus/metabolism , Hippocampus/pathology , Disease Models, Animal , Mice, Inbred C57BL
3.
Gen Physiol Biophys ; 43(5): 385-397, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39140683

ABSTRACT

Stroke is one of the major causes of disability and death worldwide. The lack of effective medical treatment for stroke heightens the need for new therapeutic targets. In this study, we obtained two microarray data sets from the Gene Expression Omnibus (GEO) database and identified differential genes (DEGs) between MCAO and control groups. Then, enrichment analysis of the DEGs was performed using DAVID and Metascape. The results show 27 DEGs shared between the two datasets. The functional enrichment analysis showed that these genes are mainly enriched in immune response, complement and coagulation cascades, apoptotic processes. The four hub genes (C1qc, Fcgr2b, C1qb, and Cd14) were screened out using the Cytoscape. Next, real-time PCR and Western blot analysis showed that expression of C1q and CD14 increased at 14 days after tMCAO. Furthermore, we took eight small molecule compounds with the lowest score using Cmap and studied their background characteristics. These results are built on a meta-analysis of data, which are generally accessible from the online space. Finally, we evaluated the protective effect of the rolipram through behavior tests after tMCAO, and results showed that the rolipram significantly attenuated neurobehavioral dysfunction at 14 days after brain ischemia. The present results provide novel insights into the biological process and potential therapeutic drugs involved in stroke.


Subject(s)
Computational Biology , Ischemic Stroke , Ischemic Stroke/genetics , Ischemic Stroke/drug therapy , Animals , Male , Mice , Gene Expression Profiling , Lipopolysaccharide Receptors/genetics , Lipopolysaccharide Receptors/metabolism , Neuroprotective Agents/therapeutic use , Complement C1q/genetics , Complement C1q/metabolism , Brain Ischemia/genetics , Brain Ischemia/drug therapy
4.
J Cell Mol Med ; 28(16): e70004, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39159174

ABSTRACT

Ischemia and hypoxia activate astrocytes into reactive types A1 and A2, which play roles in damage and protection, respectively. However, the function and mechanism of A1 and A2 astrocyte exosomes are unknown. After astrocyte exosomes were injected into the lateral ventricle, infarct volume, damage to the blood-brain barrier (BBB), apoptosis and the expression of microglia-related proteins were measured. The dual luciferase reporter assay was used to detect the target genes of miR-628, and overexpressing A2-Exos overexpressed and knocked down miR-628 were constructed. qRT-PCR, western blotting and immunofluorescence staining were subsequently performed. A2-Exos obviously reduced the infarct volume, damage to the BBB and apoptosis and promoted M2 microglial polarization. RT-PCR showed that miR-628 was highly expressed in A2-Exos. Dual luciferase reporter assays revealed that NLRP3, S1PR3 and IRF5 are target genes of miR-628. After miR-628 was overexpressed or knocked down, the protective effects of A2-Exos increased or decreased, respectively. A2-Exos reduced pyroptosis and BBB damage and promoted M2 microglial polarization through the inhibition of NLRP3, S1PR3 and IRF5 via the delivery of miR-628. This study explored the mechanism of action of A2-Exos and provided new therapeutic targets and concepts for treating cerebral ischemia.


Subject(s)
Astrocytes , Blood-Brain Barrier , Brain Ischemia , Exosomes , MicroRNAs , Reperfusion Injury , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Astrocytes/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reperfusion Injury/therapy , Exosomes/metabolism , Brain Ischemia/metabolism , Brain Ischemia/genetics , Brain Ischemia/therapy , Brain Ischemia/pathology , Blood-Brain Barrier/metabolism , Male , Apoptosis/genetics , Microglia/metabolism , Microglia/pathology , Mice
5.
Front Immunol ; 15: 1454116, 2024.
Article in English | MEDLINE | ID: mdl-39176087

ABSTRACT

Objective: This study aimed to investigate the regulatory role of astrocyte-derived exosomes and their microRNAs (miRNAs) in modulating neuronal pyroptosis during cerebral ischemia. Methods: Astrocyte-derived exosomes were studied for treating cerebral ischemia in both in vitro and in vivo models. The effects of astrocyte-derived exosomes on neuroinflammation were investigated by analyzing exosome uptake, nerve damage, and pyroptosis protein expression. High throughput sequencing was used to identify astrocyte-derived exosomal miRNAs linked to pyroptosis, followed by validation via qRT‒PCR. The relationship between these miRNAs and NLRP3 was studied using a dual luciferase reporter assay. This study used miR-378a-5p overexpression and knockdown to manipulate OGD injury in nerve cells. The impact of astrocyte-derived exosomal miR-378a-5p on the regulation of cerebral ischemic neuroinflammation was assessed through analysis of nerve injury and pyroptosis protein expression. Results: Our findings demonstrated that astrocyte-derived exosomes were internalized by neurons both in vitro and in vivo. Additionally, Astrocyte-derived exosomes displayed a neuroprotective effect against OGD-induced neuronal injury and brain injury in the ischemic cortical region of middle cerebral artery occlusion (MCAO) rats while also reducing pyroptosis. Further investigations revealed the involvement of astrocyte-derived exosomal miR-378a-5p in regulating pyroptosis by inhibiting NLRP3. The overexpression of miR-378a-5p mitigated neuronal damage, whereas the knockdown of miR-378a-5p increased NLRP3 expression and exacerbated pyroptosis, thus reversing this neuroprotective effect. Conclusion: Astrocyte-derived exosomal miR-378a-5p has a neuroprotective effect on cerebral ischemia by suppressing neuroinflammation associated with NLRP3-mediated pyroptosis.Further research is required to comprehensively elucidate the signaling pathways by which astrocyte-derived exosomal miR-378a-5p modulates neuronal pyroptosis.


Subject(s)
Astrocytes , Brain Ischemia , Exosomes , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , Neuroinflammatory Diseases , Pyroptosis , Animals , Pyroptosis/genetics , MicroRNAs/genetics , Exosomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Astrocytes/metabolism , Rats , Male , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Brain Ischemia/metabolism , Brain Ischemia/genetics , Rats, Sprague-Dawley , Disease Models, Animal , Neurons/metabolism , Neurons/pathology , Infarction, Middle Cerebral Artery/metabolism
6.
Mol Med ; 30(1): 106, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039432

ABSTRACT

BACKGROUND: Investigating immune cell infiltration in the brain post-ischemia-reperfusion (I/R) injury is crucial for understanding and managing the resultant inflammatory responses. This study aims to unravel the role of the RPS27A-mediated PSMD12/NF-κB axis in controlling immune cell infiltration in the context of cerebral I/R injury. METHODS: To identify genes associated with cerebral I/R injury, high-throughput sequencing was employed. The potential downstream genes were further analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analyses. For experimental models, primary microglia and neurons were extracted from the cortical tissues of mouse brains. An in vitro cerebral I/R injury model was established in microglia using the oxygen-glucose deprivation/reoxygenation (OGD/R) technique. In vivo models involved inducing cerebral I/R injury in mice through the middle cerebral artery occlusion (MCAO) method. These models were used to assess neurological function, immune cell infiltration, and inflammatory factor release. RESULTS: The study identified RPS27A as a key player in cerebral I/R injury, with PSMD12 likely acting as its downstream regulator. Silencing RPS27A in OGD/R-induced microglia decreased the release of inflammatory factors and reduced neuron apoptosis. Additionally, RPS27A silencing in cerebral cortex tissues mediated the PSMD12/NF-κB axis, resulting in decreased inflammatory factor release, reduced neutrophil infiltration, and improved cerebral injury outcomes in I/R-injured mice. CONCLUSION: RPS27A regulates the expression of the PSMD12/NF-κB signaling axis, leading to the induction of inflammatory factors in microglial cells, promoting immune cell infiltration in brain tissue, and exacerbating brain damage in I/R mice. This study introduces novel insights and theoretical foundations for the treatment of nerve damage caused by I/R, suggesting that targeting the RPS27A and downstream PSMD12/NF-κB signaling axis for drug development could represent a new direction in I/R therapy.


Subject(s)
NF-kappa B , Reperfusion Injury , Ribosomal Proteins , Signal Transduction , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/immunology , Reperfusion Injury/genetics , Mice , NF-kappa B/metabolism , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Male , Disease Models, Animal , Microglia/metabolism , Microglia/immunology , Brain Ischemia/metabolism , Brain Ischemia/genetics , Brain Ischemia/immunology , Neurons/metabolism , Mice, Inbred C57BL , Protein Interaction Maps
7.
J Tradit Chin Med ; 44(4): 794-803, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39066540

ABSTRACT

OBJECTIVE: To assess the effect and mechanism of Sanhua Tang (, SHT) in treating ischemic stroke (IS) through the "Kaitong Xuanfu" theory by using network pharmacology and animal experiments. METHODS: The active ingredients and targets of SHT and IS were screened by public databases such as Traditional Chinese Medicine systems pharmacology, GeneCards, and online mendelian inheritance in man. Visual network topographies were constructed using R, Cytoscape 3.6.0, AutoDockTools, a user-sponsored molecular visualization system on an open-source foundation, and other software to analyze the correlation between targets and active ingredients. The middle cerebral artery occlusion (MCAO) model was established by operation. Animals were divided into the Sham group, MCAO group (M group), aloe-emodin (AE) group (MCAO rats treated with aloe-emodin), SHT at low dosage (SL group) (MCAO rats treated with SL), SHT at medium dosage (SM group), and SHT at high dosage (SH group). 2,3,5-triphenyl tetrazolium chloride staining was used to detect the volume of cerebral infarction; Nissl staining was used to observe the morphology of neuronal cells; transmission electron microscopy was used to observe the integrity of the blood-brain barrier (BBB); enzyme-linked immunosorbent assay was used to detect the content of interleukin-6 (IL-6), IL-10, tumor necrosis factor α (TNF-α) in serum. Western blot was used to detect the expression of vascular endothelial growth factor A (VEGFA) protein in the cerebral ischemic penumbra. RESULTS: Using network pharmacology and molecular docking validation, four active ingredients (lignan, naringenin, aloe-rhodopsin, and ß-sitosterol), seven target proteins (protein kinase b 1, IL-6, TNF, VEGFA, TP53, jun proto-oncogene, and cysteinyl aspartate specific proteinase 3), and inflammatory signaling pathways were identified. Animal experiments showed that the SH and AE groups had fewer neurological deficits, reduced brain infarct volumes, decreased serum inflammatory factor levels, increased expression of VEGFA protein, and less structural damage to neurons and BBB. CONCLUSION: The present study found that the therapeutic mechanism of SHT against IS may be related to the inhibition of BBB inflammatory damage, which is also the mechanism of "Kaitong Xuanfu." The high-dose group of SHT was relatively effective in regulating inflammatory factors, improving BBB permeability, and protecting neuronal cells from damage.


Subject(s)
Blood-Brain Barrier , Drugs, Chinese Herbal , Ischemic Stroke , Network Pharmacology , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Rats , Male , Humans , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/genetics , Neuroprotective Agents/pharmacology
8.
Nat Commun ; 15(1): 6232, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39043661

ABSTRACT

Neuroglia critically shape the brain´s response to ischemic stroke. However, their phenotypic heterogeneity impedes a holistic understanding of the cellular composition of the early ischemic lesion. Here we present a single cell resolution transcriptomics dataset of the brain´s acute response to infarction. Oligodendrocyte lineage cells and astrocytes range among the most transcriptionally perturbed populations and exhibit infarction- and subtype-specific molecular signatures. Specifically, we find infarction restricted proliferating oligodendrocyte precursor cells (OPCs), mature oligodendrocytes and reactive astrocytes, exhibiting transcriptional commonalities in response to ischemic injury. OPCs and reactive astrocytes are involved in a shared immuno-glial cross talk with stroke-specific myeloid cells. Within the perilesional zone, osteopontin positive myeloid cells accumulate in close proximity to CD44+ proliferating OPCs and reactive astrocytes. In vitro, osteopontin increases the migratory capacity of OPCs. Collectively, our study highlights molecular cross talk events which might govern the cellular composition of acutely infarcted brain tissue.


Subject(s)
Astrocytes , Ischemic Stroke , Oligodendrocyte Precursor Cells , Oligodendroglia , Single-Cell Analysis , Animals , Ischemic Stroke/genetics , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Male , Mice , Single-Cell Analysis/methods , Oligodendroglia/metabolism , Oligodendrocyte Precursor Cells/metabolism , Astrocytes/metabolism , Neuroglia/metabolism , Osteopontin/genetics , Osteopontin/metabolism , Transcriptome , Sequence Analysis, RNA/methods , Mice, Inbred C57BL , Brain/metabolism , Brain/pathology , Rats , Cell Proliferation , Cell Movement/genetics , Myeloid Cells/metabolism , Disease Models, Animal , Cell Nucleus/metabolism , Brain Ischemia/genetics , Brain Ischemia/metabolism , Brain Ischemia/pathology
9.
Neuroscience ; 553: 56-73, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38945353

ABSTRACT

BACKGROUND: N6-methyladenosine (m6A) is one of the most extensive RNA methylation modifications in eukaryotes and participates in the pathogenesis of numerous diseases including ischemic stroke. Peripheral blood neutrophils are forerunners after ischemic brain injury and exert crucial functions. This study aims to explore the transcriptional profiles of m6A modification in neutrophils of patients with ischemic stroke. RESULTS: We found that the expression levels of m6A regulators FTO and YTHDC1 were notably decreased in the neutrophils following ischemic stroke, and FTO expression was negatively correlated with neutrophil counts and neutrophil-to-lymphocyte ratio (NLR). The m6A mRNA&lncRNA epigenetic transcriptome microarray identified 416 significantly upregulated and 500 significantly downregulated mRNA peaks in neutrophils of ischemic stroke patients. Moreover, 48 mRNAs and 18 lncRNAs were hypermethylated, and 115 mRNAs and 29 lncRNAs were hypomethylated after cerebral ischemia. Gene ontology (GO) analysis identified that these m6A-modified mRNAs were primarily enriched in calcium ion transport, long-term synaptic potentiation, and base-excision repair. The signaling pathways involved were EGFR tyrosine kinase inhibitor resistance, ErbB, and base excision repair signaling pathway. MeRIP-qPCR validation results showed that NRG1 and GDPD1 were significantly hypermethylated, and LIG1, CHRND, lncRNA RP11-442J17.2, and lncRNA RP11-600P1.2 were significantly hypomethylated after cerebral ischemia. Moreover, the expression levels of major m6A regulators Mettl3, Fto, Ythdf1, and Ythdf3 were obviously declined in the brain and leukocytes of post-stroke mouse models. CONCLUSION: This study explored the RNA m6A methylation pattern in the neutrophils of ischemic stroke patients, indicating that it is an intervention target of epigenetic regulation in ischemic stroke.


Subject(s)
Adenosine , Ischemic Stroke , Neutrophils , RNA-Binding Proteins , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Neutrophils/metabolism , Male , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Middle Aged , RNA, Messenger/metabolism , Female , Mice, Inbred C57BL , Aged , Brain Ischemia/metabolism , Brain Ischemia/genetics , Transcriptome , RNA Splicing Factors , Nerve Tissue Proteins
10.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928006

ABSTRACT

Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.


Subject(s)
Hemorrhagic Stroke , Ischemic Stroke , MicroRNAs , Humans , Ischemic Stroke/genetics , Ischemic Stroke/metabolism , Ischemic Stroke/therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Hemorrhagic Stroke/therapy , Hemorrhagic Stroke/genetics , Hemorrhagic Stroke/metabolism , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Oxidative Stress , Brain Ischemia/metabolism , Brain Ischemia/genetics , Brain Ischemia/therapy
11.
J Cell Mol Med ; 28(12): e18449, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924214

ABSTRACT

Mitochondrial dynamics has emerged as an important target for neuronal protection after cerebral ischaemia/reperfusion. Therefore, the aim of this study was to investigate the mechanism by which ARMC10 regulation of mitochondrial dynamics affects mitochondrial function involved in ischaemic stroke (IS). Mitochondrial morphology was detected by laser scanning confocal microscopy (LSCM), and mitochondrial ultrastructural alterations were detected by electron microscopy. The expression of mitochondrial dynamics-related genes Drp1, Mfn1, Mfn2, Fis1, OPA1 and ARMC10 and downstream target genes c-Myc, CyclinD1 and AXIN2 was detected by RT-qPCR. Western blot was used to detect the protein expression of ß-catenin, GSK-3ß, p-GSK-3ß, Bcl-2 and Bax. DCFH-DA fluorescent probe was to detect the effect of ARMC10 on mitochondrial ROS level, Annexin V-FITC fluorescent probe was to detect the effect of ARMC10 on apoptosis, and ATP assay kit was to detect the effect of ARMC10 on ATP production. Mitochondrial dynamics was dysregulated in clinical IS samples and in the OGD/R cell model, and the relative expression of ARMC10 gene was significantly decreased in IS group (p < 0.05). Knockdown and overexpression of ARMC10 could affect mitochondrial dynamics, mitochondrial function and neuronal apoptosis. Agonist and inhibitor affected mitochondrial function and neuronal apoptosis by targeting Wnt/ß-Catenin signal pathway. In the OGD/R model, ARMC10 affected mitochondrial function and neuronal apoptosis through the mechanism that regulates Wnt/ß-catenin signalling pathway. ARMC10 regulates mitochondrial dynamics and protects mitochondrial function by activating Wnt/ß-catenin signalling pathway, to exert neuroprotective effects.


Subject(s)
Apoptosis , Armadillo Domain Proteins , Ischemic Stroke , Mitochondria , Mitochondrial Dynamics , Wnt Signaling Pathway , Humans , Armadillo Domain Proteins/metabolism , Armadillo Domain Proteins/genetics , beta Catenin/metabolism , beta Catenin/genetics , Brain Ischemia/metabolism , Brain Ischemia/genetics , Brain Ischemia/pathology , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/pathology , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
12.
Int Immunopharmacol ; 137: 112408, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38897129

ABSTRACT

BACKGROUND: Delayed cerebral ischemia (DCI) is a common and serious complication of subarachnoid hemorrhage (SAH). Its pathogenesis is not fully understood. Here, we developed a predictive model based on peripheral blood biomarkers and validated the model using several bioinformatic multi-analysis methods. METHODS: Six datasets were obtained from the GEO database. Characteristic genes were screened using weighted correlation network analysis (WGCNA) and differentially expressed genes. Three machine learning algorithms, elastic networks-LASSO, support vector machines (SVM-RFE) and random forests (RF), were also used to construct diagnostic prediction models for key genes. To further evaluate the performance and predictive value of the diagnostic models, nomogram model were constructed, and the clinical value of the models was assessed using Decision Curve Analysis (DCA), Area Under the Check Curve (AUC), Clinical Impact Curve (CIC), and validated in the mouse single-cell RNA-seq dataset. Mendelian randomization(MR) analysis explored the causal relationship between SAH and stroke, and the intermediate influencing factors. We validated this by retrospectively analyzing the qPCR levels of the most relevant genes in SAH and SAH-DCI patients. This experiment demonstrated a statistically significant difference between SAH and SAH-DCI and normal group controls. Finally, potential small molecule compounds interacting with the selected features were screened from the Comparative Toxicogenomics Database (CTD). RESULTS: The fGSEA results showed that activation of Toll-like receptor signaling and leukocyte transendothelial cell migration pathways were positively correlated with the DCI phenotype, whereas cytokine signaling pathways and natural killer cell-mediated cytotoxicity were negatively correlated. Consensus feature selection of DEG genes using WGCNA and three machine learning algorithms resulted in the identification of six genes (SPOCK2, TRRAP, CIB1, BCL11B, PDZD8 and LAT), which were used to predict DCI diagnosis with high accuracy. Three external datasets and the mouse single-cell dataset showed high accuracy of the diagnostic model, in addition to high performance and predictive value of the diagnostic model in DCA and CIC. MR analysis looked at stroke after SAH independent of SAH, but associated with multiple intermediate factors including Hypertensive diseases, Total triglycerides levels in medium HDL and Platelet count. qPCR confirmed that significant differences in DCI signature genes were observed between the SAH and SAH-DCI groups. Finally, valproic acid became a potential therapeutic agent for DCI based on the results of target prediction and molecular docking of the characterized genes. CONCLUSION: This diagnostic model can identify SAH patients at high risk for DCI and may provide potential mechanisms and therapeutic targets for DCI. Valproic acid may be an important future drug for the treatment of DCI.


Subject(s)
Biomarkers , Brain Ischemia , Valproic Acid , Humans , Animals , Brain Ischemia/drug therapy , Brain Ischemia/genetics , Brain Ischemia/blood , Brain Ischemia/immunology , Valproic Acid/therapeutic use , Mice , Biomarkers/blood , Subarachnoid Hemorrhage/blood , Subarachnoid Hemorrhage/immunology , Subarachnoid Hemorrhage/genetics , Subarachnoid Hemorrhage/drug therapy , Computational Biology , Databases, Genetic , Machine Learning
13.
J Cell Mol Med ; 28(11): e18366, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38856956

ABSTRACT

Ischemic stroke is one of the main causes of disability and death. However, recanalization of occluded cerebral arteries is effective only within a very narrow time window. Therefore, it is particularly important to find neuroprotective biological targets for cerebral artery recanalization. Here, gene expression profiles of datasets GSE160500 and GSE97537 were downloaded from the GEO database, which were related to ischemic stroke in rats. Olfactory receptor 78 (Olfr78) was screened, and which highly associated with Calcium signalling pathway and MAPK pathway. Interacting protein of Olfr78, Prkaca, was predicted by STRING, and their interaction was validated by Co-IP analysis. Then, a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a neuronal cell model stimulated by oxygen-glucose deprivation/reoxygenation (OGD/R) were constructed, and the results showed that expression of Olfr78 and Prkaca was downregulated in MCAO rats and OGD/R-stimulated neurons. Overexpression of Olfr78 or Prkaca inhibited the secretion of inflammatory factors, Ca2+ overload, and OGD/R-induced neuronal apoptosis. Moreover, Overexpression of Prkaca increased protein levels of cAMP, PKA and phosphorylated p38 in OGD/R-stimulated neurons, while SB203580, a p38 inhibitor, treatment inhibited activation of the cAMP/PKA-MAPK pathway and counteracted the effect of Olfr78 overexpression on improvement of neuronal functions. Meanwhile, overexpression of Olfr78 or Prkaca markedly inhibited neuronal apoptosis and improved brain injury in MCAO/R rats. In conclusion, overexpression of Olfr78 inhibited Ca2+ overload and reduced neuronal apoptosis in MCAO/R rats by promoting Prkaca-mediated activation of the cAMP/PKA-MAPK pathway, thereby improving brain injury in cerebral ischaemia-reperfusion.


Subject(s)
Apoptosis , Cyclic AMP , Rats, Sprague-Dawley , Receptors, Odorant , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Rats , Male , Cyclic AMP/metabolism , Receptors, Odorant/metabolism , Receptors, Odorant/genetics , Brain Ischemia/metabolism , Brain Ischemia/genetics , Brain Ischemia/pathology , MAP Kinase Signaling System/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Brain Injuries/metabolism , Brain Injuries/etiology , Brain Injuries/pathology , Neurons/metabolism , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Signal Transduction
14.
Neuromolecular Med ; 26(1): 22, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824254

ABSTRACT

Stroke is a significant public health issue, and research has consistently focused on studying the mechanisms of injury and identifying new targets. As a CDK5 activator, p39 plays a crucial role in various diseases. In this article, we will explore the role and mechanism of p39 in cerebral ischemic injury. We measured the level of p39 using western blot and QPCR at various time points following cerebral ischemia-reperfusion (I/R) injury. The results indicated a significant reduction in the level of p39. TTC staining and behavioral results indicate that the knockout of p39 (p39KO) provides neuroprotection in the short-term. Interestingly, the behavioral dysfunction in p39KO mice was exacerbated after the repair phase of I/R. Further study revealed that this deterioration may be due to demyelination induced by elevated p35 levels. In summary, our study offers profound insights into the significance of p39 in both the acute and repair stages of ischemic injury recovery and a theoretical foundation for future therapeutic drug exploration.


Subject(s)
Mice, Inbred C57BL , Mice, Knockout , Myelin Sheath , Reperfusion Injury , Animals , Male , Mice , Brain Ischemia/genetics , Brain Ischemia/metabolism , Demyelinating Diseases/pathology , Demyelinating Diseases/genetics , Infarction, Middle Cerebral Artery/pathology , Phosphotransferases , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
15.
Pharmacol Res ; 206: 107266, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878918

ABSTRACT

Cerebral ischemia-reperfusion injury (I/RI) is one of the principal pathogenic factors in the poor prognosis of ischemic stroke, for which current therapeutic options to enhance neurological recovery are notably insufficient. Dental pulp stem cell-derived extracellular vesicles (DPSC-EVs) have promising prospects in stroke treatment and the specific underlying mechanisms have yet to be fully elucidated. The present study observed that DPSC-EVs ameliorated the degree of cerebral edema and infarct volume by reducing the apoptosis of neurons. Furthermore, the miRNA sequencing and functional enrichment analysis identified that miR-877-3p as a key component in DPSC-EVs, contributing to neuroprotection and anti-apoptotic effects. Following target prediction and dual-luciferase assay indicated that miR-877-3p interacted with Bcl-2-associated transcription factor (Bclaf1) to play a function. The miR-877-3p inhibitor or Bclaf1 overexpression reversed the neuroprotective effects of DPSC-EVs. The findings reveal a novel therapeutic pathway where miR-877-3p, transferred via DPSC-EVs, confers neuroprotection against cerebral I/RI, highlighting its potential in promoting neuronal survival and recovery post-ischemia.


Subject(s)
Apoptosis , Dental Pulp , Extracellular Vesicles , MicroRNAs , Neurons , Recovery of Function , Reperfusion Injury , Signal Transduction , Stem Cells , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Dental Pulp/cytology , Dental Pulp/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/therapy , Neurons/metabolism , Neurons/pathology , Male , Stem Cells/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Rats, Sprague-Dawley , Brain Ischemia/metabolism , Brain Ischemia/genetics , Mice, Inbred C57BL , Rats , Cells, Cultured
16.
J Alzheimers Dis ; 99(4): 1375-1383, 2024.
Article in English | MEDLINE | ID: mdl-38759019

ABSTRACT

Background: Currently, no evidence exists on the expression of apoptosis (CASP3), autophagy (BECN1), and mitophagy (BNIP3) genes in the CA3 area after ischemia with long-term survival. Objective: The goal of the paper was to study changes in above genes expression in CA3 area after ischemia in the period of 6-24 months. Methods: In this study, using quantitative RT-PCR, we present the expression of genes associated with neuronal death in a rat ischemic model of Alzheimer's disease. Results: First time, we demonstrated overexpression of the CASP3 gene in CA3 area after ischemia with survival ranging from 0.5 to 2 years. Overexpression of the CASP3 gene was accompanied by a decrease in the activity level of the BECN1 and BNIP3 genes over a period of 0.5 year. Then, during 1-2 years, BNIP3 gene expression increased significantly and coincided with an increase in CASP3 gene expression. However, BECN1 gene expression was variable, increased significantly at 1 and 2 years and was below control values 1.5 years post-ischemia. Conclusions: Our observations suggest that ischemia with long-term survival induces neuronal death in CA3 through activation of caspase 3 in cooperation with the pro-apoptotic gene BNIP3. This study also suggests that the BNIP3 gene regulates caspase-independent pyramidal neuronal death post-ischemia. Thus, caspase-dependent and -independent death of neuronal cells occur post-ischemia in the CA3 area. Our data suggest new role of the BNIP3 gene in the regulation of post-ischemic neuronal death in CA3. This suggests the involvement of the BNIP3 together with the CASP3 in the CA3 in neuronal death post-ischemia.


Subject(s)
Alzheimer Disease , Apoptosis , Autophagy , Beclin-1 , Caspase 3 , Disease Models, Animal , Membrane Proteins , Mitophagy , Animals , Beclin-1/genetics , Beclin-1/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitophagy/genetics , Mitophagy/physiology , Autophagy/genetics , Autophagy/physiology , Apoptosis/genetics , Male , Caspase 3/metabolism , Caspase 3/genetics , Rats , CA3 Region, Hippocampal/pathology , CA3 Region, Hippocampal/metabolism , Brain Ischemia/genetics , Brain Ischemia/pathology , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Rats, Wistar
17.
Clin Neurol Neurosurg ; 242: 108313, 2024 07.
Article in English | MEDLINE | ID: mdl-38754303

ABSTRACT

AIM: Immunoinflammatory response plays an important role in the pathophysiological process of ischemic stroke (IS). Forkhead box P3 (FOXP3) is a master regulator for immune cells. Polymorphisms of FOXP3 gene might contribute to the susceptibility of IS. This study aimed to explore the association between FOXP3 gene polymorphisms (rs3761548 and rs2232365) and IS susceptibility in the Chinese Han population. METHODS: Polymerase chain reaction and Sanger sequencing were used to detect the genotype of FOXP3 gene rs3761548 and rs2232365 polymorphisms. RESULTS: Smoking, diabetes mellitus (DM), and HBP histories, higher TG and HDL-C levels were more frequently observed in IS patients than in controls. In comparison with rs3761548 GG genotype, GT genotype (OR = 1.573, 95 %CI = 1.030-2.402; adjusted: OR = 1.736, 95 %CI = 1.070-2.817) and GT + TT vs. GG model (OR = 1.581, 95 %CI = 1.0449-2.382; adjusted: OR = 1.720, 95 %CI = 1.074-2.755) of rs3761548 polymorphism was significantly correlated with elevated ischemic stroke susceptibility both at prior and after adjusted by smoking, HBP, DM, TG and HDL-C. Recessive model of rs2232365 polymorphism could elevate the susceptibility of ischemic stroke (OR = 11.962, 95 %CI = 1.144-3.3363; adjusted: OR = 1.876, 95 %CI = 1.016-3.463). Besides, rs3761548 dominant model (OR = 2.757, 95 %CI = 1.379-5.552; adjusted: OR = 2.601, 95 %CI = 1.268-5.336) and rs2232365 recessive model (OR = 3.103, 95 %CI = 1.463-6.583; adjusted: OR = 3.545, 95 %CI = 1.600-7.855) were related to the severity of ischemic stroke. CONCLUSION: FOXP3 gene rs3761548 and rs2232365 polymorphisms were risk factors for susceptibility and severity of IS.


Subject(s)
Forkhead Transcription Factors , Genetic Predisposition to Disease , Ischemic Stroke , Polymorphism, Single Nucleotide , Aged , Female , Humans , Male , Middle Aged , Brain Ischemia/genetics , China/epidemiology , East Asian People , Forkhead Transcription Factors/genetics , Genotype , Ischemic Stroke/genetics , Risk Factors
18.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2178-2187, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812233

ABSTRACT

This paper aims to explore the effect of Xuming Decoction in the Records of Proved Prescriptions, Ancient and Modern on cerebral ischemic injury and angiogenesis in the rat model of acute cerebral infarction. SD rats were randomized into 6 groups: sham group, model group, low-, medium-, and high-dose(5.13, 10.26, and 20.52 g·kg~(-1), respectively) Xuming Decoction groups, and butylphthalide(0.06 g·kg~(-1)) group. After the successful establishment of the rat model by middle cerebral artery occlusion(MCAO), rats in the sham and model groups were administrated with distilled water and those in other groups with corresponding drugs for 7 consecutive days. After the neurological function was scored, all the rats were sacrificed, and the brain tissue samples were collected. The degree of cerebral ischemic injury was assessed by the neurological deficit score and staining with 2,3,5-triphenyltetrazolium chloride. Hematoxylin-eosin staining was performed to observe the pathological changes in the brain. Transmission electron microscopy was employed to observe the ultrastructures of neurons and microvascular endothelial cells(ECs) on the ischemic side of the brain tissue. Immunofluorescence assay was employed to detect the expression of von Willebrand factor(vWF) and hematopoietic progenitor cell antigen CD34(CD34) in the ischemic brain tissue. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of Runt-related transcription factor 1(RUNX1), vascular endothelial growth factor(VEGF), angiopoietin-1(Ang-1), angiopoietin-2(Ang-2), and VEGF receptor 2(VEGFR2) in the ischemic brain tissue. The results showed that compared with the sham group, the model group showed increased neurological deficit score and cerebral infarction area(P<0.01), pathological changes, and damaged ultrastructure of neurons and microvascular ECs in the ischemic brain tissue. Furthermore, the modeling up-regulated the mRNA levels of RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01) and the protein levels of vWF, CD34, RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.05 or P<0.01). Compared with the model group, high-dose Xuming Decoction and butylphthalide decreased the neurological deficit score and cerebral infarction area(P<0.01) and alleviated the pathological changes and damage of the ultrastructure of neurons and microvascular ECs in the ischemic brain tissue. Moreover, they up-regulated the mRNA levels of RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01) and the protein levels of vWF, CD34, RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01). The results suggest that Xuming Decoction in the Records of Proved Prescriptions, Ancient and Modern can promote the angiogenesis and collateral circulation establishment to alleviate neurological dysfunction of the ischemic brain tissue in MCAO rats by regulating the RUNX1/VEGF pathway.


Subject(s)
Brain Ischemia , Cerebral Infarction , Disease Models, Animal , Drugs, Chinese Herbal , Rats, Sprague-Dawley , Animals , Rats , Male , Drugs, Chinese Herbal/pharmacology , Cerebral Infarction/drug therapy , Cerebral Infarction/metabolism , Cerebral Infarction/genetics , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/genetics , Humans , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Neovascularization, Physiologic/drug effects , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Angiogenesis
19.
Cell Rep Med ; 5(5): 101522, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38701781

ABSTRACT

Neuroinflammation plays a significant role in ischemic injury, which can be promoted by oxidized mitochondrial DNA (Ox-mtDNA). Cytidine/uridine monophosphate kinase 2 (CMPK2) regulates mtDNA replication, but its role in neuroinflammation and ischemic injury remains unknown. Here, we report that CMPK2 expression is upregulated in monocytes/macrophages and microglia post-stroke in humans and mice, respectively. Microglia/macrophage CMPK2 knockdown using the Cre recombination-dependent adeno-associated virus suppresses the inflammatory responses in the brain, reduces infarcts, and improves neurological outcomes in ischemic CX3CR1Cre/ERT2 mice. Mechanistically, CMPK2 knockdown limits newly synthesized mtDNA and Ox-mtDNA formation and subsequently blocks NLRP3 inflammasome activation in microglia/macrophages. Nordihydroguaiaretic acid (NDGA), as a CMPK2 inhibitor, is discovered to reduce neuroinflammation and ischemic injury in mice and prevent the inflammatory responses in primary human monocytes from ischemic patients. Thus, these findings identify CMPK2 as a promising therapeutic target for ischemic stroke and other brain disorders associated with neuroinflammation.


Subject(s)
Ischemic Stroke , Microglia , Neuroinflammatory Diseases , Animals , Humans , Male , Mice , Brain Injuries/pathology , Brain Injuries/metabolism , Brain Injuries/genetics , Brain Ischemia/pathology , Brain Ischemia/metabolism , Brain Ischemia/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Inflammasomes/metabolism , Ischemic Stroke/pathology , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Macrophages/metabolism , Macrophages/pathology , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Monocytes/metabolism , Monocytes/drug effects , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
20.
Stroke ; 55(6): 1650-1659, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38738428

ABSTRACT

BACKGROUND: Beyond neuronal injury, cell death pathways may also contribute to vascular injury after stroke. We examined protein networks linked to major cell death pathways and identified SLC22A17 (solute carrier family 22 member 17) as a novel mediator that regulates endothelial tight junctions after ischemia and inflammatory stress. METHODS: Protein-protein interactions and brain enrichment analyses were performed using STRING, Cytoscape, and a human tissue-specific expression RNA-seq database. In vivo experiments were performed using mouse models of transient focal cerebral ischemia. Human stroke brain tissues were used to detect SLC22A17 by immunostaining. In vitro experiments were performed using human brain endothelial cultures subjected to inflammatory stress. Immunostaining and Western blot were used to assess responses in SLC22A17 and endothelial tight junctional proteins. Water content, dextran permeability, and electrical resistance assays were used to assess edema and blood-brain barrier (BBB) integrity. Gain and loss-of-function studies were performed using lentiviral overexpression of SLC22A17 or short interfering RNA against SLC22A17, respectively. RESULTS: Protein-protein interaction analysis showed that core proteins from apoptosis, necroptosis, ferroptosis, and autophagy cell death pathways were closely linked. Among the 20 proteins identified in the network, the iron-handling solute carrier SLC22A17 emerged as the mediator enriched in the brain. After cerebral ischemia in vivo, endothelial expression of SLC22A17 increases in both human and mouse brains along with BBB leakage. In human brain endothelial cultures, short interfering RNA against SLC22A17 prevents TNF-α (tumor necrosis factor alpha)-induced ferroptosis and downregulation in tight junction proteins and disruption in transcellular permeability. Notably, SLC22A17 could repress the transcription of tight junctional genes. Finally, short interfering RNA against SLC22A17 ameliorates BBB leakage in a mouse model of focal cerebral ischemia. CONCLUSIONS: Using a combination of cell culture, human stroke samples, and mouse models, our data suggest that SLC22A17 may play a role in the control of BBB function after cerebral ischemia. These findings may offer a novel mechanism and target for ameliorating BBB injury and edema after stroke.


Subject(s)
Blood-Brain Barrier , Brain Ischemia , Tight Junctions , Aged , Animals , Female , Humans , Male , Mice , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain Ischemia/genetics , Cell Death , Endothelial Cells/metabolism , Mice, Inbred C57BL , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/genetics , Tight Junctions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL