Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.892
Filter
2.
Mol Autism ; 15(1): 34, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39113134

ABSTRACT

Previous research on autism spectrum disorders (ASD) have showed important volumetric alterations in the cerebellum and brainstem. Most of these studies are however limited to case-control studies with small clinical samples and including mainly children or adolescents. Herein, we aimed to explore the association between the cumulative genetic load (polygenic risk score, PRS) for ASD and volumetric alterations in the cerebellum and brainstem, as well as global brain tissue volumes of the brain among adults at the population level. We utilized the latest genome-wide association study of ASD by the Psychiatric Genetics Consortium (18,381 cases, 27,969 controls) and constructed the ASD PRS in an independent cohort, the UK Biobank. Regression analyses controlled for multiple comparisons with the false-discovery rate (FDR) at 5% were performed to investigate the association between ASD PRS and forty-four brain magnetic resonance imaging (MRI) phenotypes among ~ 31,000 participants. Primary analyses included sixteen MRI phenotypes: total volumes of the brain, cerebrospinal fluid (CSF), grey matter (GM), white matter (WM), GM of whole cerebellum, brainstem, and ten regions of the cerebellum (I_IV, V, VI, VIIb, VIIIa, VIIIb, IX, X, CrusI and CrusII). Secondary analyses included twenty-eight MRI phenotypes: the sub-regional volumes of cerebellum including the GM of the vermis and both left and right lobules of each cerebellar region. ASD PRS were significantly associated with the volumes of seven brain areas, whereby higher PRS were associated to reduced volumes of the whole brain, WM, brainstem, and cerebellar regions I-IV, IX, and X, and an increased volume of the CSF. Three sub-regional volumes including the left cerebellar lobule I-IV, cerebellar vermes VIIIb, and X were significantly and negatively associated with ASD PRS. The study highlights a substantial connection between susceptibility to ASD, its underlying genetic etiology, and neuroanatomical alterations of the adult brain.


Subject(s)
Brain Stem , Cerebellum , Magnetic Resonance Imaging , Multifactorial Inheritance , Phenotype , Humans , Cerebellum/diagnostic imaging , Cerebellum/pathology , Brain Stem/diagnostic imaging , Brain Stem/pathology , Male , Female , Adult , Genetic Predisposition to Disease , Organ Size , Middle Aged , Autistic Disorder/genetics , Autistic Disorder/diagnostic imaging , Genome-Wide Association Study , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/diagnostic imaging , Gray Matter/diagnostic imaging , Gray Matter/pathology , Case-Control Studies
3.
Sci Rep ; 14(1): 18482, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122842

ABSTRACT

A low arousal threshold (LAT) is a pathophysiological trait of obstructive sleep apnea (OSA) that may be associated with brainstem ascending reticular activating system-cortical functional connectivity changes. We evaluated resting-state connectivity between the brainstem nuclei and 105 cortical/subcortical regions in OSA patients with or without a LAT and healthy controls. Twenty-five patients with moderate to severe OSA with an apnea-hypopnea index between 20 and 40/hr (15 with and 10 without a LAT) and 15 age- and sex-matched controls were evaluated. Participants underwent functional magnetic resonance imaging after overnight polysomnography. Three brainstem nuclei-the locus coeruleus (LC), laterodorsal tegmental nucleus (LDTg), and ventral tegmental area (VTA)-associated with OSA in our previous study were used as seeds. Functional connectivity values of the two brainstem nuclei (LC and LDTg) significantly differed among the three groups. The connectivity of the LC with the precuneus was stronger in OSA patients than in controls regardless of the concomitant LAT. The connectivity between the LDTg and the posterior cingulate cortex was also stronger in OSA patients regardless of the LAT. Moreover, OSA patients without a LAT showed stronger LDTg-posterior cingulate cortex connectivity than those with a LAT (post hoc p = 0.013), and this connectivity strength was negatively correlated with the minimum oxygen saturation in OSA patients (r = - 0.463, p = 0.023). The LAT in OSA patients was associated with altered LDTg-posterior cingulate cortex connectivity. This result may suggested that cholinergic activity may play a role in the LAT in OSA patients.


Subject(s)
Arousal , Brain Stem , Magnetic Resonance Imaging , Polysomnography , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/diagnostic imaging , Male , Arousal/physiology , Female , Middle Aged , Adult , Brain Stem/diagnostic imaging , Brain Stem/physiopathology , Case-Control Studies
4.
J Med Virol ; 96(8): e29854, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135475

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) has a high mortality rate compared to other infectious diseases. SFTS is particularly associated with a high risk of mortality in immunocompromised individuals, while most patients who die of SFTS exhibit symptoms of severe encephalitis before death. However, the region of brain damage and mechanisms by which the SFTS virus (SFTSV) causes encephalitis remains unknown. Here, we revealed that SFTSV infects the brainstem and spinal cord, which are regions of the brain associated with respiratory function, and motor nerves in IFNAR1-/- mice. Further, we show that A1-reactive astrocytes are activated, causing nerve cell death, in infected mice. Primary astrocytes of SFTSV-infected IFNAR1-/- mice also induced neuronal cell death through the activation of A1-reactive astrocytes. Herein, we showed that SFTSV induces fatal neuroinflammation in the brain regions important for respiratory function and motor nerve, which may underlie mortality in SFTS patients. This study provides new insights for the treatment of SFTS, for which there is currently no therapeutic approach.


Subject(s)
Astrocytes , Bunyaviridae Infections , Mice, Knockout , Phlebovirus , Receptor, Interferon alpha-beta , Animals , Astrocytes/virology , Astrocytes/pathology , Mice , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/deficiency , Phlebovirus/genetics , Phlebovirus/physiology , Phlebovirus/pathogenicity , Bunyaviridae Infections/virology , Bunyaviridae Infections/pathology , Bunyaviridae Infections/immunology , Brain/virology , Brain/pathology , Brain/immunology , Spinal Cord/virology , Spinal Cord/pathology , Disease Models, Animal , Neurons/virology , Neurons/pathology , Mice, Inbred C57BL , Brain Stem/virology , Brain Stem/pathology , Cell Death
8.
Biomark Med ; 18(9): 431-439, 2024.
Article in English | MEDLINE | ID: mdl-39007837

ABSTRACT

Leptomeningeal metastasis (LM) is a devastating complication of malignancy. Diagnosis relies on both contrast enhancement on imaging and malignant cells in cerebral spinal fluid cytology. Though early detection and prompt intervention improves survival, the detection of LM is limited by false negatives. A rare brainstem imaging finding uncovered specifically in EGFR mutation-positive lung cancer patients may represent an early sign of LM. This sign demonstrates high signal on T2 fluid-attenuated inversion recovery and diffusion-weighted imaging sequences, but paradoxically lacks correlative contrast enhancement. Here we report a case of a 72-year-old female EGFR-positive lung cancer patient who developed this lesion following treatment with two first-generation EGFR tyrosine kinase inhibitors then showed subsequent response to osimertinib, an irreversible third-generation EGFR tyrosine kinase inhibitor.


A non-enhancing, T2 FLAIR hyperintense, diffusion-restricting brainstem lesion in an EGFR-positive lung cancer patient may represent an early indicator of leptomeningeal metastases.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Protein Kinase Inhibitors , Humans , Female , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/metabolism , Aged , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Brain Stem/pathology , Brain Stem/diagnostic imaging , Brain Stem/metabolism , Aniline Compounds/therapeutic use , Acrylamides/therapeutic use , Diffusion Magnetic Resonance Imaging , Indoles , Pyrimidines
9.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38997145

ABSTRACT

Chronic neuropathic pain can result from nervous system injury and can persist in the absence of external stimuli. Although ongoing pain characterizes the disorder, in many individuals, the intensity of this ongoing pain fluctuates dramatically. Previously, it was identified that functional magnetic resonance imaging signal covariations between the midbrain periaqueductal gray (PAG) matter, rostral ventromedial medulla (RVM), and spinal trigeminal nucleus are associated with moment-to-moment fluctuations in pain intensity in individuals with painful trigeminal neuropathy (PTN). Since this brainstem circuit is modulated by higher brain input, we sought to determine which cortical sites might be influencing this brainstem network during spontaneous fluctuations in pain intensity. Over 12 min, we recorded the ongoing pain intensity in 24 PTN participants and classified them as fluctuating (n = 13) or stable (n = 11). Using a PAG seed, we identified connections between the PAG and emotional-affective sites such as the hippocampal and posterior cingulate cortices, the sensory-discriminative posterior insula, and cognitive-affective sites such as the dorsolateral prefrontal (dlPFC) and subgenual anterior cingulate cortices that were altered dependent on spontaneous high and low pain intensity. Additionally, sliding-window functional connectivity analysis revealed that the dlPFC-PAG connection anticorrelated with perceived pain intensity over the entire 12 min period. These findings reveal cortical systems underlying moment-to-moment changes in perceived pain in PTN, which likely cause dysregulation in the brainstem circuits previously identified, and consequently alter the appraisal of pain across time.


Subject(s)
Magnetic Resonance Imaging , Humans , Male , Female , Middle Aged , Neural Pathways/physiopathology , Adult , Brain Stem/physiopathology , Brain Stem/diagnostic imaging , Trigeminal Nerve Diseases/physiopathology , Aged , Trigeminal Neuralgia/physiopathology , Trigeminal Neuralgia/diagnostic imaging , Pain Measurement , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging
10.
Mol Genet Genomic Med ; 12(7): e2499, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39051462

ABSTRACT

BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder attributed to ABCD1 mutations. Case reports with predominant brainstem involvement are rare. CASE PRESENTATION: In this study, we reported a plateau male worker of X-ALD characterized by progressive weakness accompanied by gait instability, mild nystagmus, and constipation. After 2 years of onset, a brain Magnetic Resonance Image (MRI) scan showed no abnormality but genetic analysis revealed a heterozygous mutation (c.1534G>A) in the ABCD1 gene. After 7 years of onset, although the patient was given aggressive dietary and symptomatic treatment in the course of the disease, a brain MRI scan showed predominantly brainstem damage, but serum concentrations of very long-chain fatty acids were normal, and he had been bedridden for almost 2 years with severe bladder dysfunction, forcing him to undergo cystostomy. The patient was discharged with improved urinary retention and renal function. CONCLUSIONS: We reported an X-ALD patient with a novel ABCD1 variation characterized by brainstem damage and retrospectively summarized the clinical manifestation, MRI features, and genetic features of X-ALD patients with brainstem damage.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1 , Adrenoleukodystrophy , Brain Stem , Mutation, Missense , Humans , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/pathology , Adrenoleukodystrophy/diagnosis , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Male , Brain Stem/pathology , Brain Stem/diagnostic imaging , Adult , Magnetic Resonance Imaging
11.
Medicine (Baltimore) ; 103(27): e38783, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968477

ABSTRACT

BACKGROUND: The objective of this study is to assess the impact of an early-graded pulmonary rehabilitation training program on patients undergoing mechanical ventilation due to brainstem hemorrhage. METHODS: Eighty patients receiving mechanical ventilation due to brainstem hemorrhage at our hospital's neurosurgery department between August 2022 and October 2023 were enrolled as participants. A sampling table was generated based on the order of admission, and 80 random sequences were generated using SPSS software. These sequences were then sorted in ascending order, with the first half designated as the control group and the second half as the intervention group, each comprising 40 cases. The control group received standard nursing care for mechanical ventilation in brainstem hemorrhage cases, while the intervention group underwent early-graded pulmonary rehabilitation training in addition to standard care. This intervention was conducted in collaboration with a multidisciplinary respiratory critical care rehabilitation team. The study compared respiratory function indices, ventilator weaning success rates, ventilator-associated pneumonia incidence, mechanical ventilation duration, and patient discharge duration between the 2 groups. RESULTS: The comparison between patients in the observation group and the control group regarding peak expiratory flow and maximum inspiratory pressure on days 1, 3, 5, and 7 revealed statistically significant differences (P < .05). Additionally, there was a statistically significant interaction between the main effect of intervention and the main effect of time (P < .05). The success rate of ventilator withdrawal was notably higher in the observation group (62.5%) compared to the control group (32.5%), with a statistically significant difference (P < .05). Moreover, the incidence rate of ventilator-associated pneumonia was significantly lower in the observation group (2.5%) compared to the control group (17.5%) (P < .05). Furthermore, both the duration of mechanical ventilation and hospitalization were significantly shorter in the observation group compared to the control group (P < .05). CONCLUSION: Early-graded pulmonary rehabilitation training demonstrates effectiveness in enhancing respiratory function, augmenting the ventilator withdrawal success rate, and reducing both the duration of mechanical ventilation and hospitalization in mechanically ventilated patients with brainstem hemorrhage. These findings suggest the potential value of promoting the application of this intervention in clinical practice.


Subject(s)
Respiration, Artificial , Humans , Respiration, Artificial/methods , Female , Male , Middle Aged , Brain Stem , Intracranial Hemorrhages/rehabilitation , Aged , Adult , Pneumonia, Ventilator-Associated/prevention & control , Ventilator Weaning/methods , Treatment Outcome
12.
Clin Neurol Neurosurg ; 244: 108422, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38991392

ABSTRACT

We presented a case of a 34-year-old male with postoperative brainstem cavernous malformations complicated with LGI1 encephalitis and secondary hypertrophic olivary degeneration (HOD). Due to recurrent dizziness and headache, the patient was diagnosed as brainstem cavernous malformations with recurrent hemorrhage and underwent resection. He subsequently developed unexplained abnormal mental behavior 1 month after the surgery, and diagnosed with LGI1 encephalitis. Six months later, cranial MRI showed HOD. This condition is rare in clinical practice,and a complex mechanism underlies the occurrence.


Subject(s)
Intracellular Signaling Peptides and Proteins , Humans , Male , Adult , Encephalitis/complications , Encephalitis/diagnostic imaging , Olivary Nucleus/pathology , Olivary Nucleus/diagnostic imaging , Proteins , Hemangioma, Cavernous, Central Nervous System/complications , Hemangioma, Cavernous, Central Nervous System/surgery , Hemangioma, Cavernous, Central Nervous System/diagnostic imaging , Postoperative Complications/etiology , Postoperative Complications/diagnostic imaging , Magnetic Resonance Imaging , Brain Stem/diagnostic imaging , Brain Stem/pathology , Hypertrophy , Olivary Degeneration
14.
Nature ; 631(8021): 601-609, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987587

ABSTRACT

Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity1-3, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh+ nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh+ nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh+ nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.


Subject(s)
Allergens , Brain Stem , Bronchial Hyperreactivity , Dopamine beta-Hydroxylase , Lung , Neurons , Animals , Female , Male , Mice , Allergens/immunology , Asthma/immunology , Asthma/physiopathology , Brain Stem/cytology , Brain Stem/physiology , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/physiopathology , Interleukin-4/immunology , Lung/drug effects , Lung/immunology , Lung/innervation , Lung/physiopathology , Mast Cells/immunology , Neurons/enzymology , Neurons/physiology , Norepinephrine/antagonists & inhibitors , Norepinephrine/metabolism , Solitary Nucleus/cytology , Solitary Nucleus/physiology , Vagus Nerve/cytology , Vagus Nerve/physiology , Medulla Oblongata/cytology , Medulla Oblongata/drug effects , Ganglia, Autonomic/cytology , Dopamine beta-Hydroxylase/metabolism
15.
J Exp Med ; 221(9)2024 09 02.
Article in English | MEDLINE | ID: mdl-39023559

ABSTRACT

Inherited deficiency of the RNA lariat-debranching enzyme 1 (DBR1) is a rare etiology of brainstem viral encephalitis. The cellular basis of disease and the range of viral predisposition are unclear. We report inherited DBR1 deficiency in a 14-year-old boy who suffered from isolated SARS-CoV-2 brainstem encephalitis. The patient is homozygous for a previously reported hypomorphic and pathogenic DBR1 variant (I120T). Consistently, DBR1 I120T/I120T fibroblasts from affected individuals from this and another unrelated kindred have similarly low levels of DBR1 protein and high levels of RNA lariats. DBR1 I120T/I120T human pluripotent stem cell (hPSC)-derived hindbrain neurons are highly susceptible to SARS-CoV-2 infection. Exogenous WT DBR1 expression in DBR1 I120T/I120T fibroblasts and hindbrain neurons rescued the RNA lariat accumulation phenotype. Moreover, expression of exogenous RNA lariats, mimicking DBR1 deficiency, increased the susceptibility of WT hindbrain neurons to SARS-CoV-2 infection. Inborn errors of DBR1 impair hindbrain neuron-intrinsic antiviral immunity, predisposing to viral infections of the brainstem, including that by SARS-CoV-2.


Subject(s)
Brain Stem , COVID-19 , Neurons , SARS-CoV-2 , Humans , Male , SARS-CoV-2/genetics , COVID-19/genetics , COVID-19/virology , Brain Stem/pathology , Brain Stem/virology , Brain Stem/metabolism , Adolescent , Neurons/metabolism , Neurons/pathology , Encephalitis, Viral/genetics , Encephalitis, Viral/pathology , Encephalitis, Viral/virology , Fibroblasts/metabolism , Rhombencephalon/metabolism
16.
J Physiol ; 602(16): 4027-4052, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39031516

ABSTRACT

Transcutaneous auricular vagus nerve stimulation (taVNS) targets subcutaneous axons in the auricular branch of the vagus nerve at the outer ear. Its non-invasive nature makes it a potential treatment for various disorders. taVNS induces neuromodulatory effects within the nucleus of the solitary tract (NTS), and due to its widespread connectivity, the NTS acts as a gateway to elicit neuromodulation in both higher-order brain regions and other brainstem nuclei (e.g. spinal trigeminal nucleus; Sp5). Our objective was to examine stimulation parameters on single-neuron electrophysiological responses in α-chloralose-anaesthetized Sprague-Dawley rats within NTS and Sp5. taVNS was also compared to traditional cervical VNS (cVNS) on single neuronal activation. Specifically, electrophysiological extracellular recordings were evaluated for a range of frequency and intensity parameters (20-250 Hz, 0.5-1.0 mA). Neurons were classified as positive, negative or non-responders based on increased activity, decreased activity or no response during stimulation, respectively. Frequency-dependent analysis showed that 20 and 100 Hz generated the highest proportion of positive responders in NTS and Sp5 with 1.0 mA intensities eliciting the greatest magnitude of response. Comparisons between taVNS and cVNS revealed similar parameter-specific activation for caudal NTS neuronal populations; however, individual neurons showed different activation profiles. The latter suggests that cVNS and taVNS send afferent input to NTS via different neuronal pathways. This study demonstrates differential parameter-specific taVNS responses and begins an investigation of the mechanisms responsible for taVNS modulation. Understanding the neuronal pathways responsible for eliciting neuromodulatory effects will enable more tailored taVNS treatments in various clinical disorders. KEY POINTS: Transcutaneous auricular vagus nerve stimulation (taVNS) offers a non-invasive alternative to invasive cervical vagus nerve stimulation (cVNS) by activating vagal afferents in the ear to induce neuromodulation. Our study evaluated taVNS effects on neuronal firing patterns in the nucleus of the solitary tract (NTS) and spinal trigeminal nucleus (Sp5) and found that 20 and 100 Hz notably increased neuronal activity during stimulation in both nuclei. Increasing taVNS intensity not only increased the number of neurons responding in Sp5 but also increased the magnitude of response, suggesting a heightened sensitivity to taVNS compared to NTS. Comparisons between cVNS and taVNS revealed similar overall activation but different responses on individual neurons, indicating distinct neural pathways. These results show parameter-specific and nuclei-specific responses to taVNS and confirm that taVNS can elicit responses comparable to cVNS at the neuronal level, but it does so through different neuronal pathways.


Subject(s)
Brain Stem , Neurons , Rats, Sprague-Dawley , Solitary Nucleus , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Animals , Vagus Nerve Stimulation/methods , Male , Rats , Brain Stem/physiology , Transcutaneous Electric Nerve Stimulation/methods , Neurons/physiology , Solitary Nucleus/physiology , Vagus Nerve/physiology
17.
Biomed Res ; 45(4): 151-161, 2024.
Article in English | MEDLINE | ID: mdl-39010191

ABSTRACT

Linalool and linalyl acetate are major components of lavender essential oil. These substances possess many biological activities, such as anti-inflammatory activity, analgesic and anxiolytic effects, and anticonvulsant properties, and they also induce modulation of neuronal activity in the autonomic nervous system. However, there are no reports of the direct effects of linalool on respiratory activity. In the present study, we analyzed the effects of linalool and linalyl acetate on central respiratory activity in the brainstem-spinal cord preparation isolated from newborn rats. Linalool dose-dependently decreased the rate of respiratory activity. This effect was reversed by bicuculline, suggesting that linalool enhanced inhibitory synaptic connections via GABAA receptors. In addition, linalool reduced the coefficient of variation of inspiratory burst intervals and thus could work to stabilize the respiratory rhythm. Linalyl acetate did not cause inhibitory effects as observed in linalool treatment. Linalool depressed burst activity of pre-inspiratory neurons in the medullary respiratory networks and increased the amplitude of inspiratory inhibitory postsynaptic potentials of pre-inspiratory neurons. We concluded that linalool caused inhibitory effects on respiratory rhythm generation mainly through activation of presynaptic GABAA receptors of pre-inspiratory neurons.


Subject(s)
Acyclic Monoterpenes , Animals, Newborn , Brain Stem , Monoterpenes , Neurons , Spinal Cord , Animals , Acyclic Monoterpenes/pharmacology , Spinal Cord/drug effects , Spinal Cord/metabolism , Rats , Monoterpenes/pharmacology , Neurons/drug effects , Neurons/metabolism , Brain Stem/drug effects , Brain Stem/physiology , Receptors, GABA-A/metabolism , Respiration/drug effects , Bicuculline/pharmacology
18.
Pharmacol Ther ; 260: 108683, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950869

ABSTRACT

Parkinson's disease (PD) is diagnosed by its cardinal motor symptoms that are associated with the loss of dopamine neurons in the substantia nigra pars compacta (SNc). However, PD patients suffer from various non-motor symptoms years before diagnosis. These prodromal symptoms are thought to be associated with the appearance of Lewy body pathologies (LBP) in brainstem regions such as the dorsal motor nucleus of the vagus (DMV), the locus coeruleus (LC) and others. The neurons in these regions that are vulnerable to LBP are all slow autonomous pacemaker neurons that exhibit elevated oxidative stress due to their perpetual influx of Ca2+ ions. Aggregation of toxic α-Synuclein (aSyn) - the main constituent of LBP - during the long prodromal period challenges these vulnerable neurons, presumably altering their biophysics and physiology. In contrast to pathophysiology of late stage parkinsonism which is well-documented, little is known about the pathophysiology of the brainstem during prodromal PD. In this review, we discuss ion channel dysregulation associated with aSyn aggregation in brainstem pacemaker neurons and their cellular responses to them. While toxic aSyn elevates oxidative stress in SNc and LC pacemaker neurons and exacerbates their phenotype, DMV neurons mount an adaptive response that mitigates the oxidative stress. Ion channel dysregulation and cellular adaptations may be the drivers of the prodromal symptoms of PD. For example, selective targeting of toxic aSyn to DMV pacemakers, elevates the surface density of K+ channels, which slows their firing rate, resulting in reduced parasympathetic tone to the gastrointestinal tract, which resembles the prodromal PD symptoms of dysphagia and constipation. The divergent responses of SNc & LC vs. DMV pacemaker neurons may explain why the latter outlive the former despite presenting LBPs earlier. Elucidation the brainstem pathophysiology of prodromal PD could pave the way for physiological biomarkers, earlier diagnosis and novel neuroprotective therapies for PD.


Subject(s)
Brain Stem , Ion Channels , Parkinson Disease , alpha-Synuclein , Humans , Animals , Brain Stem/metabolism , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Ion Channels/metabolism , Oxidative Stress , Lewy Bodies/metabolism
19.
Elife ; 132024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963785

ABSTRACT

Intonation in speech is the control of vocal pitch to layer expressive meaning to communication, like increasing pitch to indicate a question. Also, stereotyped patterns of pitch are used to create distinct sounds with different denotations, like in tonal languages and, perhaps, the 10 sounds in the murine lexicon. A basic tone is created by exhalation through a constricted laryngeal voice box, and it is thought that more complex utterances are produced solely by dynamic changes in laryngeal tension. But perhaps, the shifting pitch also results from altering the swiftness of exhalation. Consistent with the latter model, we describe that intonation in most vocalization types follows deviations in exhalation that appear to be generated by the re-activation of the cardinal breathing muscle for inspiration. We also show that the brainstem vocalization central pattern generator, the iRO, can create this breath pattern. Consequently, ectopic activation of the iRO not only induces phonation, but also the pitch patterns that compose most of the vocalizations in the murine lexicon. These results reveal a novel brainstem mechanism for intonation.


Subject(s)
Vocalization, Animal , Animals , Vocalization, Animal/physiology , Mice , Brain Stem/physiology , Respiration , Phonation/physiology
20.
J Cancer Res Ther ; 20(3): 802-810, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-39023586

ABSTRACT

AIM: The purpose of this study was to set four NTCP models on clinical data and develop a model that calculates the possibility of hearing damage due to irradiation of healthy and at-risk brainstem tissue. MATERIALS AND METHODS: ABR tests were performed on 50 head-and-neck cancer patients three years after radiotherapy for evaluation of lesions in a part of the auditory nerve or the auditory pathway in the brainstem. RESULTS: It indicated a significant difference in the latency of the waves assessed by the ABR test between the two groups. The paired sample t-test indicated the latency time of waves I, III, V, I-III, and I-V (P < 0.001) in the right ear, and in the left ear latency time of waves III, V, I-III, I-V, and III-V (P < 0.001) were significantly higher in the case group's ear than those in the control group. The confidence interval of the fitted parameters was 95% for NTCP models. ABR test's binary outcome with differential dose-volume histograms (dDVHs) was calculated and imported as input to the NTCP modeling. The values of the parameters n = 2.3-2.9 and the value s = 1 were obtained, which indicated that the brainstem organ is seriality. CONCLUSION: The best model ranked for the prediction of brainstem hearing damage was the logit model, which had the lowest Akaike value. The nervousness of the auditory organ of the brainstem (VIII nerve) can be declared as one of the reasons for being independent of the received dose.


Subject(s)
Evoked Potentials, Auditory, Brain Stem , Head and Neck Neoplasms , Radiation Injuries , Humans , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/pathology , Evoked Potentials, Auditory, Brain Stem/radiation effects , Male , Female , Middle Aged , Radiation Injuries/etiology , Radiation Injuries/diagnosis , Radiation Injuries/pathology , Adult , Aged , Brain Stem/radiation effects , Radiotherapy Dosage , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL