Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.484
1.
Elife ; 132024 May 30.
Article En | MEDLINE | ID: mdl-38814174

Neurexins play diverse functions as presynaptic organizers in various glutamatergic and GABAergic synapses. However, it remains unknown whether and how neurexins are involved in shaping functional properties of the glycinergic synapses, which mediate prominent inhibition in the brainstem and spinal cord. To address these issues, we examined the role of neurexins in a model glycinergic synapse between the principal neuron in the medial nucleus of the trapezoid body (MNTB) and the principal neuron in the lateral superior olive (LSO) in the auditory brainstem. Combining RNAscope with stereotactic injection of AAV-Cre in the MNTB of neurexin1/2/3 conditional triple knockout mice, we showed that MNTB neurons highly express all isoforms of neurexins although their expression levels vary remarkably. Selective ablation of all neurexins in MNTB neurons not only reduced the amplitude but also altered the kinetics of the glycinergic synaptic transmission at LSO neurons. The synaptic dysfunctions primarily resulted from an impaired Ca2+ sensitivity of release and a loosened coupling between voltage-gated Ca2+ channels and synaptic vesicles. Together, our current findings demonstrate that neurexins are essential in controlling the strength and temporal precision of the glycinergic synapse, which therefore corroborates the role of neurexins as key presynaptic organizers in all major types of fast chemical synapses.


Glycine , Mice, Knockout , Trapezoid Body , Animals , Glycine/metabolism , Mice , Trapezoid Body/metabolism , Trapezoid Body/physiology , Synaptic Transmission/physiology , Neural Cell Adhesion Molecules/metabolism , Neural Cell Adhesion Molecules/genetics , Superior Olivary Complex/physiology , Superior Olivary Complex/metabolism , Brain Stem/physiology , Brain Stem/metabolism , Synapses/metabolism , Synapses/physiology , Neurons/metabolism , Neurons/physiology , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Neurexins , Calcium-Binding Proteins
2.
Curr Biol ; 34(11): 2448-2459.e4, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38754425

Adaptive behavioral responses to stressors are critical for survival. However, which brain areas orchestrate switching the appropriate stress responses to distinct contexts is an open question. This study aimed to identify the cell-type-specific brain circuitry governing the selection of distinct behavioral strategies in response to stressors. Through novel mouse behavior paradigms, we observed distinct stressor-evoked behaviors in two psycho-spatially distinct contexts characterized by stressors inside or outside the safe zone. The identification of brain regions activated in both conditions revealed the involvement of the dorsomedial hypothalamus (DMH). Further investigation using optogenetics, chemogenetics, and photometry revealed that glutamatergic projections from the DMH to periaqueductal gray (PAG) mediated responses to inside stressors, while GABAergic projections, particularly from tachykinin1-expressing neurons, played a crucial role in coping with outside stressors. These findings elucidate the role of cell-type-specific circuitry from the DMH to the PAG in shaping behavioral strategies in response to stressors. These findings have the potential to advance our understanding of fundamental neurobiological processes and inform the development of novel approaches for managing context-dependent and anxiety-associated pathological conditions such as agoraphobia and claustrophobia.


Brain Stem , Stress, Psychological , Animals , Mice , Male , Brain Stem/physiology , Periaqueductal Gray/physiology , Mice, Inbred C57BL , Neural Pathways/physiology , Optogenetics , Hypothalamus/physiology , Neurons/physiology
3.
Sci Transl Med ; 16(745): eadj4303, 2024 May.
Article En | MEDLINE | ID: mdl-38691619

Consciousness is composed of arousal (i.e., wakefulness) and awareness. Substantial progress has been made in mapping the cortical networks that underlie awareness in the human brain, but knowledge about the subcortical networks that sustain arousal in humans is incomplete. Here, we aimed to map the connectivity of a proposed subcortical arousal network that sustains wakefulness in the human brain, analogous to the cortical default mode network (DMN) that has been shown to contribute to awareness. We integrated data from ex vivo diffusion magnetic resonance imaging (MRI) of three human brains, obtained at autopsy from neurologically normal individuals, with immunohistochemical staining of subcortical brain sections. We identified nodes of the proposed default ascending arousal network (dAAN) in the brainstem, hypothalamus, thalamus, and basal forebrain. Deterministic and probabilistic tractography analyses of the ex vivo diffusion MRI data revealed projection, association, and commissural pathways linking dAAN nodes with one another and with DMN nodes. Complementary analyses of in vivo 7-tesla resting-state functional MRI data from the Human Connectome Project identified the dopaminergic ventral tegmental area in the midbrain as a widely connected hub node at the nexus of the subcortical arousal and cortical awareness networks. Our network-based autopsy methods and connectivity data provide a putative neuroanatomic architecture for the integration of arousal and awareness in human consciousness.


Brain Stem , Consciousness , Magnetic Resonance Imaging , Wakefulness , Humans , Brain Stem/diagnostic imaging , Brain Stem/physiology , Wakefulness/physiology , Consciousness/physiology , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Connectome , Neural Pathways/physiology , Male , Female , Diffusion Magnetic Resonance Imaging , Adult , Arousal/physiology
4.
J Neurosci ; 44(22)2024 May 29.
Article En | MEDLINE | ID: mdl-38604780

The autonomic nervous system (ANS) regulates the body's physiology, including cardiovascular function. As the ANS develops during the second to third trimester, fetal heart rate variability (HRV) increases while fetal heart rate (HR) decreases. In this way, fetal HR and HRV provide an index of fetal ANS development and future neurobehavioral regulation. Fetal HR and HRV have been associated with child language ability and psychomotor development behavior in toddlerhood. However, their associations with postbirth autonomic brain systems, such as the brainstem, hypothalamus, and dorsal anterior cingulate cortex (dACC), have yet to be investigated even though brain pathways involved in autonomic regulation are well established in older individuals. We assessed whether fetal HR and HRV were associated with the brainstem, hypothalamic, and dACC functional connectivity in newborns. Data were obtained from 60 pregnant individuals (ages 14-42) at 24-27 and 34-37 weeks of gestation using a fetal actocardiograph to generate fetal HR and HRV. During natural sleep, their infants (38 males and 22 females) underwent a fMRI scan between 40 and 46 weeks of postmenstrual age. Our findings relate fetal heart indices to brainstem, hypothalamic, and dACC connectivity and reveal connections with widespread brain regions that may support behavioral and emotional regulation. We demonstrated the basic physiologic association between fetal HR indices and lower- and higher-order brain regions involved in regulatory processes. This work provides the foundation for future behavioral or physiological regulation research in fetuses and infants.


Brain Stem , Gyrus Cinguli , Heart Rate, Fetal , Hypothalamus , Magnetic Resonance Imaging , Humans , Female , Male , Gyrus Cinguli/physiology , Gyrus Cinguli/diagnostic imaging , Brain Stem/diagnostic imaging , Brain Stem/physiology , Infant, Newborn , Pregnancy , Heart Rate, Fetal/physiology , Adult , Hypothalamus/physiology , Hypothalamus/diagnostic imaging , Hypothalamus/embryology , Adolescent , Young Adult , Brain Mapping/methods , Neural Pathways/physiology
5.
Brain Res ; 1836: 148938, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38615924

Prepulse inhibition (PPI) of the auditory startle response, a key measure of sensorimotor gating, diminishes with age and is impaired in various neurological conditions. While PPI deficits are often associated with cognitive impairments, their reversal is routinely used in experimental systems for antipsychotic drug screening. Yet, the cellular and circuit-level mechanisms of PPI remain unclear, even under non-pathological conditions. We recently showed that brainstem neurons located in the caudal pontine reticular nucleus (PnC) expressing the glycine transporter type 2 (GlyT2±) receive inputs from the central nucleus of the amygdala (CeA) and contribute to PPI but via an uncharted pathway. Here, using tract-tracing, immunohistochemistry and in vitro optogenetic manipulations coupled to field electrophysiological recordings, we reveal the neuroanatomical distribution of GlyT2± PnC neurons and PnC-projecting CeA glutamatergic neurons and we provide mechanistic insights on how these glutamatergic inputs suppress auditory neurotransmission in PnC sections. Additionally, in vivo experiments using GlyT2-Cre mice confirm that optogenetic activation of GlyT2± PnC neurons enhances PPI and is sufficient to induce PPI in young mice, emphasizing their role. However, in older mice, PPI decline is not further influenced by inhibiting GlyT2± neurons. This study highlights the importance of GlyT2± PnC neurons in PPI and underscores their diminished activity in age-related PPI decline.


Brain Stem , Glycine Plasma Membrane Transport Proteins , Glycine , Neurons , Prepulse Inhibition , Reflex, Startle , Animals , Prepulse Inhibition/physiology , Neurons/physiology , Neurons/metabolism , Reflex, Startle/physiology , Mice , Brain Stem/physiology , Brain Stem/metabolism , Glycine Plasma Membrane Transport Proteins/metabolism , Male , Glycine/metabolism , Optogenetics , Mice, Transgenic , Mice, Inbred C57BL , Synaptic Transmission/physiology , Central Amygdaloid Nucleus/physiology , Central Amygdaloid Nucleus/metabolism
6.
Respir Physiol Neurobiol ; 326: 104269, 2024 Aug.
Article En | MEDLINE | ID: mdl-38688432

The neural control of breathing exhibits sex differences. There is now a large effort to account for biological sex in mammalian research, but the degree to which ectothermic vertebrates exhibit sex differences in the central control of breathing is not well-established. Therefore, we compared respiratory-related neural activity in brainstem-spinal cord preparations from female and male bullfrogs to determine if important aspects of the central control of breathing vary with sex. We found that the breathing pattern was similar across males and females, but baseline frequency of the respiratory network was faster in females. The magnitude of the central response to hypercapnia was similar across sexes, but the time to reach maximum burst rate occurred more slowly in females. These results suggest that sex differences may account for variation in traits associated with the control of breathing and that future work should carefully account for sex of the animal in analysis.


Rana catesbeiana , Respiration , Sex Characteristics , Spinal Cord , Animals , Female , Male , Rana catesbeiana/physiology , Spinal Cord/physiology , Brain Stem/physiology , Hypercapnia/physiopathology
7.
Curr Opin Neurobiol ; 86: 102878, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663047

Instinctive behaviours have evolved across animal phyla and ensure the survival of both the individual and species. They include behaviours that achieve defence, feeding, aggression, sexual reproduction, or parental care. Within the vertebrate subphylum, the brain circuits that support instinctive behaviour output are evolutionarily conserved, being present in the oldest group of living vertebrates, the lamprey. Here, I will provide an evolutionary and comparative perspective on the function of a conserved brainstem region central to the initiation and execution of virtually all instinctive behaviours-the periaqueductal gray. In particular, I will focus on recent advances on the neural mechanisms in the periaqueductal gray that underlie the production of different instinctive behaviours within and across species.


Periaqueductal Gray , Animals , Periaqueductal Gray/physiology , Biological Evolution , Vertebrates/physiology , Behavior, Animal/physiology , Instinct , Brain Stem/physiology , Humans
8.
Nature ; 628(8009): 826-834, 2024 Apr.
Article En | MEDLINE | ID: mdl-38538787

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Brain Stem , Ependymoglial Cells , Feeding Behavior , Hot Temperature , Hypothalamus , Neural Pathways , Neurons , Animals , Female , Male , Mice , Agouti-Related Protein/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/cytology , Brain Stem/cytology , Brain Stem/physiology , Dopamine/metabolism , Eating/physiology , Ependymoglial Cells/cytology , Ependymoglial Cells/physiology , Feeding Behavior/physiology , Glutamic Acid/metabolism , Hypothalamus/cytology , Hypothalamus/physiology , Neural Pathways/metabolism , Neurons/metabolism , Parabrachial Nucleus/cytology , Parabrachial Nucleus/metabolism , Parabrachial Nucleus/physiology , Thermosensing/physiology , Time Factors , Vascular Endothelial Growth Factor A/cerebrospinal fluid , Vascular Endothelial Growth Factor A/metabolism
9.
Curr Biol ; 34(8): 1646-1656.e4, 2024 04 22.
Article En | MEDLINE | ID: mdl-38518777

The obesity epidemic is principally driven by the consumption of more calories than the body requires. It is therefore essential that the mechanisms underpinning feeding behavior are defined. Neurons within the brainstem dorsal vagal complex (DVC) receive direct information from the digestive system and project to second-order regions in the brain to regulate food intake. Although γ-aminobutyric acid is expressed in the DVC (GABADVC), its function in this region has not been defined. In order to discover the unique gene expression signature of GABADVC cells, we used single-nucleus RNA sequencing (Nuc-seq), and this revealed 19 separate clusters. We next probed the function of GABADVC cells and discovered that the selective activation of GABADVC neurons significantly controls food intake and body weight. Optogenetic interrogation of GABADVC circuitry identified GABADVC → hypothalamic arcuate nucleus (ARC) projections as appetite suppressive without creating aversion. Electrophysiological analysis revealed that GABADVC → ARC stimulation inhibits hunger-promoting neuropeptide Y (NPY) neurons via GABA release. Adopting an intersectional genetics strategy, we clarify that the GABADVC → ARC circuit curbs food intake. These data identify GABADVC as a new modulator of feeding behavior and body weight and a controller of orexigenic NPY neuron activity, thereby providing insight into the neural underpinnings of obesity.


Arcuate Nucleus of Hypothalamus , Brain Stem , Feeding Behavior , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/physiology , Animals , Brain Stem/physiology , Brain Stem/metabolism , Mice , Male , Feeding Behavior/physiology , GABAergic Neurons/physiology , GABAergic Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Eating/physiology , Mice, Inbred C57BL , Female
10.
Clin Neurophysiol ; 161: 59-68, 2024 May.
Article En | MEDLINE | ID: mdl-38447495

Blinking is a motor act characterized by the sequential closing and opening of the eyelids, which is achieved through the reciprocal activation of the orbicularis oculi and levator palpebrae superioris muscles. This stereotyped movement can be triggered reflexively, occur spontaneously, or voluntarily initiated. During each type of blinking, the neural control of the antagonistic interaction between the orbicularis oculi and levator palpebrae superioris muscles is governed by partially overlapping circuits distributed across cortical, subcortical, and brainstem structures. This paper provides a comprehensive overview of the anatomical and physiological foundations underlying the neural control of blinking. We describe the infra-nuclear apparatus, as well as the supra-nuclear control mechanisms, i.e., how cortical, subcortical, and brainstem structures regulate and coordinate the different types of blinking.


Blinking , Humans , Blinking/physiology , Animals , Brain Stem/physiology , Eyelids/physiology
11.
Science ; 383(6687): eadi8081, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38452069

Phonation critically depends on precise controls of laryngeal muscles in coordination with ongoing respiration. However, the neural mechanisms governing these processes remain unclear. We identified excitatory vocalization-specific laryngeal premotor neurons located in the retroambiguus nucleus (RAmVOC) in adult mice as being both necessary and sufficient for driving vocal cord closure and eliciting mouse ultrasonic vocalizations (USVs). The duration of RAmVOC activation can determine the lengths of both USV syllables and concurrent expiration periods, with the impact of RAmVOC activation depending on respiration phases. RAmVOC neurons receive inhibition from the preBötzinger complex, and inspiration needs override RAmVOC-mediated vocal cord closure. Ablating inhibitory synapses in RAmVOC neurons compromised this inspiration gating of laryngeal adduction, resulting in discoordination of vocalization with respiration. Our study reveals the circuits for vocal production and vocal-respiratory coordination.


Brain Stem , Phonation , Respiration , Vocal Cords , Animals , Male , Mice , Brain Stem/physiology , Medulla Oblongata/physiology , Neurons/physiology , Phonation/physiology , Vocal Cords/innervation , Vocal Cords/physiology , Mice, Inbred C57BL , Female , Proto-Oncogene Proteins c-fos/genetics
12.
J Physiol ; 602(5): 809-834, 2024 Mar.
Article En | MEDLINE | ID: mdl-38353596

Breathing behaviour involves the generation of normal breaths (eupnoea) on a timescale of seconds and sigh breaths on the order of minutes. Both rhythms emerge in tandem from a single brainstem site, but whether and how a single cell population can generate two disparate rhythms remains unclear. We posit that recurrent synaptic excitation in concert with synaptic depression and cellular refractoriness gives rise to the eupnoea rhythm, whereas an intracellular calcium oscillation that is slower by orders of magnitude gives rise to the sigh rhythm. A mathematical model capturing these dynamics simultaneously generates eupnoea and sigh rhythms with disparate frequencies, which can be separately regulated by physiological parameters. We experimentally validated key model predictions regarding intracellular calcium signalling. All vertebrate brains feature a network oscillator that drives the breathing pump for regular respiration. However, in air-breathing mammals with compliant lungs susceptible to collapse, the breathing rhythmogenic network may have refashioned ubiquitous intracellular signalling systems to produce a second slower rhythm (for sighs) that prevents atelectasis without impeding eupnoea. KEY POINTS: A simplified activity-based model of the preBötC generates inspiratory and sigh rhythms from a single neuron population. Inspiration is attributable to a canonical excitatory network oscillator mechanism. Sigh emerges from intracellular calcium signalling. The model predicts that perturbations of calcium uptake and release across the endoplasmic reticulum counterintuitively accelerate and decelerate sigh rhythmicity, respectively, which was experimentally validated. Vertebrate evolution may have adapted existing intracellular signalling mechanisms to produce slow oscillations needed to optimize pulmonary function in mammals.


Calcium , Respiration , Animals , Neurons/physiology , Brain Stem/physiology , Mammals , Respiratory Center/physiology
13.
PLoS One ; 19(2): e0297826, 2024.
Article En | MEDLINE | ID: mdl-38330068

Perception of sounds and speech involves structures in the auditory brainstem that rapidly process ongoing auditory stimuli. The role of these structures in speech processing can be investigated by measuring their electrical activity using scalp-mounted electrodes. However, typical analysis methods involve averaging neural responses to many short repetitive stimuli that bear little relevance to daily listening environments. Recently, subcortical responses to more ecologically relevant continuous speech were detected using linear encoding models. These methods estimate the temporal response function (TRF), which is a regression model that minimises the error between the measured neural signal and a predictor derived from the stimulus. Using predictors that model the highly non-linear peripheral auditory system may improve linear TRF estimation accuracy and peak detection. Here, we compare predictors from both simple and complex peripheral auditory models for estimating brainstem TRFs on electroencephalography (EEG) data from 24 participants listening to continuous speech. We also investigate the data length required for estimating subcortical TRFs, and find that around 12 minutes of data is sufficient for clear wave V peaks (>3 dB SNR) to be seen in nearly all participants. Interestingly, predictors derived from simple filterbank-based models of the peripheral auditory system yield TRF wave V peak SNRs that are not significantly different from those estimated using a complex model of the auditory nerve, provided that the nonlinear effects of adaptation in the auditory system are appropriately modelled. Crucially, computing predictors from these simpler models is more than 50 times faster compared to the complex model. This work paves the way for efficient modelling and detection of subcortical processing of continuous speech, which may lead to improved diagnosis metrics for hearing impairment and assistive hearing technology.


Speech Perception , Speech , Humans , Speech Perception/physiology , Hearing/physiology , Brain Stem/physiology , Electroencephalography/methods , Acoustic Stimulation
14.
Sleep Med Rev ; 74: 101907, 2024 Apr.
Article En | MEDLINE | ID: mdl-38422648

Paradoxical or Rapid eye movement (REM) sleep (PS) is a state characterized by REMs, EEG activation and muscle atonia. In this review, we discuss the contribution of brainstem, hypothalamic, amygdalar and cortical structures in PS genesis. We propose that muscle atonia during PS is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD) projecting to glycinergic/GABAergic pre-motoneurons localized in the ventro-medial medulla (vmM). The SLD PS-on neurons are inactivated during wakefulness and slow-wave sleep by PS-off GABAergic neurons localized in the ventrolateral periaqueductal gray (vPAG) and the adjacent deep mesencephalic reticular nucleus. Melanin concentrating hormone (MCH) and GABAergic PS-on neurons localized in the posterior hypothalamus would inhibit these PS-off neurons to initiate the state. Finally, the activation of a few limbic cortical structures during PS by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would also contribute to PS expression. Accumulating evidence indicates that the activation of these limbic structures plays a role in memory consolidation and would communicate to the PS-generating structures the need for PS to process memory. In summary, PS generation is controlled by structures distributed from the cortex to the medullary level of the brain.


Brain Stem , Sleep, REM , Humans , Sleep, REM/physiology , Brain Stem/physiology , Hypothalamus , GABAergic Neurons/physiology , Amygdala
15.
Nat Neurosci ; 27(4): 716-727, 2024 Apr.
Article En | MEDLINE | ID: mdl-38347200

The basal ganglia are essential for executing motor actions. How the basal ganglia engage spinal motor networks has remained elusive. Medullary Chx10 gigantocellular (Gi) neurons are required for turning gait programs, suggesting that turning gaits organized by the basal ganglia are executed via this descending pathway. Performing deep brainstem recordings of Chx10 Gi Ca2+ activity in adult mice, we show that striatal projection neurons initiate turning gaits via a dominant crossed pathway to Chx10 Gi neurons on the contralateral side. Using intersectional viral tracing and cell-type-specific modulation, we uncover the principal basal ganglia-spinal cord pathway for locomotor asymmetries in mice: basal ganglia → pontine reticular nucleus, oral part (PnO) → Chx10 Gi → spinal cord. Modulating the restricted PnO → Chx10 Gi pathway restores turning competence upon striatal damage, suggesting that dysfunction of this pathway may contribute to debilitating turning deficits observed in Parkinson's disease. Our results reveal the stratified circuit architecture underlying a critical motor program.


Brain Stem , Spinal Cord , Mice , Animals , Brain Stem/physiology , Spinal Cord/physiology , Neurons/physiology , Gait , Basal Ganglia
16.
Respir Physiol Neurobiol ; 324: 104241, 2024 Jun.
Article En | MEDLINE | ID: mdl-38417565

Motor behaviors such as breathing required temporal coordination of different muscle groups to insured efficient ventilation and provide oxygen to the body. This action is the result of interactions between neural networks located within the brainstem. Inspiration and expiration depend at least in part on interactions between two separate oscillators: inspiration is driven by a neural network located in the preBötzinger complex (PreBötC) and active expiration is driven by a network in the parafacial respiratory group (pFRG). Neurons of the pFRG are silent at rest and become active when the respiratory drive increased. This study investigated the temporal coordination between the brainstem respiratory network and the lumbar spinal network that generates spontaneous activities that is different of the induced fictive locomotion. The remaining question is how these activities coordinate early during the development. Results of this study show that brainstem networks contribute to the temporal coordination of the lumbar spontaneous activity during inspiration since lumbar motor activity occurs exclusively during the expiratory time. This study also investigated the role of the ß-noradrenergic modulation on the respiratory activities. ß-noradrenergic receptors activation increased the frequency of the double bursts and increased expiratory activity at the lumbar level. These results suggest interactions between brainstem and spinal networks and reveal a descending drive that may contribute to the coordination of the respiratory and lumbar spontaneous activities.


Brain Stem , Exhalation , Animals , Mice , Animals, Newborn , Isoproterenol , Exhalation/physiology , Brain Stem/physiology , Spinal Cord/physiology
17.
Neuron ; 112(9): 1416-1425.e5, 2024 May 01.
Article En | MEDLINE | ID: mdl-38417435

Brief stimuli can trigger longer-lasting brain states. G-protein-coupled receptors (GPCRs) could help sustain such states by coupling slow-timescale molecular signals to neuronal excitability. Brainstem parabrachial nucleus glutamatergic (PBNGlut) neurons regulate sustained brain states such as pain and express Gs-coupled GPCRs that increase cAMP signaling. We asked whether cAMP in PBNGlut neurons directly influences their excitability and effects on behavior. Both brief tail shocks and brief optogenetic stimulation of cAMP production in PBNGlut neurons drove minutes-long suppression of feeding. This suppression matched the duration of prolonged elevations in cAMP, protein kinase A (PKA) activity, and calcium activity in vivo and ex vivo, as well as sustained, PKA-dependent increases in action potential firing ex vivo. Shortening this elevation in cAMP reduced the duration of feeding suppression following tail shocks. Thus, molecular signaling in PBNGlut neurons helps prolong neural activity and behavioral states evoked by brief, salient bodily stimuli.


Action Potentials , Cyclic AMP , Feeding Behavior , Neurons , Parabrachial Nucleus , Animals , Parabrachial Nucleus/physiology , Parabrachial Nucleus/metabolism , Neurons/physiology , Neurons/metabolism , Cyclic AMP/metabolism , Mice , Action Potentials/physiology , Feeding Behavior/physiology , Optogenetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Male , Glutamic Acid/metabolism , Brain Stem/physiology , Brain Stem/metabolism , Mice, Inbred C57BL , Female
18.
J Neurosci ; 44(9)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38262723

Deviance detection describes an increase of neural response strength caused by a stimulus with a low probability of occurrence. This ubiquitous phenomenon has been reported for humans and multiple other species, from subthalamic areas to the auditory cortex. Cortical deviance detection has been well characterized by a range of studies using a variety of different stimuli, from artificial to natural, with and without a behavioral relevance. This allowed the identification of a broad variety of regularity deviations that are detected by the cortex. Moreover, subcortical deviance detection has been studied with simple stimuli that are not meaningful to the subject. Here, we aim to bridge this gap by using noninvasively recorded auditory brainstem responses (ABRs) to investigate deviance detection at population level in the lower stations of the auditory system of a highly vocal species: the bat Carollia perspicillata (of either sex). Our present approach uses behaviorally relevant vocalization stimuli that are similar to the animals' natural soundscape. We show that deviance detection in ABRs is significantly stronger for echolocation pulses than for social communication calls or artificial sounds, indicating that subthalamic deviance detection depends on the behavioral meaning of a stimulus. Additionally, complex physical sound features like frequency- and amplitude modulation affected the strength of deviance detection in the ABR. In summary, our results suggest that the brain can detect different types of deviants already in the brainstem, showing that subthalamic brain structures exhibit more advanced forms of deviance detection than previously known.


Chiroptera , Animals , Humans , Acoustic Stimulation/methods , Brain Stem/physiology , Evoked Potentials, Auditory, Brain Stem , Sound , Auditory Perception/physiology
19.
Rev Neurosci ; 35(2): 165-182, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-37651646

Breathing is a natural daily action that one cannot do without, and it sensitively and intensely changes under various situations. What if this essential act of breathing can impact our overall well-being? Recent studies have demonstrated that breathing oscillations couple with higher brain functions, i.e., perception, motor actions, and cognition. Moreover, the timing of breathing, a phase transition from exhalation to inhalation, modulates specific cortical activity and accuracy in cognitive tasks. To determine possible respiratory roles in attentional and memory processes and functional neural networks, we discussed how breathing interacts with the brain that are measured by electrophysiology and functional neuroimaging: (i) respiration-dependent modulation of mental health and cognition; (ii) respiratory rhythm generation and respiratory pontomedullary networks in the brainstem; (iii) respiration-dependent effects on specific brainstem regions and functional neural networks (e.g., glutamatergic PreBötzinger complex neurons, GABAergic parafacial neurons, adrenergic C1 neurons, parabrachial nucleus, locus coeruleus, temporoparietal junction, default-mode network, ventral attention network, and cingulo-opercular salience network); and (iv) a potential application of breathing manipulation in mental health care. These outlines and considerations of "brain-breath" interactions lead to a better understanding of the interoceptive and cognitive mechanisms that underlie brain-body interactions in health conditions and in stress-related and neuropsychiatric disorders.


Brain , Respiration , Humans , Brain/physiology , Brain Stem/physiology , Memory , Cognition/physiology
20.
J Neurosci ; 44(1)2024 Jan 03.
Article En | MEDLINE | ID: mdl-37968118

Neurons in the nucleus raphe interpositus have tonic activity that suppresses saccadic burst neurons (BNs) during eye fixations, and that is inhibited before and during saccades in all directions (omnipause neurons, OPNs). We have previously demonstrated via intracellular recording and anatomical staining in anesthetized cats of both sexes that OPNs are inhibited by BNs in the medullary reticular formation (horizontal inhibitory BNs, IBNs). These horizontal IBNs receive monosynaptic input from the caudal horizontal saccade area of the superior colliculus (SC), and then produce monosynaptic inhibition in OPNs, providing a mechanism to trigger saccades. However, it is well known that the neural circuits driving horizontal components of saccades are independent from the circuits driving vertical components. Thus, our previous results are unable to explain how purely vertical saccades are triggered. Here, we again apply intracellular recording to show that a disynaptic vertical IBN circuit exists, analogous to the horizontal circuit. Specifically, we show that stimulation of the SC rostral vertical saccade area produces disynaptic inhibition in OPNs, which is not abolished by midline section between the horizontal IBNs. This excludes the possibility that horizontal IBNs could be responsible for the OPN inhibition during vertical saccades. We then show that vertical IBNs in the interstitial nucleus of Cajal, which receive monosynaptic input from rostral SC, are responsible for the disynaptic inhibition of OPNs. These results indicate that a similarly functioning SC-IBN-OPN circuit exists for both the horizontal and vertical oculomotor pathways. These two IBN-mediated circuits are capable of triggering saccades in any direction.Significance Statement Saccades shift gaze to objects of interest, moving their image to the central retina, where it is maintained for detailed examination (fixation). During fixation, high gain saccade burst neurons (BNs) are tonically inhibited by omnipause neurons (OPNs). Our previous study showed that medullary horizontal inhibitory BNs (IBNs) activated from the caudal superior colliculus (SC) inhibit tonically active OPNs in order to initiate horizontal saccades. The present study addresses the source of OPN inhibition for vertical saccades. We find that OPNs monosynaptically inhibit vertical IBNs in the interstitial nucleus of Cajal during fixation. Those same vertical IBNs are activated by the rostral SC, and inhibit OPN activity to initiate vertical saccades.


Neurons , Saccades , Neurons/physiology , Brain Stem/physiology , Eye Movements , Superior Colliculi/physiology , Fixation, Ocular
...