Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.933
Filter
2.
PLoS One ; 19(7): e0305058, 2024.
Article in English | MEDLINE | ID: mdl-38954702

ABSTRACT

OBJECTIVES: Astragaloside IV (AS-IV) is a natural triterpenoid saponin compound with a variety of pharmacological effects, and several studies have clarified its anti-inflammatory effects, which may make it an effective alternative treatment against inflammation. In the study, we aimed to investigate whether AS-IV could attenuate the inflammatory response to acute lung injury and its mechanisms. METHODS: Different doses of AS-IV (20mg·kg-1, 40mg·kg-1, and 80mg·kg-1) were administered to the ALI rat model, followed by collection of serum and broncho alveolar lavage fluid (BALF) for examination of the inflammatory response, and HE staining of the lung and colon tissues, and interpretation of the potential molecular mechanisms by quantitative real-time PCR (qRT-PCR), Western blotting (WB). In addition, fecal samples from ALI rats were collected and analyzed by 16S rRNA sequencing. RESULTS: AS-IV decreased the levels of TNF-α, IL-6, and IL-1ß in serum and BALF of mice with Acute lung injury (ALI). Lung and colon histopathology confirmed that AS-IV alleviated inflammatory infiltration, tissue edema, and structural changes. qRT-PCR and WB showed that AS-IV mainly improved inflammation by inhibiting the expression of PI3K, AKT and mTOR mRNA, and improved the disorder of intestinal microflora by increasing the number of beneficial bacteria and reducing the number of harmful bacteria. CONCLUSION: AS-IV reduces the expression of inflammatory factors by inhibiting the PI3K/AKT/mTOR pathway and optimizes the composition of the gut microflora in AIL rats.


Subject(s)
Acute Lung Injury , Gastrointestinal Microbiome , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Saponins , Signal Transduction , TOR Serine-Threonine Kinases , Triterpenes , Animals , Saponins/pharmacology , Saponins/therapeutic use , Triterpenes/pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/microbiology , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , TOR Serine-Threonine Kinases/metabolism , Gastrointestinal Microbiome/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Rats , Male , Mice , Rats, Sprague-Dawley , Inflammation/drug therapy , Bronchoalveolar Lavage Fluid/chemistry , Lung/pathology , Lung/drug effects , Lung/microbiology , Lung/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
3.
BMC Vet Res ; 20(1): 273, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918797

ABSTRACT

BACKGROUND: Equine asthma (EA) is a chronic lower airway inflammation that leads to structural and functional changes. Hyaluronic acid (HA) has crucial functions in the extracellular matrix homeostasis and inflammatory mediator activity. HA concentration in the lungs increases in several human airway diseases. However, its associations with naturally occurring EA and airway remodelling have not been previously studied. Our aim was to investigate the association of equine neutrophilic airway inflammation (NAI) severity, airway remodelling, and HA concentration in horses with naturally occurring EA. We hypothesised that HA concentration and airway remodelling would increase with the severity of NAI. HA concentrations of bronchoalveolar lavage fluid supernatant (SUP) and plasma of 27 neutrophilic EA horses, and 28 control horses were measured. Additionally, remodelling and HA staining intensity were assessed from endobronchial biopsies from 10 moderate NAI horses, 5 severe NAI horses, and 15 control horses. RESULTS: The HA concentration in SUP was higher in EA horses compared to controls (p = 0.007). Plasma HA concentrations were not different between the groups. In the endobronchial biopsies, moderate NAI horses showed epithelial hyperplasia and inflammatory cell infiltrate, while severe NAI horses also showed fibrosis and desquamation of the epithelium. The degree of remodelling was higher in severe NAI compared to moderate NAI (p = 0.048) and controls (p = 0.016). Intense HA staining was observed in bronchial cell membranes, basement membranes, and connective tissue without significant differences between the groups. CONCLUSION: The release of HA to the airway lumen increases in naturally occurring neutrophilic EA without clear changes in its tissue distribution, and significant airway remodelling only develops in severe NAI.


Subject(s)
Airway Remodeling , Asthma , Bronchoalveolar Lavage Fluid , Horse Diseases , Hyaluronic Acid , Animals , Horses , Hyaluronic Acid/blood , Asthma/veterinary , Asthma/pathology , Horse Diseases/pathology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Female , Male , Neutrophils , Inflammation/veterinary , Inflammation/pathology , Severity of Illness Index
4.
Immunohorizons ; 8(6): 457-463, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38922287

ABSTRACT

The underlying contribution of immune complexes in modulating adaptive immunity in mucosal tissues remains poorly understood. In this report, we examined, in mice, the proinflammatory response elicited by intranasal delivery of the biothreat agent ricin toxin (RT) in association with two toxin-neutralizing mAbs, SylH3 and PB10. We previously demonstrated that ricin-immune complexes (RICs) induce the rapid onset of high-titer toxin-neutralizing Abs that persist for months. We now demonstrate that such responses are dependent on CD4+ T cell help, because treatment of mice with an anti-CD4 mAb abrogated the onset of RT-specific Abs following intranasal RICs exposure. To define the inflammatory environment associated with RIC exposure, we collected bronchoalveolar lavage fluid (BALF) and sera from mice 6, 12, and 18 h after they had received RT or RICs by the intranasal route. A 32-plex cytometric bead array revealed an inflammatory profile elicited by RT that was dominated by IL-6 (>1500-fold increase in BALF) and secondarily by KC (CXCL1), G-CSF, GM-CSF, and MCP-1. RICs induced inflammatory profiles in both BALF and serum response that were similar to RT, albeit at markedly reduced levels. These results demonstrate that RICs retain the capacity to induce local and systemic inflammatory cytokines/chemokines that, in turn, may influence Ag sampling and presentation in the lung mucosa and draining lymph nodes. A better understanding of the fate of immune complexes following intranasal delivery has implications for the development of mucosal vaccines for biothreats and emerging infectious diseases.


Subject(s)
Administration, Intranasal , Antigen-Antibody Complex , Bronchoalveolar Lavage Fluid , Ricin , Animals , Ricin/immunology , Ricin/administration & dosage , Mice , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/chemistry , Female , Antigen-Antibody Complex/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Immunization/methods , Inflammation/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/administration & dosage , Cytokines/metabolism , CD4-Positive T-Lymphocytes/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL
5.
Cells ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891077

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease for which there is no cure. Accumulating research results suggest a role for extracellular vesicles (EVs) in the pathogenesis of COPD. This study aimed to uncover the involvement of EVs and their molecular cargo in the progression of COPD by identification of EV-associated protein and microRNA (miRNA) profiles. We isolated EVs from the bronchial alveolar lavage fluid (BALF) of 18 patients with COPD and 11 healthy controls using size-exclusion chromatography. EV isolates were characterized using nanoparticle tracking analysis and protein content. Proteomic analysis revealed a higher abundance of 284 proteins (log2FC > 1) and a lower abundance of 3 proteins (log2FC < -1) in EVs derived from patients with COPD. Ingenuity pathway analysis showed that proteins enriched in COPD-associated EVs trigger inflammatory responses, including neutrophil degranulation. Variances in surface receptors and ligands associated with COPD EVs suggest a preferential interaction with alveolar cells. Small RNAseq analysis identified a higher abundance of ten miRNAs and a lower abundance of one miRNA in EVs from COPD versus controls (Basemean > 100, FDR < 0.05). Our data indicate that the molecular composition of EVs in the BALF of patients with COPD is altered compared to healthy control EVs. Several components in COPD EVs were identified that may perpetuate inflammation and alveolar tissue destruction.


Subject(s)
Bronchoalveolar Lavage Fluid , Extracellular Vesicles , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Male , Female , Middle Aged , Aged , Case-Control Studies , Proteomics/methods
6.
Inhal Toxicol ; 36(4): 275-281, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38836332

ABSTRACT

Multiwalled carbon nanotubes (MWCNTs) have numerous applications in the field of carbon nanomaterials. However, the associated toxicity concerns have increased significantly because of their widespread use. The inhalation of MWCNTs can lead to nanoparticle deposition in the lung tissue, causing inflammation and health risks. In this study, celastrol, a natural plant medicine with potent anti-inflammatory properties, effectively reduced the number of inflammatory cells, including white blood cells, neutrophils, and lymphocytes, and levels of inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, in mice lungs exposed to MWCNTs. Moreover, celastrol inhibited the activation of the NF-κB-signaling pathway. This study confirmed these findings by demonstrating comparable reductions in inflammation upon exposure to MWCNTs in mice with the deletion of NF-κB (P50-/-). These results indicate the utility of celastrol as a promising pharmacological agent for preventing MWCNT-induced lung tissue inflammation.


Subject(s)
Mice, Inbred C57BL , NF-kappa B , Nanotubes, Carbon , Pentacyclic Triterpenes , Pneumonia , Signal Transduction , Triterpenes , Animals , Pentacyclic Triterpenes/pharmacology , Nanotubes, Carbon/toxicity , Signal Transduction/drug effects , Triterpenes/pharmacology , Pneumonia/chemically induced , Pneumonia/drug therapy , Pneumonia/prevention & control , Pneumonia/metabolism , NF-kappa B/metabolism , Male , Lung/drug effects , Lung/pathology , Lung/metabolism , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Mice , Mice, Knockout , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/chemistry
7.
Ecotoxicol Environ Saf ; 280: 116534, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38823345

ABSTRACT

The correlation between formaldehyde (FA) exposure and prevalence of asthma has been widely reported. However, the underlying mechanism is still not fully understood. FA exposure at 2.0 mg/m3 was found to exacerbate asthma in OVA-induced murine models. IFN-γ, the cytokine produced by T helper 1 (Th1) cells, was significantly induced by FA in serum and bronchoalveolar lavage fluid (BALF) of asthmatic mice, which was different from cytokines secreted by other Th cells. The observation was also confirmed by mRNA levels of Th marker genes in CD4+ T cells isolated from BALF. In addition, increased production of IFN-γ and expression of T-bet in Jurkat T cells primed with phorbol ester and phytohaemagglutinin were also observed with 100 µM FA treatment in vitro. Upregulated STAT1 phosphorylation, T-bet expression and IFN-γ production induced by FA was found to be restrained by STAT1 inhibitor fludarabine, indicating that FA promoted Th1 commitment through the autocrine IFN-γ/STAT1/T-bet pathway in asthma. This work not only revealed that FA could bias Th lineage commitment to exacerbate allergic asthma, but also identified the signaling mechanism of FA-induced Th1 differentiation, which may be utilized as the target for development of interfering strategies against FA-induced immune disorders.


Subject(s)
Asthma , Formaldehyde , Interferon-gamma , STAT1 Transcription Factor , T-Box Domain Proteins , Asthma/chemically induced , Animals , STAT1 Transcription Factor/metabolism , Interferon-gamma/metabolism , Mice , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Formaldehyde/toxicity , Inflammation/chemically induced , Mice, Inbred BALB C , Humans , Female , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/chemistry , T-Lymphocytes, Helper-Inducer/drug effects , Signal Transduction/drug effects , Th1 Cells/drug effects , Th1 Cells/immunology , Jurkat Cells
8.
Acta Vet Scand ; 66(1): 24, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822358

ABSTRACT

BACKGROUND: A syndrome of acute non-cardiogenic pulmonary edema associated with hunting is prevalent in the drever breed, but etiology of this syndrome is currently unknown. Alveolar surfactant has a critical role in preventing alveolar collapse and edema formation. The aim of this study was to investigate, whether the predisposition to hunting associated pulmonary edema in drever dogs is associated with impaired biophysical properties of alveolar surfactant. Seven privately owned drever dogs with recurrent hunting associated pulmonary edema and seven healthy control dogs of other breeds were included in the study. All affected dogs underwent thorough clinical examinations including echocardiography, laryngeal evaluation, bronchoscopy, and bronchoalveolar lavage (BAL) as well as head, neck and thoracic computed tomography imaging to rule out other cardiorespiratory diseases potentially causing the clinical signs. Alveolar surfactant was isolated from frozen, cell-free supernatants of BAL fluid and biophysical analysis of the samples was completed using a constrained sessile drop surfactometer. Statistical comparisons over consecutive compression expansion cycles were performed using repeated measures ANOVA and comparisons of single values between groups were analyzed using T-test. RESULTS: There were no significant differences between groups in any of the biophysical outcomes of surfactant analysis. The critical function of surfactant, reducing the surface tension to low values upon compression, was similar between healthy dogs and affected drevers. CONCLUSIONS: The etiology of hunting associated pulmonary edema in drever dogs is not due to an underlying surfactant dysfunction.


Subject(s)
Dog Diseases , Pulmonary Edema , Pulmonary Surfactants , Animals , Dogs , Pulmonary Edema/veterinary , Pulmonary Edema/etiology , Male , Female , Bronchoalveolar Lavage Fluid/chemistry , Case-Control Studies
9.
Physiol Rep ; 12(12): e16115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923221

ABSTRACT

Pro-inflammatory fungal ß-d-glucan (BDG) polysaccharides cause respiratory pathology. However, specific immunological effects of unique BDG structures on pulmonary inflammation are understudied. We characterized the effect of four unique fungal BDGs with unique branching patterns, solubility, and molecular weights in murine airways. Scleroglucan (1 → 3)(1 → 6)-highly branched BDG, laminarin (1 → 3)(1 → 6)-branched BDG, curdlan (1 → 3)-linear BDG, and pustulan (1 → 6)-linear BDG were assessed by nuclear magnetic resonance spectroscopy. Each BDG was tested by inhalation model with C3HeB/FeJ mice and compared to saline-exposed control mice and unexposed sentinels (n = 3-19). Studies were performed ±heat-inactivation (1 h autoclave) to increase BDG solubility. Outcomes included bronchoalveolar lavage (BAL) differential cell counts (macrophages, neutrophils, lymphocytes, eosinophils), cytokines, serum IgE, and IgG2a (multiplex and ELISA). Ex vivo primary cells removed from lungs and plated at monolayer were stimulated (BDG, lipopolysaccharide (LPS), anti-CD3), and cytokines compared to unstimulated cells. Right lung histology was performed. Inhalation of BDGs with distinct branching patterns exhibited varying inflammatory potency and immunogenicity. Lichen-derived (1 → 6)-linear pustulan was the most pro-inflammatory BDG, increasing inflammatory infiltrate (BAL), serum IgE and IgG2a, and cytokine production. Primed lung cells responded to secondary LPS stimulation with a T-cell-specific response to pustulan. Glucan source and solubility should be considered in exposure and toxicological studies.


Subject(s)
Lung , beta-Glucans , Animals , Male , Mice , beta-Glucans/pharmacology , Lung/drug effects , Lung/pathology , Lung/immunology , Lung/metabolism , Pneumonia/immunology , Pneumonia/pathology , Pneumonia/metabolism , Pneumonia/chemically induced , Cytokines/metabolism , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/chemistry , Mice, Inbred C3H , Glucans/pharmacology
10.
mSphere ; 9(6): e0079323, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38780289

ABSTRACT

Clinical metaproteomics has the potential to offer insights into the host-microbiome interactions underlying diseases. However, the field faces challenges in characterizing microbial proteins found in clinical samples, usually present at low abundance relative to the host proteins. As a solution, we have developed an integrated workflow coupling mass spectrometry-based analysis with customized bioinformatic identification, quantification, and prioritization of microbial proteins, enabling targeted assay development to investigate host-microbe dynamics in disease. The bioinformatics tools are implemented in the Galaxy ecosystem, offering the development and dissemination of complex bioinformatic workflows. The modular workflow integrates MetaNovo (to generate a reduced protein database), SearchGUI/PeptideShaker and MaxQuant [to generate peptide-spectral matches (PSMs) and quantification], PepQuery2 (to verify the quality of PSMs), Unipept (for taxonomic and functional annotation), and MSstatsTMT (for statistical analysis). We have utilized this workflow in diverse clinical samples, from the characterization of nasopharyngeal swab samples to bronchoalveolar lavage fluid. Here, we demonstrate its effectiveness via analysis of residual fluid from cervical swabs. The complete workflow, including training data and documentation, is available via the Galaxy Training Network, empowering non-expert researchers to utilize these powerful tools in their clinical studies. IMPORTANCE: Clinical metaproteomics has immense potential to offer functional insights into the microbiome and its contributions to human disease. However, there are numerous challenges in the metaproteomic analysis of clinical samples, including handling of very large protein sequence databases for sensitive and accurate peptide and protein identification from mass spectrometry data, as well as taxonomic and functional annotation of quantified peptides and proteins to enable interpretation of results. To address these challenges, we have developed a novel clinical metaproteomics workflow that provides customized bioinformatic identification, verification, quantification, and taxonomic and functional annotation. This bioinformatic workflow is implemented in the Galaxy ecosystem and has been used to characterize diverse clinical sample types, such as nasopharyngeal swabs and bronchoalveolar lavage fluid. Here, we demonstrate its effectiveness and availability for use by the research community via analysis of residual fluid from cervical swabs.


Subject(s)
Computational Biology , Proteomics , Workflow , Proteomics/methods , Humans , Computational Biology/methods , Host Microbial Interactions , Mass Spectrometry , Microbiota/genetics , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/chemistry , Bacterial Proteins/genetics
11.
Environ Pollut ; 355: 124195, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38776998

ABSTRACT

The respiratory effects of particulate matter (PM) in subway station platforms or tunnels have attracted considerable research attention. However, no studies have characterized the effects of subway PM on allergic immune responses. In this study, iron oxide (α-Fe2O3 and Fe3O4) particles-the main components of subway PM-were intratracheally administered to BALB/c mice where ovalbumin (OVA) induced allergic pulmonary inflammation. Iron oxide particles enhanced OVA-induced eosinophil recruitment around the bronchi and mucus production from airway epithelium. The concentrations of type 2 cytokines, namely, interleukin (IL)-5 and IL-13, in bronchial alveolar lavage fluids were increased by iron oxide particles. Iron oxide particles also increased the number of type 2 innate lymphoid cells and CD86+ cells in the lung. Moreover, phagocytosis of particles in lung cells was confirmed by Raman spectroscopy. In a subsequent in vitro study, bone marrow-derived antigen-presenting cells (APCs) isolated from NC/Nga mice were exposed to iron oxide particles and OVA. They were also exposed to outdoor ambient PM: Vehicle Exhaust Particulates (VEP) and Urban Aerosols (UA) as references. Iron oxide particles promoted the release of lactate dehydrogenase, C-X-C motif chemokine ligand 1 and IL-1α from APCs, which tended to be stronger than those of VEP. These results suggest that iron oxide particles enhance antigen presentation in the lungs, promoting allergic immune response in mice; iron oxide particles-induced death and inflammatory response of APCs can contribute to allergy exacerbation. Although iron oxide particles do not contain various compounds like VEP, iron oxide alone may have sufficient influence.


Subject(s)
Air Pollutants , Ferric Compounds , Hypersensitivity , Mice, Inbred BALB C , Particulate Matter , Animals , Particulate Matter/toxicity , Mice , Air Pollutants/toxicity , Hypersensitivity/immunology , Lung/drug effects , Lung/immunology , Cytokines/metabolism , Ovalbumin , Bronchoalveolar Lavage Fluid/chemistry , Vehicle Emissions/toxicity , Female
12.
Cell Biochem Funct ; 42(4): e4031, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760985

ABSTRACT

Super-enhancers play prominent roles in driving robust pathological gene expression, but they are hidden in human genome at noncoding regions, making them difficult to explore. Leukemia inhibitory factor (LIF) is a multifunctional cytokine crucially involved in acute respiratory distress syndrome (ARDS) and lung cancer progression. However, the mechanisms governing LIF regulation in disease contexts remain largely unexplored. In this study, we observed elevated levels of LIF in the bronchoalveolar lavage fluid (BALF) of patients with sepsis-related ARDS compared to those with nonsepsis-related ARDS. Furthermore, both basal and LPS-induced LIF expression were under the control of super-enhancers. Through analysis of H3K27Ac ChIP-seq data, we pinpointed three potential super-enhancers (LIF-SE1, LIF-SE2, and LIF-SE3) located proximal to the LIF gene in cells. Notably, genetic deletion of any of these three super-enhancers using CRISPR-Cas9 technology led to a significant reduction in LIF expression. Moreover, in cells lacking these super-enhancers, both cell growth and invasion capabilities were substantially impaired. Our findings highlight the critical role of three specific super-enhancers in regulating LIF expression and offer new insights into the transcriptional regulation of LIF in ARDS and lung cancer.


Subject(s)
Leukemia Inhibitory Factor , Lung Neoplasms , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/pathology , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Bronchoalveolar Lavage Fluid/chemistry , Enhancer Elements, Genetic , Cell Proliferation , Male
13.
Part Fibre Toxicol ; 21(1): 27, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797836

ABSTRACT

BACKGROUND: Rural regions of the western United States have experienced a noticeable surge in both the frequency and severity of acute wildfire events, which brings significant challenges to both public safety and environmental conservation efforts, with impacts felt globally. Identifying factors contributing to immune dysfunction, including endocrinological phenotypes, is essential to understanding how hormones may influence toxicological susceptibility. METHODS: This exploratory study utilized male and female C57BL/6 mice as in vivo models to investigate distinct responses to acute woodsmoke (WS) exposure with a focus on sex-based differences. In a second set of investigations, two groups were established within the female mouse cohort. In one group, mice experienced ovariectomy (OVX) to simulate an ovarian hormone-deficient state similar to surgical menopause, while the other group received Sham surgery as controls, to investigate the mechanistic role of ovarian hormone presence in driving immune dysregulation following acute WS exposure. Each experimental cohort followed a consecutive 2-day protocol with daily 4-h exposure intervals under two conditions: control HEPA-filtered air (FA) and acute WS to simulate an acute wildfire episode. RESULTS: Metals analysis of WS particulate matter (PM) revealed significantly increased levels of 63Cu, 182W, 208Pb, and 238U, compared to filtered air (FA) controls, providing insights into the specific metal components most impacted by the changing dynamics of wildfire occurrences in the region. Male and female mice exhibited diverse patterns in lung mRNA cytokine expression following WS exposure, with males showing downregulation and females displaying upregulation, notably for IL-1ß, TNF-α, CXCL-1, CCL-5, TGF-ß, and IL-6. After acute WS exposure, there were notable differences in the responses of macrophages, neutrophils, and bronchoalveolar lavage (BAL) cytokines IL-10, IL-6, IL-1ß, and TNF-α. Significant diverse alterations were observed in BAL cytokines, specifically IL-1ß, IL-10, IL-6, and TNF-α, as well as in the populations of immune cells, such as macrophages and polymorphonuclear leukocytes, in both Sham and OVX mice, following acute WS exposure. These findings elucidated the profound influence of hormonal changes on inflammatory outcomes, delineating substantial sex-related differences in immune activation and revealing altered immune responses in OVX mice due to ovarian hormone deficiency. In addition, the flow cytometry analysis highlighted the complex interaction between OVX surgery, acute WS exposure, and their collective impact on immune cell populations within the hematopoietic bone marrow niche. CONCLUSIONS: In summary, both male and female mice, alongside females subjected to OVX and those who had sham surgery, exhibit significant variations in the expression of proinflammatory cytokines, chemokines, lung mRNA gene expression, and related functional networks linked to signaling pathways. These differences potentially act as mediators of sex-specific and hormonal influences in the systemic inflammatory response to acute WS exposure during a wildfire event. Understanding the regulatory roles of genes expressed differentially under environmental stressors holds considerable implications, aiding in identifying sex-specific therapeutic targets for addressing acute lung inflammation and injury.


Subject(s)
Inhalation Exposure , Mice, Inbred C57BL , Animals , Female , Male , Inhalation Exposure/adverse effects , Wildfires , Particulate Matter/toxicity , Sex Factors , Cytokines/metabolism , Cytokines/immunology , Lung/immunology , Lung/drug effects , Lung/metabolism , Smoke/adverse effects , Air Pollutants/toxicity , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/chemistry , Ovariectomy , Mice , Ovary/immunology , Ovary/drug effects , Ovary/metabolism
14.
Transpl Int ; 37: 12298, 2024.
Article in English | MEDLINE | ID: mdl-38741700

ABSTRACT

Primary graft dysfunction (PGD) remains a challenge for lung transplantation (LTx) recipients as a leading cause of poor early outcomes. New methods are needed for more detailed monitoring and understanding of the pathophysiology of PGD. The measurement of particle flow rate (PFR) in exhaled breath is a novel tool to monitor and understand the disease at the proteomic level. In total, 22 recipient pigs underwent orthotopic left LTx and were evaluated for PGD on postoperative day 3. Exhaled breath particles (EBPs) were evaluated by mass spectrometry and the proteome was compared to tissue biopsies and bronchoalveolar lavage fluid (BALF). Findings were confirmed in EBPs from 11 human transplant recipients. Recipients with PGD had significantly higher PFR [686.4 (449.7-8,824.0) particles per minute (ppm)] compared to recipients without PGD [116.6 (79.7-307.4) ppm, p = 0.0005]. Porcine and human EBP proteins recapitulated proteins found in the BAL, demonstrating its utility instead of more invasive techniques. Furthermore, adherens and tight junction proteins were underexpressed in PGD tissue. Histological and proteomic analysis found significant changes to the alveolar-capillary barrier explaining the high PFR in PGD. Exhaled breath measurement is proposed as a rapid and non-invasive bedside measurement of PGD.


Subject(s)
Breath Tests , Bronchoalveolar Lavage Fluid , Lung Transplantation , Primary Graft Dysfunction , Proteomics , Animals , Lung Transplantation/adverse effects , Proteomics/methods , Primary Graft Dysfunction/metabolism , Primary Graft Dysfunction/etiology , Swine , Humans , Breath Tests/methods , Bronchoalveolar Lavage Fluid/chemistry , Female , Male , Exhalation
15.
Respir Res ; 25(1): 202, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730452

ABSTRACT

BACKGROUND: Extracellular mitochondrial DNA (mtDNA) is released from damaged cells and increases in the serum and bronchoalveolar lavage fluid (BALF) of idiopathic pulmonary fibrosis (IPF) patients. While increased levels of serum mtDNA have been reported to be linked to disease progression and the future development of acute exacerbation (AE) of IPF (AE-IPF), the clinical significance of mtDNA in BALF (BALF-mtDNA) remains unclear. We investigated the relationships between BALF-mtDNA levels and other clinical variables and prognosis in IPF. METHODS: Extracellular mtDNA levels in BALF samples collected from IPF patients were determined using droplet-digital PCR. Levels of extracellular nucleolar DNA in BALF (BALF-nucDNA) were also determined as a marker for simple cell collapse. Patient characteristics and survival information were retrospectively reviewed. RESULTS: mtDNA levels in serum and BALF did not correlate with each other. In 27 patients with paired BALF samples obtained in a stable state and at the time of AE diagnosis, BALF-mtDNA levels were significantly increased at the time of AE. Elevated BALF-mtDNA levels were associated with inflammation or disordered pulmonary function in a stable state (n = 90), while being associated with age and BALF-neutrophils at the time of AE (n = 38). BALF-mtDNA ≥ 4234.3 copies/µL in a stable state (median survival time (MST): 42.4 vs. 79.6 months, p < 0.001) and ≥ 11,194.3 copies/µL at the time of AE (MST: 2.6 vs. 20.0 months, p = 0.03) were associated with shorter survival after BALF collection, even after adjusting for other known prognostic factors. On the other hand, BALF-nucDNA showed different trends in correlation with other clinical variables and did not show any significant association with survival time. CONCLUSIONS: Elevated BALF-mtDNA was associated with a poor prognosis in both IPF and AE-IPF. Of note, at the time of AE, it sharply distinguished survivors from non-survivors. Given the trends shown by analyses for BALF-nucDNA, the elevation of BALF-mtDNA might not simply reflect the impact of cell collapse. Further studies are required to explore the underlying mechanisms and clinical applications of BALF-mtDNA in IPF.


Subject(s)
Bronchoalveolar Lavage Fluid , DNA, Mitochondrial , Idiopathic Pulmonary Fibrosis , Humans , Bronchoalveolar Lavage Fluid/chemistry , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/mortality , Male , Female , DNA, Mitochondrial/genetics , DNA, Mitochondrial/analysis , Aged , Prognosis , Middle Aged , Retrospective Studies , Cohort Studies , Aged, 80 and over
16.
J Mycol Med ; 34(2): 101481, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718721

ABSTRACT

Several lateral flow assays (LFA) capable of detecting Aspergillus fumigatus in serum and broncho-alveolar lavage fluid (BALF) within the hour, thereby potentially accelerating the screening process, are now commercially available. We prospectively compared three LFA targeting A. fumigatus on BALF collected from non-surgical intensive care patients between June 2022 and February 2023. The three LFA tested were Sõna Aspergillus galactomannan LFA (Immy), Fungadia Aspergillus antigen (Gadia), and AspLFD (OLM Diagnostics). We compared the results of these LFA with those of the galactomannan (GM) Platelia Aspergillus enzyme immunoassay (Bio-Rad), culture on Sabouraud medium and Aspergillus qPCR. We tested 97 BALF samples from 92 patients. In total 84 BALF samples tested negative with all three LFA, and four BALF samples tested positive with the AspLFD assay only (OLM). Only one BALF sample tested positive with the three LFA. In addition, three BALF samples tested positive only with the GM Platelia immunoassay. Four diagnosis of probable invasive aspergillosis were retained for the 92 patients tested. This prospective series included very few positive samples. From a practical point of view, the LFA from OLM presented the simplest protocol for use.


Subject(s)
Antigens, Fungal , Aspergillus fumigatus , Bronchoalveolar Lavage Fluid , Galactose , Invasive Pulmonary Aspergillosis , Mannans , Humans , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/chemistry , Prospective Studies , Galactose/analogs & derivatives , Antigens, Fungal/analysis , Mannans/analysis , Male , Female , Aspergillus fumigatus/isolation & purification , Middle Aged , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Aged , Adult , Mass Screening/methods , Sensitivity and Specificity , Immunoassay/methods , Aged, 80 and over
17.
Eur J Clin Microbiol Infect Dis ; 43(6): 1221-1229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38625450

ABSTRACT

PURPOSE: Cancer patients are at heightened risk for invasive aspergillosis (IA), a condition associated with elevated mortality risk. The JF5-based Aspergillus Galactomannoprotein Lateral Flow Device (AspLFD) offers rapid point-of-care testing (POCT) for IA. This study evaluated the diagnostic performance of AspLFD in cancer populations. METHODS: This retrospective study examined cancer patient bronchoalveolar lavage fluid (BALF) and serum samples collected between September 2021 and January 2023. Both AspLFD and galactomannan (GM) assays were conducted, and the results were analysed by two independent researchers. RESULTS: This study included 242 samples from 218 cancer patients, with 58 BALF and 184 serum samples. The overall agreement between AspLFD and GM assay results was 92.1%, with a kappa value of 0.552. AspLFD diagnosed proven/probable IA with a sensitivity and specificity of 91.7% and 95.3%, respectively, whereas GM exhibited sensitivity and specificity values of 83.3% and 93.7%, respectively. There were no statistical differences in the sensitivity and specificity between the two methods (P > 0.05). For serum analyses, AspLFD and GM exhibited similar sensitivity (66.7% vs. 66.7%, P > 0.05) and specificity (98.6% vs. 96.6%, P > 0.05) values. However, the sensitivity of the AspLFD was superior to the GM assay (100% vs. 88.9%) in BALF analyses but the difference was not statistically significant (P > 0.05), with no difference in specificity (83.7% vs. 83.7%, P > 0.05). In the solid-tumour cohort, both the AspLFD and GM assay exhibited high sensitivity (100% for both) and specificity (94.2% vs. 92.8%, P > 0.05). CONCLUSION: The AspLFD demonstrated good performance in diagnosing IA in cancer patients, especially those with solid tumours. The AspLFD is thus an alternative POCT, particularly when GM evaluations are not readily available.


Subject(s)
Aspergillus , Bronchoalveolar Lavage Fluid , Galactose , Mannans , Neoplasms , Sensitivity and Specificity , Humans , Retrospective Studies , Neoplasms/complications , Middle Aged , Female , Male , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/chemistry , Galactose/analogs & derivatives , Mannans/blood , Mannans/analysis , Aged , Aspergillus/isolation & purification , Adult , Point-of-Care Testing , Invasive Pulmonary Aspergillosis/diagnosis , Aged, 80 and over , Antigens, Fungal/blood , Antigens, Fungal/analysis
18.
Rejuvenation Res ; 27(3): 102-109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38666697

ABSTRACT

Elevated substance P can be utilized to predict early mortality during the first week of cerebral infarction. Whether aprepitant, a substance P receptor blocker could be utilized to alleviate poststroke pneumonia which is investigated in this study. Intraluminal monofilament model of middle cerebral artery occlusion (MCAO) was constructed in C57BL/6J male mice, and the relative expression of substance P was detected in collected bronchoalveolar lavage fluid (BALF) and lung tissue homogenate at 24 hours, 48 hours, and 72 hours poststroke. On the other hand, different concentrations of aprepitant (0.5, 1, and 2 mg/kg) were atomized and inhaled into MCAO mice. Inflammation cytokines and bacterial load were detected in collected BALF and lung tissue homogenate at 72-hour poststroke, and lung injury was revealed by histological examination. Aprepitant administration decreased total proteins, total cells, neutrophils, and macrophages in BALF. The concentrations of interleukin (IL)-6, IL-1ß, tumor necrosis factor-α, interferon γ, monocyte chemoattractant protein-1, and IL-10 in lung tissue homogenates were also diminished by the administration of aprepitant. In conclusion, aprepitant could attenuate poststroke pneumonia in mice suggesting its potential therapeutic use in the clinic.


Subject(s)
Aprepitant , Bronchoalveolar Lavage Fluid , Cytokines , Disease Models, Animal , Infarction, Middle Cerebral Artery , Mice, Inbred C57BL , Pneumonia , Animals , Aprepitant/pharmacology , Aprepitant/therapeutic use , Male , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Pneumonia/drug therapy , Pneumonia/complications , Pneumonia/pathology , Bronchoalveolar Lavage Fluid/chemistry , Cytokines/metabolism , Stroke/drug therapy , Stroke/complications , Stroke/pathology , Substance P/metabolism , Lung/pathology , Lung/drug effects , Mice , Morpholines/pharmacology , Morpholines/therapeutic use
19.
Biochim Biophys Acta Gen Subj ; 1868(7): 130612, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38626830

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by rapid onset and widespread inflammation in the lungs, often leading to respiratory failure. These conditions can be triggered by various factors, resulting in a severe inflammatory response within the lungs. Resveratrol, a polyphenolic compound found in grapes and peanuts, is renowned for its potent antioxidative and anti-inflammatory properties. In this study, we investigated how resveratrol protects against lipopolysaccharide (LPS)-induced ALI in mice. We established mouse models of LPS-induced ALI and inflammation in bronchoalveolar lavage fluid (BALF) macrophages. Through histopathological examination, immunofluorescence, western blot, enzyme-linked immunosorbent assay (ELISA), and transmission electron microscopy (TEM), we assessed the impact of resveratrol on the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasomes and the process of mitophagy. Our findings indicate that resveratrol significantly mitigated the lung injury and inflammation caused by LPS. This was achieved by inhibiting the oligomerization of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and the activation of NLRP3 inflammasomes. Resveratrol also reduced the levels of IL-1ß and IL-18 in serum and BALF, decreased caspase-1 expression, and diminished macrophage pyroptosis. Furthermore, it upregulated Pink1, Parkin, Beclin-1, Autophagy-Related 5 (Atg5), and Microtubule-Associated Proteins 1 A/1B Light Chain 3B (LC3B-II), thereby enhancing mitophagy. Conversely, mitophagy was inhibited by Pink1 siRNA. In conclusion, resveratrol ameliorated ALI in mice, potentially by inhibiting the activation of NLRP3 inflammasomes, activating the Pink1/Parkin pathway, and promoting mitophagy.


Subject(s)
Acute Lung Injury , Inflammasomes , Mitophagy , NLR Family, Pyrin Domain-Containing 3 Protein , Protein Kinases , Resveratrol , Ubiquitin-Protein Ligases , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mitophagy/drug effects , Mice , Resveratrol/pharmacology , Inflammasomes/metabolism , Inflammasomes/drug effects , Ubiquitin-Protein Ligases/metabolism , Protein Kinases/metabolism , Male , Mice, Inbred C57BL , Lipopolysaccharides , Bronchoalveolar Lavage Fluid/chemistry
20.
J Infect ; 88(6): 106159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641139

ABSTRACT

OBJECTIVE: To diagnose invasive pulmonary aspergillosis (IPA), galactomannan (GM) detection in serum or bronchoalveolar lavage fluid (BALF) is widely used. However, the utility of proximal airway GM test (from induced sputum or tracheal aspirate) has not been well elucidated. METHODS: In this retrospective cohort study, we evaluated the diagnostic performance of proximal airway GM in diagnosis of IPA including COVID-19 associated pulmonary aspergillosis (CAPA). Between January 2022 and January 2023, patients who had been tested for GM with clinical suspicion or for surveillance from any specimen (serum, induced sputum, tracheal aspirate, and BALF) were screened. IPA was diagnosed using EORTC/MSGERC criteria, and CAPA was diagnosed following the 2020 ECMM/ISHAM consensus criteria. RESULTS: Of 624 patients with GM results, 70 met the criteria for proven/probable IPA and 427 had no IPA. The others included possible IPA and chronic form of aspergillosis. The sensitivities and specificities of serum, proximal airway, and BALF GM for proven/probable IPA versus no IPA were 78.9% and 70.6%, 93.1% and 78.7%, and 78.6% and 91.0%, respectively. Areas under the receiver operating characteristic curve (AUCs) were 0.742 for serum GM, 0.935 for proximal airway GM, and 0.849 for BALF GM (serum GM vs proximal airway GM, p = 0.014; proximal airway GM vs BALF GM, p = 0.334; serum GM vs BALF GM, p = 0.286). CONCLUSION: This study demonstrates that the performance of GM test from non-invasive proximal airway samples is comparable or even better than those from serum and distal airway sample (BALF).


Subject(s)
Bronchoalveolar Lavage Fluid , Galactose , Invasive Pulmonary Aspergillosis , Mannans , Sensitivity and Specificity , Humans , Galactose/analogs & derivatives , Mannans/blood , Mannans/analysis , Invasive Pulmonary Aspergillosis/diagnosis , Retrospective Studies , Male , Female , Middle Aged , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/microbiology , Aged , COVID-19/diagnosis , Sputum/microbiology , Adult , SARS-CoV-2/isolation & purification , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...