Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 725
Filter
2.
Science ; 385(6707): 355, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39052798
3.
Parasit Vectors ; 17(1): 270, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926834

ABSTRACT

BACKGROUND: Cache Valley virus (CVV) is an understudied Orthobunyavirus with a high spillover transmission potential due to its wide geographical distribution and large number of associated hosts and vectors. Although CVV is known to be widely distributed throughout North America, no studies have explored its geography or employed computational methods to explore the mammal and mosquito species likely participating in the CVV sylvatic cycle. METHODS: We used a literature review and online databases to compile locality data for CVV and its potential vectors and hosts. We linked location data points with climatic data via ecological niche modeling to estimate the geographical range of CVV and hotspots of transmission risk. We used background similarity tests to identify likely CVV mosquito vectors and mammal hosts to detect ecological signals from CVV sylvatic transmission. RESULTS: CVV distribution maps revealed a widespread potential viral occurrence throughout North America. Ecological niche models identified areas with climate, vectors, and hosts suitable to maintain CVV transmission. Our background similarity tests identified Aedes vexans, Culiseta inornata, and Culex tarsalis as the most likely vectors and Odocoileus virginianus (white-tailed deer) as the most likely host sustaining sylvatic transmission. CONCLUSIONS: CVV has a continental-level, widespread transmission potential. Large areas of North America have suitable climate, vectors, and hosts for CVV emergence, establishment, and spread. We identified geographical hotspots that have no confirmed CVV reports to date and, in view of CVV misdiagnosis or underreporting, can guide future surveillance to specific localities and species.


Subject(s)
Bunyamwera virus , Ecosystem , Mosquito Vectors , Animals , Mosquito Vectors/virology , North America/epidemiology , Culicidae/virology , Bunyaviridae Infections/transmission , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/virology , Geography , Culex/virology , Aedes/virology , Mammals/virology , Deer/virology , Humans , Ecology
4.
Science ; 384(6700): 1052-1053, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843341
5.
Euro Surveill ; 29(26)2024 Jun.
Article in English | MEDLINE | ID: mdl-38940002

ABSTRACT

Oropouche fever is caused by Oropouche virus (OROV), transmitted primarily through the bite of infected midges, particularly of the genus Culicoides. The virus is mainly circulating in Central and South America where several countries reported an ongoing outbreak. We report here two imported cases of OROV infection identified in Italy, late May-early June 2024. These cases indicate that in the shadow of a massive dengue outbreak in the Americas, the Oropouche outbreak might be more widespread than previously estimated.


Subject(s)
Travel , Humans , Italy/epidemiology , Male , Cuba/epidemiology , Adult , Orthobunyavirus/isolation & purification , Animals , Disease Outbreaks , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/epidemiology , Middle Aged , Female
6.
Emerg Infect Dis ; 30(7): 1434-1437, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38916639

ABSTRACT

We investigated Alongshan virus infection in reindeer in northeastern China. We found that 4.8% of the animals were viral RNA-positive, 33.3% tested positive for IgG, and 19.1% displayed neutralizing antibodies. These findings suggest reindeer could serve as sentinel animal species for the epidemiologic surveillance of Alongshan virus infection.


Subject(s)
Antibodies, Viral , Reindeer , Animals , Reindeer/virology , China/epidemiology , Antibodies, Viral/blood , Antibodies, Neutralizing/blood , Bunyaviridae Infections/veterinary , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/virology , RNA, Viral , Immunoglobulin G/blood
9.
Mem Inst Oswaldo Cruz ; 119: e230221, 2024.
Article in English | MEDLINE | ID: mdl-38747855

ABSTRACT

OBJECTIVES: We report the first case of Oropouche fever detected in the border region of Colombia. METHODS: Using a multiplex real-time polymerase chain reaction (PCR), genetic sequencing and clinical characteristics during the dengue epidemic in 2019, a total of 175 samples were analysed, from cases notified to the system epidemiological surveillance such as dengue. FINDINGS: The Oropouche virus (OROV) isolate from Leticia belongs to lineage 2 according to both M and S genome segments maximum likelihood (ML) analysis, shares a common ancestor with samples obtained in Esmeraldas, Ecuador and Turbaco, Colombia. The patient: a woman resident in the border neighbourhood of the municipality of Leticia had the following symptoms: fever, headache, retro-orbital pain and myalgias. MAIN CONCLUSION: This cross-border surveillance can be useful to give an alert about the entry or exit of arboviruses circulation in the region, which are often underreported in public health surveillance systems.


Subject(s)
Orthobunyavirus , Humans , Female , Colombia/epidemiology , Orthobunyavirus/genetics , Orthobunyavirus/isolation & purification , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/virology , Adult , Real-Time Polymerase Chain Reaction , Phylogeny
11.
BMC Vet Res ; 20(1): 183, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720324

ABSTRACT

BACKGROUND: Pigs are susceptible to several ruminant pathogens, including Coxiella burnetti, Schmallenberg virus (SBV) and bovine viral diarrhea virus (BVDV). These pathogens have already been described in the pig population, although the dynamics of the infection and the impact on pig farms are currently unclear. The aim of this work was to evaluate the presence of these infections in the pig population of the Campania region, southern Italy, and to evaluate the risk factors associated with a greater risk of exposure. RESULTS: A total of 414 serum samples belonging to 32 herds were tested for the presence of antibodies against SBV, Coxiella, and BVD using commercial multispecies ELISA kits. SBV (5.3%) was the most prevalent pathogen, followed by Coxiella (4.1%) and BVD (3%). The risk factors included in the study (age, sex, province, farming system, ruminant density and major ruminant species) had no influence on the probability of being exposed to BVD and Coxiella, except for the location, in fact more pigs seropositive to Coxiella were found in the province of Caserta. However, the univariate analysis highlighted the influence of age, location, and sex on exposure to SBV. The subsequent multivariate analysis statistically confirmed the importance of these factors. The presence of neutralizing antibodies for SBV and BVDV, or antibodies directed towards a specific phase of infection for Coxiella was further confirmed with virus-neutralization assays and phase-specific ELISAs in a large proportion of positive samples. The presence of high neutralizing antibody titers (especially for SBV) could indicate recent exposures. Twelve of the 17 positive samples tested positive for antibodies against Coxiella phase I or II antigens, indicating the presence of both acute and chronic infections (one animal tested positive for both phases antibodies). CONCLUSIONS: Our study indicates a non-negligible exposure of pigs from southern Italy to the above pathogens. Further studies are necessary to fully understand the dynamics of these infections in pigs, the impact on productivity, and the public health consequences in the case of Coxiella.


Subject(s)
Antibodies, Viral , Q Fever , Swine Diseases , Animals , Italy/epidemiology , Seroepidemiologic Studies , Swine , Risk Factors , Swine Diseases/epidemiology , Swine Diseases/microbiology , Swine Diseases/virology , Q Fever/epidemiology , Q Fever/veterinary , Female , Male , Antibodies, Viral/blood , Diarrhea Viruses, Bovine Viral/immunology , Antibodies, Bacterial/blood , Orthobunyavirus/immunology , Orthobunyavirus/isolation & purification , Coxiella burnetii/immunology , Coxiella burnetii/isolation & purification , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Pseudorabies/epidemiology , Enzyme-Linked Immunosorbent Assay/veterinary
12.
Viruses ; 16(2)2024 02 15.
Article in English | MEDLINE | ID: mdl-38400069

ABSTRACT

Orthobunyaviruses (order Bunyavirales, family Peribunyaviridae) in the Simbu serogroup have been responsible for widespread epidemics of congenital disease in ruminants. Australia has a national program to monitor arboviruses of veterinary importance. While monitoring for Akabane virus, a novel orthobunyavirus was detected. To inform the priority that should be given to this detection, a scoping review was undertaken to (1) characterise the associated disease presentations and establish which of the Simbu group viruses are of veterinary importance; (2) examine the diagnostic assays that have undergone development and validation for this group of viruses; and (3) describe the methods used to monitor the distribution of these viruses. Two search strategies identified 224 peer-reviewed publications for 33 viruses in the serogroup. Viruses in this group may cause severe animal health impacts, but only those phylogenetically arranged in clade B are associated with animal disease. Six viruses (Akabane, Schmallenberg, Aino, Shuni, Peaton, and Shamonda) were associated with congenital malformations, neurological signs, and reproductive disease. Diagnostic test interpretation is complicated by cross-reactivity, the timing of foetal immunocompetence, and sample type. Serological testing in surveys remains a mainstay of the methods used to monitor the distribution of SGVs. Given significant differences in survey designs, only broad mean seroprevalence estimates could be provided. Further research is required to determine the disease risk posed by novel orthobunyaviruses and how they could challenge current diagnostic and surveillance capabilities.


Subject(s)
Bunyaviridae Infections , Cattle Diseases , Orthobunyavirus , Simbu virus , Cattle , Animals , Livestock , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Seroepidemiologic Studies , Serogroup , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , Diagnostic Tests, Routine
16.
Lancet Infect Dis ; 24(7): e439-e452, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38281494

ABSTRACT

Since its discovery in 1955, the incidence and geographical spread of reported Oropouche virus (OROV) infections have increased. Oropouche fever has been suggested to be one of the most important vector-borne diseases in Latin America. However, both literature on OROV and genomic sequence availability are scarce, with few contributing laboratories worldwide. Three reassortant OROV glycoprotein gene variants termed Iquitos, Madre de Dios, and Perdões virus have been described from humans and non-human primates. OROV predominantly causes acute febrile illness, but severe neurological disease such as meningoencephalitis can occur. Due to unspecific symptoms, laboratory diagnostics are crucial. Several laboratory tests have been developed but robust commercial tests are hardly available. Although OROV is mainly transmitted by biting midges, it has also been detected in several mosquito species and a wide range of vertebrate hosts, which likely facilitates its widespread emergence. However, potential non-human vertebrate reservoirs have not been systematically studied. Robust animal models to investigate pathogenesis and immune responses are not available. Epidemiology, pathogenesis, transmission cycle, cross-protection from infections with OROV reassortants, and the natural history of infection remain unclear. This Review identifies Oropouche fever as a neglected disease and offers recommendations to address existing knowledge gaps, enable risk assessments, and ensure effective public health responses.


Subject(s)
Bunyaviridae Infections , Humans , Animals , Latin America/epidemiology , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/transmission , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/virology , Orthobunyavirus/genetics , Orthobunyavirus/pathogenicity , Orthobunyavirus/isolation & purification , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology
17.
Virus Res ; 341: 199318, 2024 03.
Article in English | MEDLINE | ID: mdl-38224842

ABSTRACT

The Oropouche virus is an important arthropod-borne virus in the Peribunyaviridae family that can cause febrile illnesses, and it is widely distributed in tropical regions such as Central and South America. Since the virus was first identified, a large number of related cases are reported every year. No deaths have been reported to date, however, the virus can cause systemic infections, including the nervous and blood systems, leading to serious complications. The transmission of Oropouche virus occurs through both urban and sylvatic cycles, with the anthropophilic biting midge Culicoides paraensis serving as the primary vector in urban areas. Direct human-to-human transmission of Oropouche virus has not been observed. Oropouche virus consists of three segments, and the proteins encoded by the different segments enables the virus to replicate efficiently in the host and to resist the host's immune response. Phylogenetic analyses showed that Oropouche virus sequences are geographically distinct and have closer homologies with Iquitos virus and Perdoes virus, which belong to the family Peribunyaviridae. Despite the enormous threat it poses to public health, there are currently no licensed vaccines or specific antiviral treatments for the disease it causes. Recent studies have utilised imJatobal virusmunoinformatics approaches to develop epitope-based peptide vaccines, which have laid the groundwork for the clinical use of vaccines. The present review focuses on the structure, epidemiology, immunity and phylogeny of Oropouche virus, as well as the progress of vaccine development, thereby attracting wider attention and research, particularly with regard to potential vaccine programs.


Subject(s)
Arboviruses , Bunyaviridae Infections , Orthobunyavirus , Vaccines , Humans , Phylogeny , Orthobunyavirus/genetics , Bunyaviridae Infections/epidemiology
18.
J Vet Med Sci ; 86(2): 211-220, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38171741

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is a potentially fatal tick-borne zoonotic disease, endemic to Asian regions, including western Japan. Cats appear to suffer a particularly severe form of the disease; however, feline SFTS is not clinically well characterized. Accordingly, in this study, we investigated the associations of, demographic, hematological and biochemical, immunological, and virological parameters with clinical outcome (fatal cases vs. survivors) in SFTSV-positive cats. Viral genomic analysis was also performed. Viral load in blood, total bilirubin, creatine phosphokinase, serum amyloid A, interleukin-6, tumor necrotic factor-α, and virus-specific IgM and IgG differed significantly between survivors and fatal cases, and thus may have utility as prognosticators. Furthermore, survivor profiling revealed high-level of viremia with multiple parameters (white blood cells, platelet, total bilirubin, glucose, and serum amyloid A) beyond the reference range in the 7-day acute phase, and signs of clinical recovery in the post-acute phase (parameters returning to, or tending toward, the reference range). However, SFTSV was still detectable from some survived cats even 14 days after onset of disease, indicating the risk of infection posed by close-contact exposure may persist through the post-acute phase. This study provides useful information for prognostic assessments of acute feline SFTS, and may contribute to early treatment plans for cats with SFTS. Our findings also alert pet owners and animal health professionals to the need for prolonged vigilance against animal-to-human transmission when handling cats that have been diagnosed with SFTS.


Subject(s)
Bunyaviridae Infections , Cat Diseases , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Tick-Borne Diseases , Animals , Humans , Cats , Severe Fever with Thrombocytopenia Syndrome/veterinary , Prognosis , Phlebovirus/genetics , Bunyaviridae Infections/veterinary , Bunyaviridae Infections/epidemiology , Serum Amyloid A Protein , Tick-Borne Diseases/veterinary , Bilirubin
19.
Vector Borne Zoonotic Dis ; 24(5): 249-264, 2024 May.
Article in English | MEDLINE | ID: mdl-38206763

ABSTRACT

Background: Mosquito-borne orthobunyaviruses in Canada are a growing public health concern. Orthobunyaviral diseases are commonly underdiagnosed and in Canada, likely underreported as surveillance is passive. No vaccines or specific treatments exist for these disease agents. Further, climate change is facilitating habitat expansion for relevant reservoirs and vectors, and it is likely that the majority of the Canadian population is susceptible to these viruses. Methods: A scoping review was conducted to describe the current state of knowledge on orthobunyavirus epidemiology in Canada. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guideline was used. Literature searches were conducted in six databases and in gray literature. The epidemiology of orthobunyaviruses was characterized for studies focusing on host species, including spatiotemporal patterns, risk factors, and climate change impact. Results: A total of 172 relevant studies were identified from 1734 citations from which 95 addressed host species, including humans, wildlife, and domestic animals including livestock. The orthobunyaviruses-Cache Valley virus (CVV), Jamestown Canyon virus (JCV), Snowshoe Hare virus (SHV), and La Crosse virus (LACV)-were identified, and prevalence was widespread across vertebrate species. CVV, JCV, and SHV were detected across Canada and the United States. LACV was reported only in the United States, predominantly the Mid-Atlantic and Appalachian regions. Disease varied by orthobunyavirus and was associated with age, environment, preexisting compromised immune systems, or livestock breeding schedule. Conclusion: Knowledge gaps included seroprevalence data in Canada, risk factor analyses, particularly for livestock, and disease projections in the context of climate change. Additional surveillance and mitigation strategies, especially accounting for climate change, are needed to guide future public health efforts to prevent orthobunyavirus exposure and disease.


Subject(s)
Animals, Wild , Orthobunyavirus , Animals , Animals, Wild/virology , Canada/epidemiology , Humans , Orthobunyavirus/isolation & purification , Animals, Domestic/virology , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/virology , Bunyaviridae Infections/veterinary
20.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(1): 112-116, 2024 Jan 10.
Article in Chinese | MEDLINE | ID: mdl-38228532

ABSTRACT

Objective: To understand the epidemiological characteristics and incidence trend of severe fever with thrombocytopenia syndrome (SFTS) in China. Methods: The incidence data of SFTS in China from 2018 to 2021 were collected from Chinese Disease Prevention and Control Information System for a statistical and descriptive epidemiological analysis by using software such as Excel 2016, Joinpoint 5.0.2, SPSS 26.0, and GraphPad Prism 8.0, especially, the SFTS cases reported monthly by key provinces were analyzed. Results: From 2018 to 2021, a total of 8 835 SFTS cases were reported in 25 provinces and the annual incidence showed an upward trend. The distribution of SFTS cases showed clustering, but the cases were mainly sporadic ones. The cases began to increase in March, mainly occurred during April to October (96.79%,8 551/8 835), and peaked during May to July. The cases were mainly distributed in middle-aged and old farmers, and slight more cases were women. The average case fatality rate was 5.38%, which varied greatly with areas. The case fatality rate tended to increase with age. Conclusion: From 2018 to 2021, the epidemiological characteristics of SFTS in China remained stable, but the number of reported cases gradually increased and the distribution showed an expanding trend, to which close attention should be paid.


Subject(s)
Bunyaviridae Infections , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Thrombocytopenia , Middle Aged , Humans , Female , Male , Thrombocytopenia/epidemiology , Fever/epidemiology , China/epidemiology , Incidence , Bunyaviridae Infections/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL