Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.738
Filter
1.
Drug Dev Res ; 85(5): e22240, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39105636

ABSTRACT

In an effort to develop new and effective therapeutic agents for Alzheimer's disease, a series of hydrazone derivatives bearing piperidine rings have been designed and synthesized. The chemical structures of the compounds were characterized by various spectroscopic techniques. In vitro antioxidant and cholinesterase activities of the compounds were evaluated. Among the compounds, N12 exhibited the most antioxidant activity in all methods (CUPRAC, FRAP, DPPH, ABTS). In vitro acetylcholinesterase (AChE) activity results of the compounds showed good IC50 values between 14.124 ± 0.084 and 49.680 ± 0.110 µM were obtained (IC50 = 38.842 ± 0.053 µM for Donepezil). Among the compounds, N7 and N6 are much more effective derivatives than the standard compound donepezil with IC50 values of 14.124 ± 0.084 and 17.968 ± 0.072 µM, respectively. In vitro, butyrylcholinesterase (BChE) inhibition values of the compounds were between 13.505 ± 0.025 and 52.230 ± 0.027 µm. Among the compounds, N6 has the highest BChE inhibition with an IC50 value of 13.505 µm in the series. The cytotoxicity and AChE inhibitory activity of the compounds on SH-SY5Y cell lines were also evaluated. Kinetic studies were also performed to determine the behavior of the compounds as competitive or noncompetitive inhibitors. The binding modes of N6, which was determined to be highly effective according to in vitro analyses, with AChE and BChE were investigated using molecular docking studies, and the stability of the complexes was determined by molecular dynamics simulations. These findings indicated that AChE and BChE enzymes maintained their overall structural stability and compactness during interactions with compound N6.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Cholinesterase Inhibitors , Drug Design , Hydrazones , Molecular Docking Simulation , Piperidines , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Hydrazones/chemistry , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/chemical synthesis , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Humans , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Structure-Activity Relationship , Models, Molecular
2.
Mol Biol Rep ; 51(1): 864, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073463

ABSTRACT

BACKGROUND: The study investigated the effect of co-administration of curcumin and donepezil on several markers of cognitive function (such as spatial memory, astrocyte activation, cholinesterase expressions) in the brain cortex and hippocampus of scopolamine-treated rats. METHOD AND RESULTS: For seven consecutive days, a pre-treatment of curcumin (50 mg/kg) and/or donepezil (2.5 mg/kg) was administered. On the seventh day, scopolamine (1 mg/kg) was administered to elicit cognitive impairment, 30 min before memory test was conducted. This was followed by evaluating changes in spatial memory, cholinesterase, and adenosine deaminase (ADA) activities, as well as nitric oxide (NO) level were determined. Additionally, RT-qPCR for glial fibrillary acidic protein (GFAP) and cholinesterase gene expressions was performed in the brain cortex and hippocampus. Also, GFAP immunohistochemistry  of the brain tissues for neuronal injury were performed in the brain cortex and hippocampus. In comparison to the control group, rats given scopolamine had impaired memory, higher levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ADA activities, as well as elevated markers of oxidative stress. In addition to enhanced GFAP immunoreactivity, there was also overexpression of the GFAP and BChE genes in the brain tissues. The combination of curcumin and donepezil was, however, observed to better ameliorate these impairments in comparison to the donepezil-administered rat group. CONCLUSION: Hence, this evidence provides more mechanisms to support the hypothesis that the concurrent administration of curcumin and donepezil mitigates markers of cognitive dysfunction in scopolamine-treated rat model.


Subject(s)
Acetylcholinesterase , Astrocytes , Curcumin , Donepezil , Glial Fibrillary Acidic Protein , Hippocampus , Scopolamine , Spatial Memory , Animals , Donepezil/pharmacology , Curcumin/pharmacology , Curcumin/administration & dosage , Scopolamine/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Rats , Male , Spatial Memory/drug effects , Acetylcholinesterase/metabolism , Acetylcholinesterase/genetics , Hippocampus/drug effects , Hippocampus/metabolism , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Brain/drug effects , Brain/metabolism , Rats, Wistar , Oxidative Stress/drug effects , Cholinesterases/metabolism , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/genetics , Nitric Oxide/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/administration & dosage
3.
Bioorg Chem ; 150: 107598, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959645

ABSTRACT

A completely green protocol was developed for the synthesis of a series of arylaminonaphthol derivatives in the presence of N-ethylethanolamine (NEEA) as a catalyst under ultrasonic irradiation and solventless conditions. The major assets of this methodology were the use of non-toxic organic medium, available catalyst, mild reaction condition, and good to excellent yield of desired products. All of the synthesized products were screened for their in vitro antioxidant activity using DPPH, ABTS, and Ferric-phenanthroline assays and it was found that most of them are potent antioxidant agents. Also, their butyrylcholinesterase inhibitory activity has been investigated in vitro. All tested compounds exhibited potential inhibitory activity toward BuChE when compared to standard reference drug galantamine, however, compounds 4r, 4u, 4 g and 4x gave higher butyrylcholinesterase inhibitory with IC50 values of 14.78 ± 0.65 µM, 16.18 ± 0.50 µM, 20.00 ± 0.50 µM, and 20.28 ± 0.08 µM respectively. On the other hand, we employed density functional theory (DFT), calculations to analyze molecular geometry and global reactivity descriptors, and MESP analysis to predict electrophilic and nucleophilic attacks. A quantitative structure-activity relationship (QSAR) investigation was conducted on the antioxidant and butyrylcholinesterase properties of 25 arylaminonaphthol derivatives, resulting in robust and satisfactory models. To evaluate their anti-Alzheimer's activity, compounds 4 g, 4q, 4r, 4u, and 4x underwent docking simulations at the active site of the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), revealing why these compounds displayed superior activity, consistent with the biological findings.


Subject(s)
Antioxidants , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Molecular Structure , Humans , Dose-Response Relationship, Drug , Acetylcholinesterase/metabolism
4.
Article in English | MEDLINE | ID: mdl-38959705

ABSTRACT

This study established a method to prepare and detect OPs adducts on butyrylcholinesterase (BChE) and human serum albumin (HSA). OPs (methyl paraoxon, ethyl paraoxon, methyl parathion, parathion) were incubated with BChE or HSA in vitro, and the adducts of OPs-BChE or OPs-HSA were prepared and qualitatively analyzed by ultra-performance liquid chromatography data-dependent high-resolution tandem mass spectrometry (UPLC-ddHRMS/MS). The amounts of BChE and HSA in the incubating systems were varied and the resulting amounts of the adducts were determined using linear regression. OPs-BChE in the blood were isolated by immunomagnetic separation (IMS), and then digested into the OPs-nonapeptide adduct by pepsin. The proteins in the remaining blood plasma were precipitated and digested by pronase to OPs-tyrosines(OPs-Tyr), which were quantified by UPLC-ddHRMS/MS. 4 OPs-nonapeptides and 4 OPs-Tyr adducts were obtained through the process above. The relative mass deviation of incubated adducts between the actual and theoretical exact masses was less than 10 ppm, and further confirmed by fragmentation mass spectra analysis. Calibration curves were linear for all adducts with a coefficient of determination value (R2) ≥0.995. The limits of detection (LOD) and limits of quantification (LOQ) for adducts detected by MS ranged from 0.05 to 1.0 ng/mL, and from 0.1 to 2.0 ng/mL, respectively. The recovery percentages for adducts ranged from 76.1 % to 107.1 %, matrix effects ranged from 83.4 % to 102.1 %. The inter-day and intra-day precision were 6.1-10.1 % and 6.9-12.9 % for adducts. This study provides a new reference method for the detection of organophosphorus pesticide poisoning. In addition, two blood samples with organophosphorus poisoning were tested by the designed method, and the corresponding adducts were detected in both samples.


Subject(s)
Butyrylcholinesterase , Organophosphorus Compounds , Tandem Mass Spectrometry , Humans , Butyrylcholinesterase/blood , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/blood , Organophosphorus Compounds/analysis , Tandem Mass Spectrometry/methods , Linear Models , Chromatography, High Pressure Liquid/methods , Pesticides/blood , Pesticides/analysis , Pesticides/chemistry , Limit of Detection , Serum Albumin, Human/chemistry , Serum Albumin, Human/analysis , Reproducibility of Results
5.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000508

ABSTRACT

The targeted compounds in this research, resveratrol analogs 1-14, were synthesized as mixtures of isomers by the Wittig reaction using heterocyclic triphenylphosphonium salts and various benzaldehydes. The planned compounds were those possessing the trans-configuration as the biologically active trans-resveratrol. The pure isomers were obtained by repeated column chromatography in various isolated yields depending on the heteroaromatic ring. It was found that butyrylcholinesterase (BChE) was more sensitive to the heteroaromatic resveratrol analogs than acetylcholinesterase (AChE), except for 6, the methylated thiophene derivative with chlorine, which showed equal inhibition toward both enzymes. Compounds 5 and 8 achieved the highest BChE inhibition with IC50 values of 22.9 and 24.8 µM, respectively. The same as with AChE and BChE, methylated thiophene subunits of resveratrol analogs showed better enzyme inhibition than unmethylated ones. Two antioxidant spectrophotometric methods, DPPH and CUPRAC, were applied to determine the antioxidant potential of new heteroaromatic resveratrol analogs. The molecular docking of these compounds was conducted to visualize the ligand-active site complexes' structure and identify the non-covalent interactions responsible for the complex's stability, which influence the inhibitory potential. As ADME properties are crucial in developing drug product formulations, they have also been addressed in this work. The potential genotoxicity is evaluated by in silico studies for all compounds synthesized.


Subject(s)
Antioxidants , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Resveratrol , Resveratrol/analogs & derivatives , Resveratrol/chemistry , Resveratrol/pharmacology , Resveratrol/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Humans , Structure-Activity Relationship
6.
Protein Sci ; 33(8): e5100, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39022909

ABSTRACT

Cholinesterases are well-known and widely studied enzymes crucial to human health and involved in neurology, Alzheimer's, and lipid metabolism. The protonation pattern of active sites of cholinesterases influences all the chemical processes within, including reaction, covalent inhibition by nerve agents, and reactivation. Despite its significance, our comprehension of the fine structure of cholinesterases remains limited. In this study, we employed enhanced-sampling quantum-mechanical/molecular-mechanical calculations to show that cholinesterases predominantly operate as dynamic mixtures of two protonation states. The proton transfer between two non-catalytic glutamate residues follows the Grotthuss mechanism facilitated by a mediator water molecule. We show that this uncovered complexity of active sites presents a challenge for classical molecular dynamics simulations and calls for special treatment. The calculated proton transfer barrier of 1.65 kcal/mol initiates a discussion on the potential existence of two coupled low-barrier hydrogen bonds in the inhibited form of butyrylcholinesterase. These findings expand our understanding of structural features expressed by highly evolved enzymes and guide future advances in cholinesterase-related protein and drug design studies.


Subject(s)
Butyrylcholinesterase , Catalytic Domain , Molecular Dynamics Simulation , Protons , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Humans , Hydrogen Bonding , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Cholinesterases/chemistry , Cholinesterases/metabolism
7.
Medicine (Baltimore) ; 103(28): e38802, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996137

ABSTRACT

BACKGROUND AND AIMS: To develop a model that describes how the pancreas functions, how the rate of synthesis of digestive enzymes is regulated, and finally what puts the pancreas to rest between meals. METHODS: We applied the principals of control theory to previously published canine data to develop a model for how the canine pancreas functions. Using this model, we then describe the steps needed to apply this model to the human pancreas. RESULTS: This new closed-loop negative feedback model describes what regulates digestive enzyme synthesis. This model is based on basolateral exocytosis of butyrylcholinesterase (BCHE) into the interstitial space. It is this level of BCHE * BCHE activity that controls the rate of canine pancreas digestive enzyme synthesis, and in the absence of stimulation from the vagus nerve, puts the pancreas to rest between meals. CONCLUSIONS: Finding secretagogue-specific inhibitory enzymes in the human pancreas that are analogous to BCHE in the canine, and blocking its associated receptors, may lead to a cure for human pancreatitis.


Subject(s)
Butyrylcholinesterase , Feedback, Physiological , Pancreas , Pancreas/enzymology , Dogs , Humans , Animals , Butyrylcholinesterase/metabolism , Models, Biological , Pancreatitis , Vagus Nerve/physiology
8.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999975

ABSTRACT

Citral, a common monoterpene found in numerous plants, is an interesting compound that has been shown to have various biological activities. Although it is widely distributed in nature and there are many studies presenting its biological activities, its anti-neurodegenerative activity, especially under in vivo conditions, is very poorly understood. Thus, this paper aimed to deepen knowledge about citral activity towards factors and symptoms of neurodegeneration. To accomplish this, several comprehensive tests were conducted, including the estimation of butyrylcholinesterase inhibition, the evaluation of hepatotoxicity and the detection of oxidative stress and lipid peroxidation in vitro, as well as an in vivo behavioral assessment using mice models. Additionally, ex vivo determination of level of the compound in the brain and blood of a tested animal was undertaken. The results obtained revealed that citral is able to inhibit butyrylcholinesterase activity and protect hepatic cells against oxidative stress and lipid peroxidation in vitro. Moreover, behavioral tests in vivo indicated that citral (50 mg/kg) improves memory processes associated with acquisition (passive avoidance test), both in acute and subchronic administration. Additionally, we found that the administration of citral at 25 mg/kg and 50 mg/kg did not significantly affect the locomotor activity. Beyond the aforementioned, gas chromatography-mass spectrometry analysis revealed the presence of the compound in the blood and brain after subchronic administration of citral. Taken together, the results obtained in vitro, in vivo and ex vivo clearly indicate that citral is a promising monoterpene that can potentially be used towards cognition improvement.


Subject(s)
Acyclic Monoterpenes , Cognition , Lipid Peroxidation , Oxidative Stress , Animals , Acyclic Monoterpenes/pharmacology , Mice , Cognition/drug effects , Oxidative Stress/drug effects , Lipid Peroxidation/drug effects , Male , Butyrylcholinesterase/metabolism , Brain/drug effects , Brain/metabolism , Cholinesterase Inhibitors/pharmacology , Humans , Monoterpenes/pharmacology , Liver/metabolism , Liver/drug effects
9.
ACS Chem Neurosci ; 15(15): 2756-2778, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39076038

ABSTRACT

Alzheimer's disease (AD) is the most prevalent cause of dementia and is characterized by low levels of acetyl and butyrylcholine, increased oxidative stress, inflammation, accumulation of metals, and aggregations of Aß and tau proteins. Current treatments for AD provide only symptomatic relief without impacting the pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multitarget molecules for AD, through extensive medicinal chemistry efforts, we have developed 13a, harboring the key functional groups to provide not only symptomatic relief but also targeting oxidative stress, able to chelate iron, inhibiting NLRP3, and Aß1-42 aggregation in various AD models. 13a exhibited promising anticholinesterase activity against AChE (IC50 = 0.59 ± 0.19 µM) and BChE (IC50 = 5.02 ± 0.14 µM) with excellent antioxidant properties in DPPH assay (IC50 = 5.88 ± 0.21 µM) over ferulic acid (56.49 ± 0.62 µM). The molecular docking and dynamic simulations further corroborated the enzyme inhibition studies and confirmed the stability of these complexes. Importantly, in the PAMPA-BBB assay, 13a turned out to be a promising molecule that can efficiently cross the blood-brain barrier. Notably, 13a also exhibited iron-chelating properties. Furthermore, 13a effectively inhibited self- and metal-induced Aß1-42 aggregation. It is worth mentioning that 13a demonstrated no symptom of cytotoxicity up to 30 µM concentration in PC-12 cells. Additionally, 13a inhibited the NLRP3 inflammasome and mitigated mitochondrial-induced reactive oxygen species and mitochondrial membrane potential damage triggered by LPS and ATP in HMC-3 cells. 13a could effectively reduce mitochondrial and cellular reactive oxygen species (ROS) in the Drosophila model of AD. Finally, 13a was found to be efficacious in reversing memory impairment in a scopolamine-induced AD mouse model in the in vivo studies. In ex vivo assessments, 13a notably modulates the levels of superoxide, catalase, and malondialdehyde along with AChE and BChE. These findings revealed that 13a holds promise as a potential candidate for further development in AD management.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cholinesterase Inhibitors , Coumaric Acids , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Coumaric Acids/pharmacology , Humans , Amyloid beta-Peptides/metabolism , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Drug Design , Mice , Rats , Molecular Docking Simulation , Oxidative Stress/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/drug effects , PC12 Cells , Peptide Fragments/metabolism , Acetylcholinesterase/metabolism , Acetylcholinesterase/drug effects
10.
Anal Chem ; 96(29): 12181-12188, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38975840

ABSTRACT

New strategies for the simultaneous and portable detection of multiple enzyme activities are highly desirable for clinical diagnosis and home care. However, the methods developed thus far generally suffer from high costs, cumbersome procedures, and heavy reliance on large-scale instruments. To satisfy the actual requirements of rapid, accurate, and on-site detection of multiple enzyme activities, we report herein a smartphone-assisted programmable microfluidic paper-based analytical device (µPAD) that utilizes colorimetric and photothermal signals for simultaneous, accurate, and visual quantitative detection of alkaline phosphatase (ALP) and butyrylcholinesterase (BChE). Specifically, the operation of this µPAD sensing platform is based on two sequential steps. Cobalt-doped mesoporous cerium oxide (Co-m-CeO2) with remarkable peroxidase-like activities under neutral conditions first catalytically decomposes H2O2 for effectively converting colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB). The subsequent addition of ALP or BChE to their respective substrates produces a reducing substance that can somewhat inhibit the oxTMB transformation for compromised colorimetric and photothermal signals of oxTMB. Notably, these two-step bioenzyme-nanozyme cascade reactions strongly support the straightforward and excellent processability of this platform, which exhibit lower detection limits for ALP and BChE with a detection limit for BChE an order of magnitude lower than those of the other reported paper-based detection methods. The practicability and efficiency of this platform are further demonstrated through the analysis of clinical serum samples. This innovative platform exhibits great potential as a facile yet robust approach for simultaneous, accurate, and on-site visual detection of multiple enzyme activities in authentic samples.


Subject(s)
Alkaline Phosphatase , Butyrylcholinesterase , Colorimetry , Paper , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/analysis , Alkaline Phosphatase/chemistry , Humans , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/blood , Lab-On-A-Chip Devices , Benzidines/chemistry , Smartphone , Cerium/chemistry , Cobalt/chemistry , Microfluidic Analytical Techniques/instrumentation , Limit of Detection , Enzyme Assays/methods , Enzyme Assays/instrumentation , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis
11.
Sci Rep ; 14(1): 15577, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38971857

ABSTRACT

Alzheimer's disease is the most prevalent neurodegenerative disorder characterized by significant memory loss and cognitive impairments. Studies have shown that the expression level and activity of the butyrylcholinesterase enzyme increases significantly in the late stages of Alzheimer's disease, so butyrylcholinesterase can be considered as a promising therapeutic target for potential Alzheimer's treatments. In the present study, a novel series of 2,4-disubstituted quinazoline derivatives (6a-j) were synthesized and evaluated for their inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinestrase (BuChE) enzymes, as well as for their antioxidant activities. The biological evaluation revealed that compounds 6f, 6h, and 6j showed potent inhibitory activities against eqBuChE, with IC50 values of 0.52, 6.74, and 3.65 µM, respectively. These potent compounds showed high selectivity for eqBuChE over eelAChE. The kinetic study demonstrated a mixed-type inhibition pattern for both enzymes, which revealed that the potent compounds might be able to bind to both the catalytic active site and peripheral anionic site of eelAChE and eqBuChE. In addition, molecular docking studies and molecular dynamic simulations indicated that potent compounds have favorable interactions with the active sites of BuChE. The antioxidant screening showed that compounds 6b, 6c, and 6j displayed superior scavenging capabilities compared to the other compounds. The obtained results suggest that compounds 6f, 6h, and 6j are promising lead compounds for the further development of new potent and selective BuChE inhibitors.


Subject(s)
Antioxidants , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Molecular Dynamics Simulation , Quinazolines , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Humans , Structure-Activity Relationship , Catalytic Domain , Animals , Kinetics , Electrophorus
12.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893333

ABSTRACT

Alzheimer's disease (AD) and diabetes are non-communicable diseases with global impacts. Inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are suitable therapies for AD, while α-amylase and α-glucosidase inhibitors are employed as antidiabetic agents. Compounds were isolated from the medicinal plant Terminalia macroptera and evaluated for their AChE, BChE, α-amylase, and α-glucosidase inhibitions. From 1H and 13C NMR data, the compounds were identified as 3,3'-di-O-methyl ellagic acid (1), 3,3',4'-tri-O-methyl ellagic acid-4-O-ß-D-xylopyranoside (2), 3,3',4'-tri-O-methyl ellagic acid-4-O-ß-D-glucopyranoside (3), 3,3'-di-O-methyl ellagic acid-4-O-ß-D-glucopyranoside (4), myricetin-3-O-rhamnoside (5), shikimic acid (6), arjungenin (7), terminolic acid (8), 24-deoxysericoside (9), arjunglucoside I (10), and chebuloside II (11). The derivatives of ellagic acid (1-4) showed moderate to good inhibition of cholinesterases, with the most potent being 3,3'-di-O-methyl ellagic acid, with IC50 values of 46.77 ± 0.90 µg/mL and 50.48 ± 1.10 µg/mL against AChE and BChE, respectively. The compounds exhibited potential inhibition of α-amylase and α-glucosidase, especially the phenolic compounds (1-5). Myricetin-3-O-rhamnoside had the highest α-amylase inhibition with an IC50 value of 65.17 ± 0.43 µg/mL compared to acarbose with an IC50 value of 32.25 ± 0.36 µg/mL. Two compounds, 3,3'-di-O-methyl ellagic acid (IC50 = 74.18 ± 0.29 µg/mL) and myricetin-3-O-rhamnoside (IC50 = 69.02 ± 0.65 µg/mL), were more active than the standard acarbose (IC50 = 87.70 ± 0.68 µg/mL) in the α-glucosidase assay. For α-glucosidase and α-amylase, the molecular docking results for 1-11 reveal that these compounds may fit well into the binding sites of the target enzymes, establishing stable complexes with negative binding energies in the range of -4.03 to -10.20 kcalmol-1. Though not all the compounds showed binding affinities with cholinesterases, some had negative binding energies, indicating that the inhibition was thermodynamically favorable.


Subject(s)
Acetylcholinesterase , Cholinesterase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Plant Extracts , Terminalia , alpha-Amylases , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Terminalia/chemistry , Humans , Butyrylcholinesterase/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Molecular Structure
13.
CNS Neurosci Ther ; 30(6): e14814, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887858

ABSTRACT

AIMS: Alzheimer's disease (AD) is a devastating dementia characterized by extracellular amyloid-ß (Aß) protein aggregates and intracellular tau protein deposition. Clinically available drugs mainly target acetylcholinesterase (AChE) and indirectly sustain cholinergic neuronal tonus. Butyrylcholinesterase (BChE) also controls acetylcholine (ACh) turnover and is involved in the formation of Aß aggregates and senile plaques. UW-MD-95 is a novel carbamate-based compound acting as a potent pseudo-irreversible BChE inhibitor, with high selectivity versus AChE, and showing promising protective potentials in AD. METHODS: We characterized the neuroprotective activity of UW-MD-95 in mice treated intracerebroventricularly with oligomerized Aß25-35 peptide using behavioral, biochemical, and immunohistochemical approaches. RESULTS: When injected acutely 30 min before the behavioral tests (spontaneous alternation in the Y-maze, object recognition, or passive avoidance), UW-MD-95 (0.3-3 mg/kg) showed anti-amnesic effects in Aß25-35-treated mice. When injected once a day over 7 days, it prevented Aß25-35-induced memory deficits. This effect was lost in BChE knockout mice. Moreover, the compound prevented Aß25-35-induced oxidative stress (assessed by lipid peroxidation or cytochrome c release), neuroinflammation (IL-6 and TNFα levels or GFAP and IBA1 immunoreactivity) in the hippocampus and cortex, and apoptosis (Bax level). Moreover, UW-MD-95 significantly reduced the increase in soluble Aß1-42 level in the hippocampus induced by Aß25-35. CONCLUSION: UW-MD-95 appeared as a potent neuroprotective compound in the Aß25-35 model of AD, with potentially an impact on Aß1-42 accumulation that could suggest a novel mechanism of neuroprotection.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Butyrylcholinesterase , Cholinesterase Inhibitors , Disease Models, Animal , Neuroprotective Agents , Peptide Fragments , Animals , Neuroprotective Agents/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Mice , Peptide Fragments/toxicity , Male , Cholinesterase Inhibitors/pharmacology , Butyrylcholinesterase/metabolism , Mice, Inbred C57BL , Maze Learning/drug effects , Dose-Response Relationship, Drug , Oxidative Stress/drug effects
14.
Sci Rep ; 14(1): 13780, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877034

ABSTRACT

Alzheimer's disease (AD), a severe neurodegenerative disorder, imposes socioeconomic burdens and necessitates innovative therapeutic strategies. Current therapeutic interventions are limited and underscore the need for novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), enzymes implicated in the pathogenesis of AD. In this study, we report a novel synthetic strategy for the generation of 2-aminopyridine derivatives via a two-component reaction converging aryl vinamidinium salts with 1,1-enediamines (EDAMs) in a dimethyl sulfoxide (DMSO) solvent system, catalyzed by triethylamine (Et3N). The protocol introduces a rapid, efficient, and scalable synthetic pathway, achieving good to excellent yields while maintaining simplistic workup procedures. Seventeen derivatives were synthesized and subsequently screened for their inhibitory activity against AChE and BChE. The most potent derivative, 3m, exhibited an IC50 value of 34.81 ± 3.71 µM against AChE and 20.66 ± 1.01 µM against BChE compared to positive control donepezil with an IC50 value of 0.079 ± 0.05 µM against AChE and 10.6 ± 2.1 µM against BChE. Also, detailed kinetic studies were undertaken to elucidate their modes of enzymatic inhibition of the most potent compounds against both AChE and BChE. The promising compound was then subjected to molecular docking and dynamics simulations, revealing significant binding affinities and favorable interaction profiles against AChE and BChE. The in silico ADMET assessments further determined the drug-like properties of 3m, suggesting it as a promising candidate for further pre-clinical development.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Aminopyridines , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Alzheimer Disease/drug therapy , Aminopyridines/chemistry , Aminopyridines/chemical synthesis , Aminopyridines/pharmacology , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Humans , Structure-Activity Relationship , Imines/chemistry , Imines/pharmacology , Imines/chemical synthesis
15.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928014

ABSTRACT

Triazoles are compounds with various biological activities, including fungicidal action. They became popular through cholinesterase studies after the successful synthesis of the dual binding femtomolar triazole inhibitor of acetylcholinesterase (AChE, EC 3.1.1.7) by Sharpless et al. via in situ click chemistry. Here, we evaluate the anticholinesterase effect of the first isopropanol triazole fungicide mefentrifluconazole (Ravystar®), developed to overcome fungus resistance in plant disease management. Mefentrifluconazole is commercially available individually or in a binary fungicidal mixture, i.e., with pyraclostrobin (Ravycare®). Pyraclostrobin is a carbamate that contains a pyrazole ring. Carbamates are known inhibitors of cholinesterases and the carbamate rivastigmine is already in use for the treatment of Alzheimer's disease. We tested the type and potency of anticholinesterase activity of mefentrifluconazole and pyraclostrobin. Mefentrifluconazole reversibly inhibited human AChE and BChE with a seven-fold higher potency toward AChE (Ki = 101 ± 19 µM). Pyraclostrobin (50 µM) inhibited AChE and BChE progressively with rate constants of (t1/2 = 2.1 min; ki = 6.6 × 103 M-1 min-1) and (t1/2 = 1.5 min; ki = 9.2 × 103 M-1 min-1), respectively. A molecular docking study indicated key interactions between the tested fungicides and residues of the lipophilic active site of AChE and BChE. Additionally, the physicochemical properties of the tested fungicides were compared to values for CNS-active drugs to estimate the blood-brain barrier permeability. Our results can be applied in the design of new molecules with a lesser impact on humans and the environment.


Subject(s)
Acetylcholinesterase , Cholinesterase Inhibitors , Fungicides, Industrial , Molecular Docking Simulation , Strobilurins , Triazoles , Strobilurins/pharmacology , Strobilurins/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Humans , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Triazoles/pharmacology , Triazoles/chemistry , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemistry
16.
Eur J Med Chem ; 275: 116569, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38852337

ABSTRACT

Butyrylcholinesterase (BChE), also known as pseudocholinesterase and serum cholinesterase, is an isoenzyme of acetylcholinesterase (AChE). It mediates the degradation of acetylcholine, especially under pathological conditions. Proverbial pharmacological applications of BChE, its mutants and modulators consist of combating Alzheimer's disease (AD), influencing multiple sclerosis (MS), addressing cocaine addiction, detoxifying organophosphorus poisoning and reflecting the progression or prognosis of some diseases. Of interest, recent reports have shed light on the relationship between BChE and lipid metabolism. It has also been proved that BChE is going to increase abnormally as a compensator for AChE in the middle and late stages of AD, and BChE inhibitors can alleviate cognitive disorders and positively influence some pathological features in AD model animals, foreboding favorable prospects and potential applications. Herein, the selective BChE inhibitors and BChE-related multitarget-directed ligands published in the last three years were briefly summarized, along with the currently known pharmacological applications of BChE, aiming to grasp the latest research directions. Thereinto, some emerging strategies for designing BChE inhibitors are intriguing, and the modulators based on target combination of histone deacetylase and BChE against AD is unprecedented. Furthermore, the involvement of BChE in the hydrolysis of ghrelin, the inhibition of low-density lipoprotein (LDL) uptake, and the down-regulation of LDL receptor (LDLR) expression suggests its potential to influence lipid metabolism disorders. This compelling prospect likely stimulates further exploration in this promising research direction.


Subject(s)
Butyrylcholinesterase , Cholinesterase Inhibitors , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Ligands , Molecular Structure , Acetylcholine/chemistry , Acetylcholine/metabolism
17.
Bioorg Chem ; 150: 107526, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38878749

ABSTRACT

In this review, the current progress in the research and development of butyrylcholinesterase (BChE) reactivators is summarised and the advantages or disadvantages of these reactivators are critically discussed. Organophosphorus compounds such as nerve agents (sarin, tabun, VX) or pesticides (chlorpyrifos, diazinon) cause irreversible inhibition of acetylcholinesterase (AChE) and BChE in the human body. While AChE inhibition can be life threatening due to cholinergic overstimulation and crisis, selective BChE inhibition has presumably no adverse effects. Because BChE is mostly found in plasma, its activity is important for the scavenging of organophosphates before they can reach AChE in the central nervous system. Therefore, this enzyme in combination with its reactivator can be used as a pseudo-catalytic scavenger of organophosphates. Three structural types of BChE reactivators were found, i.e. bisquaternary salts, monoquaternary salts and uncharged compounds. Although the reviewed reactivators have certain limitations, the promising candidates for BChE reactivation were found in each structural group.


Subject(s)
Butyrylcholinesterase , Cholinesterase Inhibitors , Organophosphorus Compounds , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Humans , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Molecular Structure , Cholinesterase Reactivators/pharmacology , Cholinesterase Reactivators/chemistry , Cholinesterase Reactivators/chemical synthesis , Structure-Activity Relationship , Animals , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry
18.
Future Med Chem ; 16(11): 1075-1085, 2024.
Article in English | MEDLINE | ID: mdl-38916565

ABSTRACT

Aim: A highly efficient one-step method has been developed for the synthesis of benzofuranyl derivatives from 2-benzoylcyclohexane-1-carboxylic acid derivatives using chlorosulfonyl isocyanate. This novel method provides a practical, cost-effective and efficient approach. Materials & methods: The inhibitory effects of benzofuranyl derivatives on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes were investigated. Ki values were determined to range from 0.009 to 0.61 µM for AChE and 0.28 to 1.60 µM for BChE. Molecular docking analysis provided insights into the interaction modes and binding patterns of these compounds with AChE and BChE. Conclusion: Kinetic findings of our study suggest that some of our compounds exhibited more effective low micromolar inhibition compared with the reference, and these derivatives could be used to design more powerful agents.


[Box: see text].


Subject(s)
Acetylcholinesterase , Benzofurans , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Benzofurans/chemistry , Benzofurans/pharmacology , Benzofurans/chemical synthesis , Humans , Structure-Activity Relationship , Kinetics , Molecular Structure
19.
Biochem Biophys Res Commun ; 726: 150201, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38924881

ABSTRACT

In the current research study, we aim to design and synthesize highly potent hybrid analogs of benzimidazole derived thiadiazole based Schiff base derivatives which can combat the cholinesterase enzymes (acetylcholinesterase and butyrylcholinesterase) accountable for developing Alzheimer's disease. In this context, we have synthesized 15 analogs of benzimidazole based thiadiazole derivatives, which were subsequently confirmed through spectroscopic techniques including 1H NMR, 13C NMR and HREI-MS. Biological investigation of all the analogs revealed their varied acetylcholinesterase inhibitory potency covering a range between 3.20 ± 0.10 µM to 20.50 ± 0.20 µM as well as butyrylcholinesterase inhibitory potential with a range of 4.30 ± 0.50 µM to 20.70 ± 0.50 µM when compared with the standard drug Donepezil having IC50 = 6.70 ± 0.20 µM for AChE and 7.90 ± 0.10 µM for BuChE. The promising inhibition by the analogs was evaluated in SAR analysis, where analog-1 (IC50 = 3.20 ± 0.10 µM for AChE and 4.30 ± 0.50 µM for BuChE), analog-4 (IC50 = 4.30 ± 0.30 µM for AChE and 5.50 ± 0.20 µM for BuChE) and analog-5 (IC50 = 4.10 ± 0.30 µM for AChE and 4.60 ± 0.40 µM for BuChE) were found as the lead candidates. Moreover, molecular docking and ADME analysis were conducted to explore the better binding interactions and drugs likeness respectively.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Benzimidazoles , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Thiadiazoles , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/metabolism , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Humans , Structure-Activity Relationship , Computer Simulation
20.
Future Med Chem ; 16(10): 983-997, 2024.
Article in English | MEDLINE | ID: mdl-38910574

ABSTRACT

Aim: To design and synthesize a novel series of 1-aryldonepezil analogues. Materials & methods: The 1-aryldonepezil analogues were synthesized through palladium/PCy3-catalyzed Suzuki reaction and were evaluated for cholinesterase inhibitory activities and neuroprotective effects. In silico docking of the most effective compound was conducted. Results: The 4-tert-butylphenyl analogue exhibited good inhibitory potency against acetylcholinesterase and butyrylcholinesterase and had a favorable neuroprotective effect on H2O2-induced SH-SY5Y cell injury. Conclusion: The 4-tert-butylphenyl derivative is a promising lead compound for anti-Alzheimer's disease drug development.


[Box: see text].


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Butyrylcholinesterase , Cholinesterase Inhibitors , Drug Design , Molecular Docking Simulation , Neuroprotective Agents , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Structure-Activity Relationship , Piperidines/chemistry , Piperidines/pharmacology , Piperidines/chemical synthesis , Molecular Structure , Cell Line, Tumor , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/antagonists & inhibitors , Indoles
SELECTION OF CITATIONS
SEARCH DETAIL