Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.442
Filter
1.
Front Immunol ; 15: 1432045, 2024.
Article in English | MEDLINE | ID: mdl-39050849

ABSTRACT

Memory B cells (mBCs) are characterized by their long-term stability, fast reactivation, and capability to rapidly differentiate into antibody-secreting cells (ASCs). However, the role of T cells in the differentiation of mBCs, in contrast to naive B cells, remains to be delineated. We study the role of T cells in mBC responses, using CD40L stimulation and autologous T-B co-cultures. Our results showed that increased CD40L levels led to a selective increased proliferation of IgM+ mBC, which did not class-switched, resulting in higher frequencies of IgM+ ASCs and a lower frequency of IgG+ ASCs. The IgG+/IgA+ mBCs were unaffected. We further compared the transcription of immune-related genes in IgM+ and IgG+ pre-plasmablasts cultured at high (500 ng/mL) and low (50 ng/mL) CD40L levels. In response to increased CD40L levels, both populations exhibited a core response to genes related to activation (TRAF1, AKT3, CD69, and CD80). However, they differed in genes related to cytokine/chemokine/homing interactions (CCL3/4/17, LTA, NKX2-3, BCL2 and IL21R) and cell-cell interactions (HLADR, CD40, and ICOSL), which were largely confined to IgG+ cells. Our findings revealed that in co-cultures with a high T-ratio, the response was similar to that found in cultures with high CD40L levels. These results suggest that IgG+ mBCs have a greater capacity for proliferation and T cell interaction, and weaker migration capabilities, leading to a preference for an IgG response over IgM in the short term. This adaptable response could fine-tune the memory repertoire with different functions of IgG versus IgM mBCs.


Subject(s)
CD40 Ligand , Immunoglobulin G , Immunoglobulin M , Memory B Cells , T-Lymphocytes , CD40 Ligand/metabolism , CD40 Ligand/immunology , Humans , Immunoglobulin M/immunology , Immunoglobulin M/metabolism , Immunoglobulin G/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Memory B Cells/immunology , Memory B Cells/metabolism , Cell Communication/immunology , Coculture Techniques , Immunologic Memory , Lymphocyte Activation/immunology , Cells, Cultured , Cell Differentiation/immunology , Cell Proliferation
2.
J Transl Med ; 22(1): 541, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845003

ABSTRACT

Dendritic cells (DCs) have been intensively studied in correlation to tumor immunology and for the development DC-based cancer vaccines. Here, we present the significance of the temporal aspect of DC maturation for the most essential subsequent timepoint, namely at interaction with responding T cells or after CD40-Ligand restimulation. Mostly, DC maturation is still being achieved by activation processes which lasts 24 h to 48 h. We hypothesized this amount of time is excessive from a biological standpoint and could be the underlying cause for functional exhaustion. Indeed, shorter maturation periods resulted in extensive capacity of monocyte-derived DCs to produce inflammatory cytokines after re-stimulation with CD40-Ligand. This effect was most evident for the primary type 1 polarizing cytokine, IL-12p70. This capacity reached peak at 6 h and dropped sharply with longer exposure to initial maturation stimuli (up to 48 h). The 6 h maturation protocol reflected superiority in subsequent functionality tests. Namely, DCs displayed twice the allostimulatory capacity of 24 h- and 48 h-matured DCs. Similarly, type 1 T cell response measured by IFN-γ production was 3-fold higher when CD4+ T cells had been stimulated with shortly matured DC and over 8-fold greater in case of CD8+ T cells, compared to longer matured DCs. The extent of melanoma-specific CD8+ cytotoxic T cell induction was also greater in case of 6 h DC maturation. The major limitation of the study is that it lacks in vivo evidence, which we aim to examine in the future. Our findings show an unexpectedly significant impact of temporal exposure to activation signals for subsequent DC functionality, which we believe can be readily integrated into existing knowledge on in vitro/ex vivo DC manipulation for various uses. We also believe this has important implications for DC vaccine design for future clinical trials.


Subject(s)
Cell Differentiation , Cytokines , Dendritic Cells , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Cytokines/metabolism , Time Factors , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , CD40 Ligand/metabolism , CD8-Positive T-Lymphocytes/immunology
3.
Leukemia ; 38(8): 1699-1711, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38877102

ABSTRACT

Several in vitro models have been developed to mimic chronic lymphocytic leukemia (CLL) proliferation in immune niches; however, they typically do not induce robust proliferation. We prepared a novel model based on mimicking T-cell signals in vitro and in patient-derived xenografts (PDXs). Six supportive cell lines were prepared by engineering HS5 stromal cells with stable expression of human CD40L, IL4, IL21, and their combinations. Co-culture with HS5 expressing CD40L and IL4 in combination led to mild CLL cell proliferation (median 7% at day 7), while the HS5 expressing CD40L, IL4, and IL21 led to unprecedented proliferation rate (median 44%). The co-cultures mimicked the gene expression fingerprint of lymph node CLL cells (MYC, NFκB, and E2F signatures) and revealed novel vulnerabilities in CLL-T-cell-induced proliferation. Drug testing in co-cultures revealed for the first time that pan-RAF inhibitors fully block CLL proliferation. The co-culture model can be downscaled to five microliter volume for large drug screening purposes or upscaled to CLL PDXs by HS5-CD40L-IL4 ± IL21 co-transplantation. Co-transplanting NSG mice with purified CLL cells and HS5-CD40L-IL4 or HS5-CD40L-IL4-IL21 cells on collagen-based scaffold led to 47% or 82% engraftment efficacy, respectively, with ~20% of PDXs being clonally related to CLL, potentially overcoming the need to co-transplant autologous T-cells in PDXs.


Subject(s)
CD40 Ligand , Cell Proliferation , Coculture Techniques , Leukemia, Lymphocytic, Chronic, B-Cell , Stromal Cells , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Animals , Mice , Stromal Cells/metabolism , Stromal Cells/pathology , CD40 Ligand/metabolism , CD40 Ligand/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays , Interleukins/genetics , Interleukins/metabolism , Protein Kinase Inhibitors/pharmacology
4.
J Autoimmun ; 146: 103235, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696926

ABSTRACT

Soluble components secreted by Tfh cells are critical for the germinal center responses. In this study, we investigated whether Tfh cells could regulate the B-cell response by releasing small extracellular vesicles (sEVs). Our results showed that Tfh cells promote B-cell differentiation and antibody production through sEVs and that CD40L plays a crucial role in Tfh-sEVs function. In addition, increased Tfh-sEVs were found in mice with collagen-induced arthritis (CIA). Adoptive transfer of Tfh cells significantly exacerbated the severity of CIA; however, the effect of Tfh cells on exacerbating the CIA process was significantly diminished after inhibiting sEVs secretion. Moreover, the levels of plasma Tfh-like-sEVs and CD40L expression on Tfh-like-sEVs in RA patients were significantly higher than those in healthy subjects. In summary, Tfh cell-derived sEVs can enhance the B-cell response, and exacerbate the procession of autoimmune arthritis.


Subject(s)
Arthritis, Experimental , B-Lymphocytes , Extracellular Vesicles , T Follicular Helper Cells , Animals , Arthritis, Experimental/immunology , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Humans , T Follicular Helper Cells/immunology , Male , Arthritis, Rheumatoid/immunology , Cell Differentiation/immunology , Lymphocyte Activation/immunology , Adoptive Transfer , CD40 Ligand/metabolism , CD40 Ligand/immunology , Germinal Center/immunology , Germinal Center/metabolism , Severity of Illness Index , Female
5.
Front Immunol ; 15: 1382638, 2024.
Article in English | MEDLINE | ID: mdl-38715601

ABSTRACT

Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.


Subject(s)
CD4-Positive T-Lymphocytes , CD40 Ligand , Lung , Memory B Cells , Streptococcus pneumoniae , Animals , Mice , CD4-Positive T-Lymphocytes/immunology , CD40 Ligand/metabolism , CD40 Ligand/immunology , Chemokine CXCL13/metabolism , Disease Models, Animal , Immunologic Memory , Lung/immunology , Memory B Cells/immunology , Memory B Cells/metabolism , Mice, Inbred C57BL , Pneumococcal Infections/immunology , Signal Transduction , Streptococcus pneumoniae/immunology
6.
Biochem Biophys Res Commun ; 714: 149969, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38657446

ABSTRACT

CD40 is a member of the tumor necrosis factor receptor superfamily, and it is widely expressed on immune and non-immune cell types. The interaction between CD40 and the CD40 ligand (CD40L) plays an essential function in signaling, and the CD40/CD40L complex works as an immune checkpoint molecule. CD40 has become a therapeutic target, and a variety of agonistic/antagonistic anti-CD40 monoclonal antibodies (mAbs) have been developed. To better understand the mode of action of anti-CD40 mAbs, we determined the X-ray crystal structures of dacetuzumab (agonist) and bleselumab (antagonist) in complex with the extracellular domain of human CD40, respectively. The structure reveals that dacetuzumab binds to CD40 on the top of cysteine-rich domain 1 (CRD1), which is the domain most distant from the cell surface, and it does not compete with CD40L binding. The binding interface of bleselumab spread between CRD2 and CRD1, overlapping with the binding surface of the ligand. Our results offer important insights for future structural and functional studies of CD40 and provide clues to understanding the mechanism of biological response. These data can be applied to developing new strategies for designing antibodies with more therapeutic efficacy.


Subject(s)
Antibodies, Monoclonal, Humanized , CD40 Antigens , Humans , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/immunology , Binding Sites , CD40 Antigens/chemistry , CD40 Antigens/immunology , CD40 Antigens/metabolism , CD40 Ligand/chemistry , CD40 Ligand/metabolism , CD40 Ligand/immunology , Crystallography, X-Ray , Models, Molecular , Protein Binding , Protein Conformation
7.
Medicine (Baltimore) ; 103(14): e37718, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579073

ABSTRACT

The interaction between CD40 and CD40 ligand (CD40L) a crucial co-stimulatory signal for activating adaptive immune cells, has a noteworthy role in atherosclerosis. It is well-known that atherosclerosis is linked to immune inflammation in blood vessels. In atherosclerotic lesions, there is a multitude of proinflammatory cytokines, adhesion molecules, and collagen, as well as smooth muscle cells, macrophages, and T lymphocytes, particularly the binding of CD40 and CD40L. Therefore, research on inhibiting the CD40-CD40L system to prevent atherosclerosis has been ongoing for more than 30 years. However, it's essential to note that long-term direct suppression of CD40 or CD40L could potentially result in immunosuppression, emphasizing the critical role of the CD40-CD40L system in atherosclerosis. Thus, specifically targeting the CD40-CD40L interaction on particular cell types or their downstream signaling pathways may be a robust strategy for mitigating atherosclerosis, reducing potential side effects. This review aims to summarize the potential utility of the CD40-CD40L system as a viable therapeutic target for atherosclerosis.


Subject(s)
Atherosclerosis , CD40 Ligand , Humans , Atherosclerosis/drug therapy , Atherosclerosis/immunology , CD40 Antigens/antagonists & inhibitors , CD40 Antigens/metabolism , CD40 Ligand/antagonists & inhibitors , CD40 Ligand/metabolism , Cytokines/metabolism , Interleukin-2/metabolism , Macrophages/metabolism
8.
Am J Pathol ; 194(7): 1230-1247, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38548267

ABSTRACT

Hepatocellular carcinoma (HCC) is associated with increased soluble CD40 levels. This study aimed to investigate CD40's role in liver tumor progression. CD40 levels were examined in HCC patient tissues and various HCC cell lines, and their interaction with CD4+T cells was studied. RNA sequencing analysis was performed to explore the mechanisms of CD40 induction. Poorly differentiated HCC tumor tissues exhibited high membrane-bound CD40 expression, in contrast to nontumor areas. Poorly differentiated HCC cell lines showed high expression of membrane-bound CD40 with low CD40 promoter methylation, which was the opposite of that observed in the well-differentiated HCC cell lines. Solely modulating CD40 expression in HCC cells exerted no direct consequences on cell growth or appearance. Interestingly, the human hepatoma cell line HLF co-cultured with activated (CD40 ligand+) CD4+ T cells had increased CD40 levels and a modest 3.2% dead cells. The percentage of dead cells increased to 10.9% and underwent preneutralizing CD40 condition, whereas preblocking both CD40 and integrin α5ß1 concomitantly caused only 1.9% cell death. RNA sequencing of co-cultured HLFs with activated CD4+ T cells revealed the up-regulation of interferon and immune-response pathways. Increased interferon-γ levels in the activated T-cell media stimulated the Janus kinase/signal transducer and activator of transcription 3 pathway, resulting in increased CD40 expression in HLF. Collectively, CD40 expression in poorly differentiated HCC cells prevented cell death by interacting with CD40 ligand in activated T cells. Targeting CD40 may represent a promising anticancer therapy.


Subject(s)
Apoptosis , CD40 Antigens , CD40 Ligand , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/genetics , CD40 Ligand/metabolism , CD40 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cell Line, Tumor
9.
Microvasc Res ; 154: 104681, 2024 07.
Article in English | MEDLINE | ID: mdl-38493885

ABSTRACT

BACKGROUND: Arterial baroreflex dysfunction, like many other central nervous system disorders, involves disruption of the blood-brain barrier, but what causes such disruption in ABR dysfunction is unclear. Here we explored the potential role of platelets in this disruption. METHODS: ABR dysfunction was induced in rats using sinoaortic denervation, and the effects on integrity of the blood-brain barrier were explored based on leakage of Evans blue or FITC-dextran, while the effects on expression of CD40L in platelets and of key proteins in microvascular endothelial cells were explored using immunohistochemistry, western blotting and enzyme-linked immunosorbent assay. Similar experiments were carried out in rat brain microvascular endothelial cell line, which we exposed to platelets taken from rats with ABR dysfunction. RESULTS: Sinoaortic denervation permeabilized the blood-brain barrier and downregulated zonula occludens-1 and occludin in rat brain, while upregulating expression of CD40L on the surface of platelets and stimulating platelet aggregation. Similar effects of permeabilization and downregulation were observed in healthy rats that received platelets from animals with ABR dysfunction, and in rat brain microvascular endothelial cells, but only in the presence of lipopolysaccharide. These effects were associated with activation of NF-κB signaling and upregulation of matrix metalloprotease-9. These effects of platelets from animals with ABR dysfunction were partially blocked by neutralizing antibody against CD40L or the platelet inhibitor clopidogrel. CONCLUSION: During ABR dysfunction, platelets may disrupt the blood-brain barrier when CD40L on their surface activates NF-kB signaling within cerebral microvascular endothelial cells, leading to upregulation of matrix metalloprotease-9. Our findings imply that targeting CD40L may be effective against cerebral diseases involving ABR dysfunction.


Subject(s)
Baroreflex , Blood Platelets , Blood-Brain Barrier , CD40 Ligand , Capillary Permeability , Disease Models, Animal , Endothelial Cells , Matrix Metalloproteinase 9 , NF-kappa B , Rats, Sprague-Dawley , Signal Transduction , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiopathology , Blood-Brain Barrier/pathology , Blood Platelets/metabolism , Male , Endothelial Cells/metabolism , CD40 Ligand/metabolism , Matrix Metalloproteinase 9/metabolism , NF-kappa B/metabolism , Zonula Occludens-1 Protein/metabolism , Occludin/metabolism , Cell Line , Platelet Aggregation , Arterial Pressure , Rats
10.
Toxicol Sci ; 199(2): 276-288, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38526216

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant and high affinity ligand for the aryl hydrocarbon receptor (AhR). In animal models, AhR activation by TCDD generally inhibits antibody secretion. However, it is less clear if this translates to human antibody production. Using a human Burkitt lymphoma B-cell line (CL-01) that can be stimulated to secrete Ig and undergo class switch recombination to other Ig isotypes, the current study evaluated the effects of AhR activation or antagonism on the human Ig isotypic expression profile with CD40L+IL-4 stimulation. Our results suggest that AhR agonists (TCDD and indirubin) have little to no effect on IgM or IgA secretion, which were also not induced with stimulation. However, AhR activation significantly inhibited stimulation-induced IgG secretion, an effect reversed by the AhR antagonist CH223191. Evaluation of Ig heavy chain (IgH) constant region gene expression (ie Cµ, Cγ1-4, Cα1-2, and Cε that encode for IgM, IgG1-4, IgA1-2, and IgE, respectively) demonstrated differential effects. While Cµ and Cα2 transcripts were unaffected by stimulation or AhR agonists, AhR activation significantly inhibited stimulation-induced Cγ2-4 and Cε mRNA transcripts, which was reversed by AhR antagonism. Notably, AhR antagonism in the absence of exogenous AhR ligands significantly increased IgG and IgA secretion as well as the expression of Cγ2-4 and Cε. These results suggest that modulation of AhR activity differentially alters the IgH isotypic expression profile and antibody secretion that may be partly dependent on cellular stimulation. Since a variety of chemicals from anthropogenic, industrial, pharmaceutical, dietary, and bacterial sources bind the AhR, the ability of environmental exposures to alter AhR activity (i.e. activate or inhibit) may have a direct influence on immune function and antibody-relevant disease conditions.


Subject(s)
B-Lymphocytes , Immunoglobulin Isotypes , Polychlorinated Dibenzodioxins , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Humans , Polychlorinated Dibenzodioxins/toxicity , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Immunoglobulin Isotypes/immunology , Immunoglobulin Isotypes/genetics , Cell Line, Tumor , Indoles/pharmacology , CD40 Ligand/immunology , CD40 Ligand/metabolism , Immunoglobulin Class Switching/drug effects , Environmental Pollutants/toxicity , Basic Helix-Loop-Helix Transcription Factors
11.
Aging Cell ; 23(6): e14140, 2024 06.
Article in English | MEDLINE | ID: mdl-38481058

ABSTRACT

Weakened germinal center responses by the aged immune system result in diminished immunity against pathogens and reduced efficacy of vaccines. Prolonged contacts between activated B cells and CD4+ T cells are crucial to germinal center formation and T follicular helper cell (Tfh) differentiation, but it is unclear how aging impacts the quality of this interaction. Peptide immunization confirmed that aged mice have decreased expansion of antigen-specific germinal center B cells and reduced antibody titers. Furthermore, aging was associated with accumulated Tfh cells, even in naïve mice. Despite increased numbers, aged Tfh had reduced expression of master transcription factor BCL6 and increased expression of the ectonucleotidase CD39. In vitro activation revealed that proliferative capacity was maintained in aged CD4+ T cells, but not the costimulatory molecule CD40L. When activated in vitro by aged antigen-presenting cells, young CD4+ naïve T cells generated reduced numbers of activated cells with upregulated CD40L. To determine the contribution of cell-extrinsic influences on antigen-specific Tfh induction, young, antigen-specific B and CD4+ T cells were adoptively transferred into aged hosts prior to peptide immunization. Transferred cells had reduced expansion and differentiation into germinal center B cell and Tfh and reduced antigen-specific antibody titers when compared to young hosts. Young CD4+ T cells transferred aged hosts differentiated into Tfh cells with reduced PD-1 and BCL6 expression, and increased CD39 expression, though they maintained their mitochondrial capacity. These results highlight the role of the lymphoid microenvironment in modulating CD4+ T cell differentiation, which contributes to impaired establishment and maintenance of germinal centers.


Subject(s)
CD40 Ligand , Cell Differentiation , Proto-Oncogene Proteins c-bcl-6 , Animals , Mice , Aging/immunology , CD40 Ligand/metabolism , CD40 Ligand/immunology , Cell Differentiation/immunology , Cellular Microenvironment/immunology , Germinal Center/immunology , Germinal Center/metabolism , Mice, Inbred C57BL , Proto-Oncogene Proteins c-bcl-6/metabolism , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Male , Female
12.
Cells ; 13(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474393

ABSTRACT

CD40 induces pro-inflammatory responses in endothelial and Müller cells and is required for the development of diabetic retinopathy (DR). CD40 is upregulated in these cells in patients with DR. CD40 upregulation is a central feature of CD40-driven inflammatory disorders. What drives CD40 upregulation in the diabetic retina remains unknown. We examined the role of advanced glycation end products (AGEs) in CD40 upregulation in endothelial cells and Müller cells. Human endothelial cells and Müller cells were incubated with unmodified or methylglyoxal (MGO)-modified fibronectin. CD40 expression was assessed by flow cytometry. The expression of ICAM-1 and CCL2 was examined by flow cytometry or ELISA after stimulation with CD154 (CD40 ligand). The expression of carboxymethyl lysine (CML), fibronectin, and laminin as well as CD40 in endothelial and Müller cells from patients with DR was examined by confocal microscopy. Fibronectin modified by MGO upregulated CD40 in endothelial and Müller cells. CD40 upregulation was functionally relevant. MGO-modified fibronectin enhanced CD154-driven upregulation of ICAM-1 and CCL2 in endothelial and Müller cells. Increased CD40 expression in endothelial and Müller cells from patients with DR was associated with increased CML expression in fibronectin and laminin. These findings identify AGEs as inducers of CD40 upregulation in endothelial and Müller cells and enhancers of CD40-dependent pro-inflammatory responses. CD40 upregulation in these cells is associated with higher CML expression in fibronectin and laminin in patients with DR. This study revealed that CD40 and AGEs, two important drivers of DR, are interconnected.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/metabolism , Intercellular Adhesion Molecule-1/metabolism , Fibronectins/metabolism , Ependymoglial Cells/metabolism , Endothelial Cells/metabolism , Magnesium Oxide/metabolism , Retina/metabolism , CD40 Antigens/metabolism , CD40 Ligand/metabolism , Laminin/metabolism , Glycation End Products, Advanced/metabolism , Diabetes Mellitus/metabolism
13.
IUBMB Life ; 76(6): 313-331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38116887

ABSTRACT

Although Multiple Sclerosis (MS) is primarily thought to be an autoimmune condition, its possible viral etiology must be taken into consideration. When mice are administered neurotropic viruses like mouse hepatitis virus MHV-A59, a murine coronavirus, or its isogenic recombinant strain RSA59, neuroinflammation along with demyelination are observed, which are some of the significant manifestations of MS. MHV-A59/RSA59 induced neuroinflammation is one of the best-studied experimental animal models to understand the viral-induced demyelination concurrent with axonal loss. In this experimental animal model, one of the major immune checkpoint regulators is the CD40-CD40L dyad, which helps in mediating both acute-innate, innate-adaptive, and chronic-adaptive immune responses. Hence, they are essential in reducing acute neuroinflammation and chronic progressive adaptive demyelination. While CD40 is expressed on antigen-presenting cells and endothelial cells, CD40L is expressed primarily on activated T cells and during severe inflammation on NK cells and mast cells. Experimental evidences revealed that genetic deficiency of both these proteins can lead to deleterious effects in an individual. On the other hand, interferon-stimulated genes (ISGs) possess potent antiviral properties and directly or indirectly alter acute neuroinflammation. In this review, we will discuss the role of an ISG, ISG54, and its tetratricopeptide repeat protein Ifit2; the genetic and experimental studies on the role of CD40 and CD40L in a virus-induced neuroinflammatory demyelination model.


Subject(s)
CD40 Antigens , CD40 Ligand , Demyelinating Diseases , Murine hepatitis virus , Neuroinflammatory Diseases , Animals , CD40 Ligand/metabolism , CD40 Ligand/genetics , CD40 Ligand/immunology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/virology , Demyelinating Diseases/virology , Demyelinating Diseases/pathology , Demyelinating Diseases/immunology , Demyelinating Diseases/genetics , Demyelinating Diseases/metabolism , Humans , CD40 Antigens/metabolism , CD40 Antigens/genetics , CD40 Antigens/immunology , Murine hepatitis virus/pathogenicity , Murine hepatitis virus/immunology , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/virology , Multiple Sclerosis/pathology , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Disease Models, Animal
14.
Cytokine Growth Factor Rev ; 75: 40-56, 2024 02.
Article in English | MEDLINE | ID: mdl-38102001

ABSTRACT

CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily of receptors expressed on a variety of cell types. The CD40-CD40L interaction gives rise to many immune events, including the licensing of dendritic cells to activate CD8+ effector T cells, as well as the facilitation of B cell activation, proliferation, and differentiation. In malignant cells, the expression of CD40 varies among cancer types, mediating cellular proliferation, apoptosis, survival and the secretion of cytokines and chemokines. Agonistic human anti-CD40 antibodies are emerging as an option for cancer treatment, and early-phase clinical trials explored its monotherapy or combination with radiotherapy, chemotherapy, immune checkpoint blockade, and other immunomodulatory approaches. In this review, we present the current understanding of the mechanism of action for CD40, along with results from the clinical development of agonistic human CD40 antibodies in cancer treatment (selicrelumab, CDX-1140, APX005M, mitazalimab, 2141-V11, SEA-CD40, LVGN7409, and bispecific antibodies). This review also examines the safety profile of CD40 agonists in both preclinical and clinical settings, highlighting optimized dosage levels, potential adverse effects, and strategies to mitigate them.


Subject(s)
CD40 Antigens , Neoplasms , Humans , CD40 Antigens/metabolism , CD40 Ligand/metabolism , CD40 Ligand/pharmacology , Neoplasms/drug therapy , T-Lymphocytes/metabolism , Cytokines
15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(6): 1797-1803, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38071063

ABSTRACT

OBJECTIVE: To investigate the effect of miR-125b on T cell activation in patients with aplastic anemia (AA) and its molecular mechanism. METHODS: A total of 30 AA patients were enrolled in department of hematology, Binzhou Medical University Hospital from January 2018 to October 2021, as well as 15 healthy individuals as healthy control (HC) group. Peripheral blood mononuclear cells (PBMCs) were isolated, in which the levels of miR-125b and B7-H4 mRNA were detected by RT-qPCR. Immunomagnetic beads were used to separate naive T cells and non-naive T cells from AA patients and healthy people to detect the levels of miR-125b and B7-H4 mRNA. Lentivirus LV-NC inhibitor and LV-miR-125b inhibitor were transfected into cells, and T cell activation was detected by flow cytometry. The dual-luciferase reporter gene assay was used to detect the targetting relationship between miR-125b and B7-H4. RT-qPCR and Western blot were used to detect the levels of miR-125b, CD40L, ICOS, IL-10 mRNA and B7-H4 protein. RESULTS: Compared with HC group, the expression of miR-125b was up-regulated but B7-H4 mRNA was down-regulated in PBMCs of AA patients (P <0.05), and the proportions of CD4+CD69+ T cells and CD8+CD69+ T cells in PBMCs of AA patients were higher (P <0.05). The expression of miR-125b was significantly up-regulated but B7-H4 mRNA was down-regulated in both naive T cells and non-naive T cells of AA patients (P <0.05), and non-naive T cells was more significant than naive T cells (P <0.05). Compared with NC inhibitor group, the expression of miR-125b was significantly decreased, the expression level of CD69 on CD4+ and CD8+ T cells in PBMCs was also significantly decreased, while the luciferase activity was significantly increased after co-transfection of miR-125b inhibitor and B7-H4-3'UTR-WT in the miR-125b inhibitor group (P <0.05). Compared with NC inhibitor group, the mRNA and protein levels of B7-H4 were significantly increased in the miR-125b inhibitor group (P <0.05). Compared with miR-125b inhibitor+shRNA group, the expression levels of CD69 on CD4+ and CD8+ T cells were significantly increased, and the levels of CD40L, ICOS and IL-10 mRNA were also significantly increased in the miR-125b inhibitor+sh-B7-H4 group (P <0.05). CONCLUSION: MiR-125b may promote T cell activation by targetting B7-H4 in AA patients.


Subject(s)
Anemia, Aplastic , Lymphocyte Activation , MicroRNAs , T-Lymphocytes , Humans , Anemia, Aplastic/genetics , CD40 Ligand/metabolism , Interleukin-10 , Leukocytes, Mononuclear/metabolism , Luciferases , MicroRNAs/genetics , RNA, Messenger/metabolism , T-Lymphocytes/metabolism
16.
Braz J Med Biol Res ; 56: e13047, 2023.
Article in English | MEDLINE | ID: mdl-37970926

ABSTRACT

CD40, a member of the tumor necrosis factor receptor (TNFR) family, is known to be involved in immune system regulation, acting as a costimulatory molecule, and in antitumor responses against cancer cells. It is a protein that is expressed in different types of cells, including immune cells and cancer cells (e.g., cervical cancer, breast cancer, melanoma). In this study, we investigated CD40/CD40L transcriptional and protein levels in cervical cancer cell lines and tumors. Higher CD40 expression was observed in cervical cancer cell lines derived from squamous cell carcinomas than from adenocarcinomas. Search of CD40/CD40L expression in cervical cancer tissues in public data sets revealed that about 83% of squamous cell carcinomas express CD40 compared to other cervical tumor subtypes. Moreover, expression of CD40 and CD40L in squamous cervical carcinomas is associated with better overall survival. Therefore, these proteins could be explored as prognostic markers in cervical cancers.


Subject(s)
Carcinoma, Squamous Cell , Uterine Cervical Neoplasms , Female , Humans , CD40 Ligand/metabolism , Uterine Cervical Neoplasms/metabolism , Prognosis , CD40 Antigens/metabolism
17.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958563

ABSTRACT

We aimed to investigate the role of the CD40-CD40 ligand (CD40L) pathway in inflammation-mediated angiogenesis in proliferative diabetic retinopathy (PDR). We analyzed vitreous fluids and epiretinal fibrovascular membranes from PDR and nondiabetic patients, cultures of human retinal microvascular endothelial cells (HRMECs) and Müller glial cells and rat retinas with ELISA, immunohistochemistry, flow cytometry and Western blot analysis. Functional tests included measurement of blood-retinal barrier breakdown, in vitro angiogenesis and assessment of monocyte-HRMEC adherence. CD40L and CD40 levels were significantly increased in PDR vitreous samples. We demonstrated CD40L and CD40 expression in vascular endothelial cells, leukocytes and myofibroblasts in epiretinal membranes. Intravitreal administration of soluble (s)CD40L in normal rats significantly increased retinal vascular permeability and induced significant upregulation of phospho-ERK1/2, VEGF, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). sCD40L induced upregulation of VEGF, MMP-9, MCP-1 and HMGB1 in cultured Müller cells and phospo-ERK1/2, p65 subunit of NF-ĸB, VCAM-1 and VEGF in cultured HRMECS. TNF-α induced significant upregulation of CD40 in HRMECs and Müller cells and VEGF induced significant upregulation of CD40 in HRMECs. sCD40L induced proliferation and migration of HRMECs. We provide experimental evidence supporting the involvement of the CD40L-CD40 pathway and how it regulates inflammatory angiogenesis in PDR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Rats , Animals , Diabetic Retinopathy/metabolism , CD40 Ligand/metabolism , Endothelial Cells/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Rats, Sprague-Dawley , Inflammation/metabolism , Diabetes Mellitus/metabolism
18.
Biochem Pharmacol ; 217: 115858, 2023 11.
Article in English | MEDLINE | ID: mdl-37863325

ABSTRACT

The CD40 receptor and its ligand CD154 are widely expressed in various immune-competent cells. Interaction of CD154 with CD40 is essential for B-cell growth, differentiation, and immunoglobulin class switching. Many other immune-competent cells involved in innate and adaptive immunity communicate through this co-stimulatory ligand-receptor dyad. CD40-CD154 interaction is involved in the pathogenesis of numerous inflammatory and autoimmune diseases. While CD40 and CD154 are membrane-bound proteins, their soluble counterparts are generated by proteolytic cleavage or alternative splicing. This review summarises current knowledge about the impact of single nucleotide polymorphisms in the human CD40 gene and compensatory changes in the plasma level of the soluble CD40 receptor (sCD40) isoform in related pro-inflammatory diseases. It discusses regulation patterns of the disintegrin metalloprotease ADAM17 function leading to ectodomain shedding of transmembrane proteins, such as pro-inflammatory adhesion molecules or CD40. The role of sCD40 as a potential biomarker for chronic inflammatory diseases will also be discussed.


Subject(s)
CD40 Antigens , CD40 Ligand , Humans , Ligands , CD40 Antigens/genetics , CD40 Antigens/metabolism , CD40 Ligand/genetics , CD40 Ligand/metabolism , Chronic Disease , Membrane Proteins
19.
APMIS ; 131(12): 705-709, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37849049

ABSTRACT

In the present study, we aimed to investigate the association between soluble CD40 ligand (sCD40L, a marker of platelet activation), soluble thrombomodulin, and syndecan-1 (both well-described markers of endothelial dysfunction) and metabolic syndrome in a large cohort of well-treated people with HIV (PWH) and to elucidate their association with HIV-specific variables. We included 862 PWH with undetectable viral replication. Our hypotheses were tested using uni- and multivariable logistic regression models a priori adjusted for well-known confounders. While no association of soluble thrombomodulin and syndecan-1 with MetS was found, high levels of sCD40L (aOR 1.54 [1.07-2.22]) were associated with excess risk of MetS. Given the previously described association between sCD40L, vascular inflammation and endothelial damage, the results presented in our study may suggest a potential role for sCD40L in the well-known association between cardiometabolic comorbidity and HIV infection.


Subject(s)
HIV Infections , Metabolic Syndrome , Vascular Diseases , Humans , CD40 Ligand/metabolism , Metabolic Syndrome/complications , Syndecan-1 , Thrombomodulin , HIV Infections/complications , Biomarkers
20.
J Periodontal Res ; 58(6): 1261-1271, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37723604

ABSTRACT

OBJECTIVE: We analyzed the localization and expression of Cluster of differentiation 40 ligand (CD40L) in murine periodontal tissue applied with the orthodontic force to determine the CD40L-expressing cells under mechanical stress. Furthermore, we investigated whether CD40-CD40L interaction played an important role in transducing mechanical stress between periodontal ligament (PDL) cells and cementoblasts and remodeling the periodontal tissue for its homeostasis. BACKGROUND: PDL is a complex tissue that contains heterogeneous cell populations and is constantly exposed to mechanical stress, such as occlusal force. CD40 is expressed on PDL cells and upregulated under mechanical stress. However, whether its ligand, CD40L, is upregulated in periodontal tissue in response to mechanical stress, and which functions the CD40-CD40L interaction induces by converting the force to biological functions between the cement-PDL complex, are not fully understood. METHODS: The orthodontic treatment was applied to the first molars at the left side of the upper maxillae of mice using a nickel-titanium closed-coil spring. Immunohistochemistry was performed to analyze the localization of CD40L in the periodontal tissue under the orthodontic force. Human cementoblasts (HCEM) and human PDL cells were stretched in vitro and analyzed CD40L and CD40 protein expression using flow cytometry. A GFP-expressing CD40L plasmid vector was transfected into HCEM (CD40L-HCEM). CD40L-HCEM was co-cultured with human PDL cells with higher alkaline phosphatase (ALP) activity (hPDS) or lower ALP (hPDF). After co-culturing, cell viability and proliferation were analyzed by propidium iodide (PI) staining and bromodeoxyuridine (BrdU) assay. Furthermore, the mRNA expression of cytodifferentiation- and extracellular matrix (ECM)-related genes was analyzed by real-time PCR. RESULTS: Immunohistochemistry demonstrated that CD40L was induced on the cells present at the cementum surface in periodontal tissue at the tension side under the orthodontic treatment in mice. The flow cytometry showed that the in vitro-stretching force upregulated CD40L protein expression on HCEM and CD40 protein expression on human PDL cells. Co-culturing CD40L-HCEM with hPDF enhanced cell viability and proliferation but did not alter the gene expression related to cytodifferentiation and ECM. In contrast, co-culturing CD40L-HCEM with hPDS upregulated cytodifferentiation- and ECM-related genes but did not affect cell viability and proliferation. CONCLUSION: We revealed that in response to a stretching force, CD40L expression was induced on cementoblasts. CD40L on cementoblasts may interact with CD40 on heterogeneous PDL cells at the necessary time and location, inducing cell viability, proliferation, and cytodifferentiation, maintaining periodontal tissue remodeling and homeostasis.


Subject(s)
CD40 Antigens , CD40 Ligand , Periodontal Ligament , Animals , Humans , Mice , CD40 Ligand/metabolism , Cells, Cultured , Dental Cementum , Ligands , Periodontal Ligament/metabolism , Stress, Mechanical , CD40 Antigens/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL