Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
Zhonghua Zhong Liu Za Zhi ; 46(7): 686-695, 2024 Jul 23.
Article in Chinese | MEDLINE | ID: mdl-39034804

ABSTRACT

Objective: To investigate the immunophenotypic and molecular biological characteristics of patients with elevated serum alpha-fetoprotein (AFP) and enteroblastic differentiated gastric adenocarcinoma (GAED). Methods: The clinicopathological data of 13 patients with elevated serum AFP and GAED admitted to Shanxi Cancer Hospital from 2018 to 2020 were collected. Immunohistochemistry (IHC) and next-generation sequencing (NGS) were used to analyze the immune markers and molecular biological characteristics of the pathological tissues of the patients. Kaplan-Meier method and log rank test were used for survival analysis. Results: Among the 13 patients with GAED, 12 were male and 1 was female, aged 41-70 years, with a median age of 64 years. The lesions were mainly located in the gastric antrum (5 cases) and gastric body (4 cases). IHC results showed that the tumor embryonic protein (AFP, SALL4, GPC3), intestinal epithelial differentiation protein (CDX-2, CD10), and some original intestinal epithelial phenotype markers (OCT3/4, Claudin6) were expressed in the tumor tissues. Combined application of multiple markers can reduce the rate of missed diagnosis. Among the 13 patients, 12 had at least one mutation (1 mutation: 1 case, 2-5 mutations: 3 cases, 6-15 mutations: 8 cases), and 1 case was not detected. The gene with the highest mutation frequency was TP53 (10 cases), and other mutant genes included EPHB1 (3 cases), ATRX (2 cases), EPHA5 (2 cases), GATA3 (2 cases), LRP1B (2 cases) and MAP2K4 (2 cases) were also detected. Three of the 13 patients had structural variations, which were C14orf177-GNAS, AIM1-FGFR3, and EPHA6-ROS1 gene rearrangements. All 13 patients had copy number variation, and 11 patients had copy number variation of more than 2 genes. The common amplification genes were IRS2 (5 cases), PTEN (5 cases), GNAS (4 cases), CCNE1 (3 cases), CEBPA (3 cases), PCK1 (3 cases) and ERBB2 (2 cases). The common deletion genes were SOX2 (5 cases) and MYC (5 cases). Among the 13 patients, 4 died, and 2 of the dead patients had liver metastasis. There were 4 patients with disease-free survival and 5 patients with disease progression, including 3 cases of abdominal metastasis and 2 cases of liver metastasis. The 3-year survival rate of patients was 65.9 %, and the 3-year progression-free survival rate was 30.7 %. Gene LRP1B point mutation was associated with poor prognosis (P<0.001). There was no significant improvement in the prognosis of patients treated with immunotherapy compared with those treated with chemotherapy alone (P=0.595), but the prognosis of patients treated with postoperative chemotherapy or postoperative chemotherapy plus immunotherapy was better than that of patients treated with surgery alone (P<0.05). Conclusions: Elevated serum AFP with GAED is a highly invasive tumor with unique molecular characteristics, often accompanied by multiple molecular events. TP53 mutation is the most common type of gene mutation. In addition, some cases are accompanied by HER2 amplification and gene rearrangement.


Subject(s)
Adenocarcinoma , Stomach Neoplasms , alpha-Fetoproteins , Humans , Male , alpha-Fetoproteins/metabolism , Female , Middle Aged , Stomach Neoplasms/pathology , Stomach Neoplasms/blood , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Aged , Adult , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/blood , Adenocarcinoma/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Cell Differentiation , Mutation , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , Glypicans
2.
Nat Commun ; 15(1): 5602, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961108

ABSTRACT

Abnormal trophoblast self-renewal and differentiation during early gestation is the major cause of miscarriage, yet the underlying regulatory mechanisms remain elusive. Here, we show that trophoblast specific deletion of Kat8, a MYST family histone acetyltransferase, leads to extraembryonic ectoderm abnormalities and embryonic lethality. Employing RNA-seq and CUT&Tag analyses on trophoblast stem cells (TSCs), we further discover that KAT8 regulates the transcriptional activation of the trophoblast stemness marker, CDX2, via acetylating H4K16. Remarkably, CDX2 overexpression partially rescues the defects arising from Kat8 knockout. Moreover, increasing H4K16ac via using deacetylase SIRT1 inhibitor, EX527, restores CDX2 levels and promoted placental development. Clinical analysis shows reduced KAT8, CDX2 and H4K16ac expression are associated with recurrent pregnancy loss (RPL). Trophoblast organoids derived from these patients exhibit impaired TSC self-renewal and growth, which are significantly ameliorated with EX527 treatment. These findings suggest the therapeutic potential of targeting the KAT8-H4K16ac-CDX2 axis for mitigating RPL, shedding light on early gestational abnormalities.


Subject(s)
CDX2 Transcription Factor , Cell Proliferation , Cell Self Renewal , Histone Acetyltransferases , Trophoblasts , Trophoblasts/metabolism , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , Animals , Female , Humans , Mice , Pregnancy , Cell Self Renewal/genetics , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Abortion, Habitual/metabolism , Abortion, Habitual/genetics , Mice, Knockout , Histones/metabolism , Cell Differentiation , Placentation/genetics
3.
Anticancer Res ; 44(8): 3553-3556, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060046

ABSTRACT

BACKGROUND/AIM: Caudal-type homeobox transcription factor 2 (CDX2) is a master regulator of intestinal development and maintenance of the intestinal epithelium. We previously revealed that CDX2Low colorectal cancers (CRCs) were associated with poor survival and differential response to adjuvant chemotherapy. MicroRNAs (miRNAs), a class of non-coding RNAs typically composed of fewer than 25 nucleotides, are known to regulate gene expression and signaling pathways. This study aimed to identify oncogenic miRNAs induced by CDX2 in CRC. MATERIALS AND METHODS: HCT116 cells were cultured and transfected with CDX2 siRNA. The expression levels of four oncogenic miRNAs (miR-9, miR-25, miR-106b and miR-221) were quantified by RT-qPCR. To understand whether CDX2 represented a key regulator of miR-221 expression in vivo, we analyzed the relationship between CDX2 and miR-221expression levels in the TCGA COAD database (n=454). RESULTS: The expression level of miR-221 was significantly up-regulated in CDX2 knockdown cells (n=2, p<0.05). In the TCGA database, we observed an inverse correlation between CDX2 and miR-221 expression levels, consistent with our in vitro data (r=-0.114, p=0.0149). Furthermore, the expression level of miR-221 was significantly elevated in patients with CDX2Low CRC (p<0.05). CONCLUSION: Knockdown of CDX2 induces microRNA-221 up-regulation in human CRC. Further research is warranted to elucidate the molecular mechanisms underlying miR-221 up-regulation in CDX2Low CRCs.


Subject(s)
CDX2 Transcription Factor , Colonic Neoplasms , Gene Expression Regulation, Neoplastic , MicroRNAs , Up-Regulation , Humans , MicroRNAs/genetics , CDX2 Transcription Factor/genetics , CDX2 Transcription Factor/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , HCT116 Cells , Gene Knockdown Techniques
5.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 546-551, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825898

ABSTRACT

Objective: To investigate the clinical and pathological characteristics of primary mucinous gland lesions of the fallopian tubes. Methods: The clinical data, pathomorphological characteristics and immunophenotype of 14 cases of primary mucinous gland lesions of the fallopian tube diagnosed at Obstetrics and Gynecology Hospital of Fudan University from 2015 to 2023 were analyzed retrospectively. In addition, a comprehensive review of relevant literature was conducted. Results: The age of 14 patients ranged from 53 to 83 years, with an average of 65 years. Among them, 13 cases exhibited unilateral involvement while one case showed bilateral presentation. Nine cases were mucinous metaplasia of the fallopian tube, four cases were invasive mucinous adenocarcinoma and one case was mucinous carcinoma in situ. Morphologically, mucinous metaplasia of the fallopian tube was focal, with or without inflammation. The cells of mucinous adenocarcinoma or mucinous carcinoma in situ exhibited characteristics indicative of gastrointestinal differentiation. Immunohistochemical analysis revealed diffuse positive expression of CK7, and negative expression of SATB2. CDX2 demonstrated positive staining in two cases. One case exhibited diffuse and strongly positive mutant expression of p53, whereas the remaining cases displayed wild-type expression. MUC6 showed diffuse or focally positive staining in mucinous gland lesions characterized by gastric differentiation. Some cases of mucinous adenocarcinoma of fallopian tube were subject to AB-PAS staining, resulting in red to purple cytoplasmic staining. Conclusions: Primary mucinous lesions of the fallopian tube are exceedingly uncommon. All cases of mucinous adenocarcinoma of fallopian tubes in this study exhibit the morphology and immunohistochemical characteristics of gastrointestinal differentiation. Mucinous metaplasia of the fallopian tube is a benign lesion of incidental finding, which is closely related to inflammation or gastric differentiation. Mucinous lesions of cervix, ovary and digestive tract are excluded in all patients, confirming the independent existence of mucinous lesions within fallopian tubes.


Subject(s)
Adenocarcinoma, Mucinous , Fallopian Tube Neoplasms , Fallopian Tubes , Metaplasia , Tumor Suppressor Protein p53 , Humans , Female , Fallopian Tube Neoplasms/pathology , Fallopian Tube Neoplasms/metabolism , Adenocarcinoma, Mucinous/pathology , Adenocarcinoma, Mucinous/metabolism , Aged , Middle Aged , Retrospective Studies , Fallopian Tubes/pathology , Aged, 80 and over , Tumor Suppressor Protein p53/metabolism , Metaplasia/pathology , Keratin-7/metabolism , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , Mucin-6/metabolism , Matrix Attachment Region Binding Proteins/metabolism , Matrix Attachment Region Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Carcinoma in Situ/pathology , Immunohistochemistry
6.
Asian J Endosc Surg ; 17(3): e13324, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38804100

ABSTRACT

BACKGROUND: One anastomosis gastric bypass (OAGB) is now the third most common bariatric surgery worldwide. This procedure is garnering increasing attention, but its complication of bile reflux and the associated risk of gastric carcinogenesis remains controversial. OBJECTIVE: The study aims to assess the impact of bile reflux on the gastric mucosa by comparing pathological and immunohistochemical results of gastric mucosa before and 2 years after OAGB surgery. METHODS: This retrospective study analyzed gastric lesions observed in gastroscopy before and after OAGB surgery. Pathological examinations were conducted on mucosal samples from proximal, middle and distal part of stomach, with a particular focus on the expression of Ki-67, P53, and CDX2 in immunohistochemistry. Ki-67 indicates cellular proliferation, P53 is a tumor suppressor protein, and CDX2 is a marker for intestinal differentiation. RESULTS: A total of 16 patients completed the follow-up. Regarding gastritis, presurgery nonerosive gastritis was found in two cases (12.5%), and postsurgery in six cases (37.5%). Erosive gastritis increased from one case (6.2%) presurgery to three cases (18.7%) postsurgery, totaling an increase from three to nine cases (p = .028). Bile reflux in the stomach increased from one case (6.2%) presurgery to three cases (18.7%) postsurgery. Most lesions in the proximal, middle, and distal part of stomach were relatively mild, with normal tissue states being predominant. Mild inflammation was found in all three areas, whereas moderate inflammation, intestinal metaplasia, and glandular atrophy were less common. No cases of severe inflammation were noted. The expression of gastric biomarkers CDX-2, Ki67, and P53 showed no significant statistical variation in different areas. CONCLUSION: Bile reflux does occur after OAGB, but its incidence is not high. Based on the immunohistochemical and pathological results of the gastric mucosa 2 years post-OAGB, there seems to be no significant causal relationship between OAGB and oncogenic inflammation around the gastric tube.


Subject(s)
Gastric Bypass , Gastric Mucosa , Immunohistochemistry , Humans , Retrospective Studies , Gastric Mucosa/pathology , Gastric Mucosa/metabolism , Gastric Mucosa/surgery , Female , Male , Gastric Bypass/adverse effects , Middle Aged , Adult , Bile Reflux/metabolism , Bile Reflux/pathology , Bile Reflux/etiology , CDX2 Transcription Factor/metabolism , Ki-67 Antigen/metabolism , Ki-67 Antigen/analysis , Tumor Suppressor Protein p53/metabolism , Gastritis/pathology , Gastritis/metabolism , Gastritis/etiology , Postoperative Complications/metabolism , Postoperative Complications/pathology , Postoperative Complications/etiology , Gastroscopy , Aged
7.
Chirurgia (Bucur) ; 119(2): 136-155, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38743828

ABSTRACT

Background: Colorectal cancer (CRC) exhibits molecular and morphological diversity, involving genetic, epigenetic alterations, and disruptions in signaling pathways. This necessitates a comprehensive review synthesizing recent advancements in molecular mechanisms, established biomarkers, as well as emerging ones like CDX2 for enhanced CRC assessment. Material and Methods: This review analyzes the last decade's literature and current guidelines to study CRC's molecular intricacies. It extends the analysis beyond traditional biomarkers to include emerging ones like CDX2, examining their interaction with carcinogenic mechanisms and molecular pathways, alongside reviewing current testing methodologies. Results: A multi-biomarker strategy, incorporating both traditional and emerging biomarkers like CDX2, is crucial for optimizing CRC management. This strategy elucidates the complex interaction between biomarkers and the tumor's molecular pathways, significantly influencing prognostic evaluations, therapeutic decision-making, and paving the way for personalized medicine in CRC. Conclusions: This review proposes CDX2 as an emerging prognostic biomarker and emphasizes the necessity of thorough molecular profiling for individualized treatment strategies. By enhancing CRC treatment approaches and prognostic evaluation, this effort marks a step forward in precision oncology, leveraging an enriched understanding of tumor behavior.


Subject(s)
Biomarkers, Tumor , CDX2 Transcription Factor , Colorectal Neoplasms , Membrane Proteins , Microsatellite Instability , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/classification , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins B-raf/genetics , Prognosis , Membrane Proteins/genetics , Membrane Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , DNA Mismatch Repair , Predictive Value of Tests , Precision Medicine
8.
Proc Natl Acad Sci U S A ; 121(18): e2311374121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648478

ABSTRACT

The control of eukaryotic gene expression is intimately connected to highly dynamic chromatin structures. Gene regulation relies on activator and repressor transcription factors (TFs) that induce local chromatin opening and closing. However, it is unclear how nucleus-wide chromatin organization responds dynamically to the activity of specific TFs. Here, we examined how two TFs with opposite effects on local chromatin accessibility modulate chromatin dynamics nucleus-wide. We combine high-resolution diffusion mapping and dense flow reconstruction and correlation in living cells to obtain an imaging-based, nanometer-scale analysis of local diffusion processes and long-range coordinated movements of both chromatin and TFs. We show that the expression of either an individual transcriptional activator (CDX2) or repressor (SIX6) with large numbers of binding sites increases chromatin mobility nucleus-wide, yet they induce opposite coherent chromatin motions at the micron scale. Hi-C analysis of higher-order chromatin structures shows that induction of the pioneer factor CDX2 leads both to changes in local chromatin interactions and the distribution of A and B compartments, thus relating the micromovement of chromatin with changes in compartmental structures. Given that inhibition of transcription initiation and elongation by RNA Pol II has a partial impact on the global chromatin dynamics induced by CDX2, we suggest that CDX2 overexpression alters chromatin structure dynamics both dependently and independently of transcription. Our biophysical analysis shows that sequence-specific TFs can influence chromatin structure on multiple architectural levels, arguing that local chromatin changes brought by TFs alter long-range chromatin mobility and its organization.


Subject(s)
Chromatin , Transcription Factors , Chromatin/metabolism , Chromatin/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , Gene Expression Regulation , Cell Nucleus/metabolism , Binding Sites , Chromatin Assembly and Disassembly
9.
Cell Rep ; 43(5): 114136, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38643480

ABSTRACT

Embryos, originating from fertilized eggs, undergo continuous cell division and differentiation, accompanied by dramatic changes in transcription, translation, and metabolism. Chromatin regulators, including transcription factors (TFs), play indispensable roles in regulating these processes. Recently, the trophoblast regulator TFAP2C was identified as crucial in initiating early cell fate decisions. However, Tfap2c transcripts persist in both the inner cell mass and trophectoderm of blastocysts, prompting inquiry into Tfap2c's function in post-lineage establishment. In this study, we delineate the dynamics of TFAP2C during the mouse peri-implantation stage and elucidate its collaboration with the key lineage regulators CDX2 and NANOG. Importantly, we propose that de novo formation of H3K9me3 in the extraembryonic ectoderm during implantation antagonizes TFAP2C binding to crucial developmental genes, thereby maintaining its lineage identity. Together, these results highlight the plasticity of the chromatin environment in designating the genomic binding of highly adaptable lineage-specific TFs and regulating embryonic cell fates.


Subject(s)
CDX2 Transcription Factor , Cell Lineage , Chromatin , Gene Expression Regulation, Developmental , Transcription Factor AP-2 , Animals , Chromatin/metabolism , Mice , Cell Lineage/genetics , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Blastocyst/metabolism , Blastocyst/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Female , Histones/metabolism , Cell Differentiation/genetics , Ectoderm/metabolism , Ectoderm/cytology , Embryonic Development/genetics
10.
Ann Diagn Pathol ; 71: 152289, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38555678

ABSTRACT

CDX2 and SATB2 are often used as biomarkers for identification of colorectal origin in primary or metastatic adenocarcinomas. Loss of CDX2 or SATB2 expression has been associated with poor prognosis in patients with colorectal cancer (CRC). However, little is known regarding clinicopathological features, including prognosis, of CRCs with concomitant loss of CDX2 and SATB2. A total of 431 stage III CRCs were analyzed for their expression status in CDX2 and SATB2 using tissue microarray-based immunohistochemistry and expression status was correlated with clinicopathological variables, molecular alterations, and survival. CDX2-negative (CDX2-) CRCs and SATB2-negative (SATB2-) CRCs were found in 8.1 % and 17.2 % of CRCs, respectively, whereas both CDX2-negative and SATB2-negative (CDX2-/SATB2-) CRCs comprised 3.2 % of the CRCs. On survival analysis, neither CDX2-/SATB2+ nor CDX2+/SABT2- CRCs but CDX2-/SATB2- CRCs were associated with poor prognosis. CDX2-/SATB2- CRCs showed significant associations with tumor subsite of right colon, poor differentiation, decreased expression of CK20, aberrant expression of CK7, CIMP-high, MSI-high, and BRAF mutation. In summary, our results suggest that concomitant loss of CDX2 and SATB2 is a prognostic biomarker but isolated loss of CDX2 or SATB2 is not a prognostic biomarker for stage III CRCs.


Subject(s)
Biomarkers, Tumor , CDX2 Transcription Factor , Colorectal Neoplasms , Matrix Attachment Region Binding Proteins , Neoplasm Staging , Transcription Factors , Humans , Matrix Attachment Region Binding Proteins/metabolism , CDX2 Transcription Factor/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Male , Transcription Factors/metabolism , Female , Biomarkers, Tumor/metabolism , Prognosis , Aged , Middle Aged , Immunohistochemistry/methods , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/diagnosis , Adult , Tissue Array Analysis , Aged, 80 and over
11.
J Appl Toxicol ; 44(6): 853-862, 2024 06.
Article in English | MEDLINE | ID: mdl-38295844

ABSTRACT

Hypoxia-induced apoptosis and oxidative stress in spermatogenic cells are considered to be important factors leading to male infertility. It was reported that CDX2 expression was downregulated in hypoxia-stimulated spermatogenic cells. However, the effects of CDX2 on hypoxia-induced apoptosis and oxidative stress in spermatogenic cells are still unknown. This study aimed to explore the roles of CDX2 in hypoxia-induced injury of spermatogenic cells, as well as its mechanism of action. Spermatogenic cells were cultured under 1% oxygen for 48 h to established hypoxia damage model. Reactive oxygen species (ROS) generation was determined using 2',7'-dichlorofluorescein diacetate assay. Apoptosis was assessed using flow cytometry. Enzyme-linked immunosorbent assay was used to evaluate oxidative stress markers, including malondialdehyde (MDA) content and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidases (GSH-Px). Protein levels were detected using western blotting. Hypoxia exposure induced increase in ROS generation, apoptosis rate, and oxidative stress in spermatogenic cells. ROS scavenger inhibited hypoxia-induced apoptosis, oxidative stress, and Wnt/ß-catenin pathway activation. Hypoxia exposure induced CDX2 downregulation. CDX2 overexpression suppressed hypoxia-induced ROS generation, apoptosis rate, oxidative stress, and Wnt/ß-catenin pathway activation. Moreover, CDX2 knockdown restores the inhibitory effects of si-ß-catenin or NAC on hypoxia-induced activation of the Wnt/ß-catenin pathway, apoptosis, and oxidative stress. In conclusion, our study suggests that CDX2 overexpression alleviates hypoxia-induced apoptosis and oxidative stress by suppression of ROS-mediated Wnt/ß-catenin pathway in spermatogenic cells.


Subject(s)
Apoptosis , CDX2 Transcription Factor , Cell Hypoxia , Oxidative Stress , Reactive Oxygen Species , Wnt Signaling Pathway , Oxidative Stress/drug effects , Male , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Wnt Signaling Pathway/drug effects , Animals , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , Mice , beta Catenin/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics
12.
World J Surg Oncol ; 22(1): 5, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38167037

ABSTRACT

BACKGROUND: The histological subtype is an important prognostic factor for ampulla of Vater (AoV) cancer. This study proposes a classification system for the histological subtyping of AoV cancer based on immunohistochemical (IHC) staining and its prognostic significance. METHODS: Seventy-five AoV cancers were analyzed for cytokeratin 7 (CK7), CK20, and causal-type homeobox transcription factor 2 (CDX2) expression by IHC staining. We differentiated the subtypes (INT, intestinal; PB, pancreatobiliary; MIX, mixed; NOS, not otherwise specified) into classification I: CK7/CK20, classification II: CK7/CK20 or CDX2, classification III: CK7/CDX2 and examined their associations with clinicopathological factors. RESULTS: Classifications I, II, and III subtypes were INT (7, 10, and 10 cases), PB (43, 37, and 38 cases), MIX (13, 19, and 18 cases), and NOS (12, 9, and 9 cases). Significant differences in disease-free survival among the subtypes were observed in classifications II and III using CDX2; the PB and NOS subtype exhibited shorter survival time compared with INT subtype. In classification III, an association was revealed between advanced T/N stage, poor differentiation, lymphovascular invasion (LVI), the PB and NOS subtypes, and recurrence risk. In classification III, the subtypes differed significantly in T/N stage and LVI. Patients with the PB subtype had advanced T and N stages and a higher incidence of LVI. CONCLUSIONS: Classification using CDX2 revealed subtypes with distinct prognostic significance. Combining CK7 and CDX2 or adding CDX2 to CK7/CK20 is useful for distinguishing subtypes, predicting disease outcomes, and impacting the clinical management of patients with AoV cancer.


Subject(s)
Adenocarcinoma , Ampulla of Vater , Common Bile Duct Neoplasms , Humans , Biomarkers, Tumor/metabolism , Adenocarcinoma/pathology , CDX2 Transcription Factor/metabolism , Ampulla of Vater/pathology , Common Bile Duct Neoplasms/pathology , Immunohistochemistry , Prognosis , Keratin-20/metabolism , Keratin-7/metabolism
13.
Reproduction ; 167(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38206180

ABSTRACT

In brief: Lineage specification plays a vital role in preimplantation development. TEAD4 is an essential transcription factor for trophectoderm lineage specification in mice but not in cattle. Abstract: Tead4, a critical transcription factor expressed during preimplantation development, is essential for the expression of trophectoderm-specific genes in mice. However, the functional mechanism of TEAD4 in mouse preimplantation development and its conservation across mammals remain unclear. Here, we report that Tead4 is a crucial transcription factor necessary for blastocyst formation in mice. Disruption of Tead4 through base editing results in developmental arrest at the morula stage. Additionally, RNA-seq analysis reveals dysregulation of 670 genes in Tead4 knockout embryos. As anticipated, Tead4 knockout led to a decrease in trophectoderm genes Cdx2 and Gata3. Intriguingly, we observed a reduction in Krt8, suggesting that Tead4 influences the integrity of the trophectoderm epithelium in mice. More importantly, we noted a dramatic decrease in nuclear Yap in outside cells for Tead4-deficient morula, indicating that Tead4 directly regulates Hippo signaling. In contrast, bovine embryos with TEAD4 depletion could still develop to blastocysts with normal expression of CDX2, GATA3, and SOX2, albeit with a decrease in total cell number and ICM cell number. In conclusion, we propose that Tead4 regulates mouse blastocyst formation via Krt8 and Yap, both of which are critical regulators of mouse preimplantation development.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Animals , Cattle , Mice , Blastocyst/metabolism , CDX2 Transcription Factor/genetics , CDX2 Transcription Factor/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Embryonic Development/physiology , Gene Expression Regulation, Developmental , Hippo Signaling Pathway , Mammals/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Med Mol Morphol ; 57(1): 1-10, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37583001

ABSTRACT

The relationship between the expression of the SATB2 and CDX2 proteins and common molecular changes and clinical prognosis in colorectal cancer (CRC) still needs further clarification. We collected 1180 cases of CRC and explored the association between the expression of SATB2 and CDX2 and clinicopathological characteristics, molecular alterations, and overall survival of CRC using whole-slide immunohistochemistry. Our results showed that negative expression of SATB2 and CDX2 was more common in MMR-protein-deficient CRC than in MMR-protein-proficient CRC (15.8% vs. 6.0%, P = 0.001; 14.5% vs. 4.0%, P = 0.000, respectively). Negative expression of SATB2 and CDX2 was more common in BRAF-mutant CRC than in BRAF wild-type CRC (17.2% vs. 6.1%, P = 0.003; 13.8% vs. 4. 2%; P = 0.004, respectively). There was no relationship between SATB2 and/or CDX2 negative expression and KRAS, NRAS, and PIK3CA mutations. The lack of expression of SATB2 and CDX2 was associated with poor histopathological features of CRC. In multivariate analysis, negative expression of SATB2 (P = 0.030), negative expression of CDX2 (P = 0.043) and late clinical stage (P = 0.000) were associated with decreased overall survival of CRC. In conclusion, the lack of SATB2 and CDX2 expression in CRC was associated with MMR protein deficiency and BRAF mutation, but not with KRAS, NRAS and PIK3CA mutation. SATB2 and CDX2 are prognostic biomarkers in patients with CRC.


Subject(s)
Adenocarcinoma , Brain Neoplasms , Colorectal Neoplasms , Matrix Attachment Region Binding Proteins , Neoplastic Syndromes, Hereditary , Protein Deficiency , Humans , Proto-Oncogene Proteins B-raf/genetics , DNA Mismatch Repair/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma/genetics , Colorectal Neoplasms/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Mutation , CDX2 Transcription Factor/genetics , CDX2 Transcription Factor/metabolism , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism
16.
Sci Rep ; 13(1): 16547, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37783755

ABSTRACT

Patients with ampulla of Vater adenocarcinoma exhibit diverse outcomes, likely since these malignancies can originate from any of the three converging epithelia at this site. Such variability presents difficulties in clinical decision-making processes and in devising therapeutic approaches. In this study, the potential clinical value of histomolecular phenotypes was determined by integrating histopathological analysis with protein expression (MUC1, CDX2, CK20, and MUC2), in a cohort of 87 patients diagnosed with stage IB to III ampulla of Vater adenocarcinoma who underwent curative surgical resection. Of the 87 patients, 54 were classified as pancreato-biliary (PB) subtype and 33 as intestinal subtype. The median follow-up time for all patients was 32.8 months (95% CI, 25.3-49.2). Patients with a histomolecular PB phenotype (CDX2 negative, MUC1 positive, MUC2 negative, and irrespective of the CK20 results) were associated with poor prognostic outcomes in both disease-free survival (DFS) (HR = 1.81; 95% CI, 1.04-3.17; p = 0.054) and overall survival (OS) (HR = 2.01; 95% CI, 1.11-3.66; p = 0.039) compared to those with histomolecular intestinal carcinomas. Patients with the PB subtype were more likely to have local recurrence alone (11 of 37, 29.7%) compared to those with the intestinal subtype (1 of 15, 6.7%). In the context of systemic disease, a notably greater proportion of patients exhibiting elevated carbohydrate antigen 19-9 levels were observed in the PB subtype compared to the intestinal subtype (p = 0.024). In the cohort of 38 patients who received first-line palliative chemotherapy, a diminished median overall survival (OS) was observed in the PB group compared to the intestinal group (10.3 vs. 28.3 months, HR = 2.47; 95% CI, 1.23-4.95; p = 0.025). By integrating histopathologic and molecular criteria, we can identify distinct and clinically relevant histomolecular phenotypes in adenocarcinomas of the ampulla of Vater, which could have considerable impact on existing therapeutic approaches.


Subject(s)
Adenocarcinoma , Ampulla of Vater , Common Bile Duct Neoplasms , Humans , Ampulla of Vater/pathology , CDX2 Transcription Factor/metabolism , Common Bile Duct Neoplasms/pathology , Adenocarcinoma/pathology , Prognosis
17.
Cancer Treat Rev ; 121: 102643, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37871463

ABSTRACT

Adjuvant chemotherapy following surgical intervention remains the primary treatment option for patients with localized colorectal cancer (CRC). However, a significant proportion of patients will have an unfavorable outcome after current forms of chemotherapy. While reflecting the increasing complexity of CRC, the clinical application of molecular biomarkers provides information that can be utilized to guide therapeutic strategies. Among these, caudal-related homeobox transcription factor 2 (CDX2) emerges as a biomarker of both prognosis and relapse after therapy. CDX2 is a key transcription factor that controls intestinal fate. Although rarely mutated in CRC, loss of CDX2 expression has been reported mostly in right-sided, microsatellite-unstable tumors and is associated with aggressive carcinomas. The pathological assessment of CDX2 by immunohistochemistry can thus identify patients with high-risk CRC, but the evaluation of CDX2 expression remains challenging in a substantial proportion of patients. In this review, we discuss the roles of CDX2 in homeostasis and CRC and the alterations that lead to protein expression loss. Furthermore, we review the clinical significance of CDX2 assessment, with a particular focus on its current use as a biomarker for pathological evaluation and clinical decision-making. Finally, we attempt to clarify the molecular implications of CDX2 deficiency, ultimately providing insights for a more precise evaluation of CDX2 protein expression.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Humans , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/drug therapy , Neoplasm Recurrence, Local , CDX2 Transcription Factor/genetics , CDX2 Transcription Factor/metabolism , Biology
18.
Differentiation ; 134: 1-10, 2023.
Article in English | MEDLINE | ID: mdl-37690144

ABSTRACT

Barrett's oesophagus (BO) is a pathological condition in which the squamous epithelium of the distal oesophagus is replaced by an intestinal-like columnar epithelium originating from the gastric cardia. Several somatic mutations contribute to the intestinal-like metaplasia. Once these have occurred in a single cell, it will be unable to expand further unless the altered cell can colonise the surrounding squamous epithelium of the oesophagus. The mechanisms by which this happens are still unknown. Here we have established an in vitro system for examining the competitive behaviour of two epithelia. We find that when an oesophageal epithelium model (Het1A cells) is confronted by an intestinal epithelium model (Caco-2 cells), the intestinal cells expand into the oesophageal domain. In this case the boundary involves overgrowth by the Caco-2 cells and the formation of isolated colonies. Two key transcription factors, normally involved in intestinal development, HNF4α and CDX2, are both expressed in BO. We examined the competitive ability of Het1A cells stably expressing HNF4α or CDX2 and placed in confrontation with unmodified Het1A cells. The key result is that stable expression of HNF4α, but not CDX2, increased the ability of the cells to migrate and push into the unmodified Het1A domain. In this situation the boundary between the cell types is a sharp one, as is normally seen in BO. The experiments were conducted using a variety of extracellular substrates, which all tended to increase the cell migration compared to uncoated plastic. These data provide evidence that HNF4α expression could have a potential role in the competitive spread of BO into the oesophagus as HNF4α increases the ability of cells to invade into the adjacent stratified squamous epithelium, thus enabling a single mutant cell eventually to generate a macroscopic patch of metaplasia.


Subject(s)
Barrett Esophagus , Carcinoma, Squamous Cell , Humans , Barrett Esophagus/genetics , Barrett Esophagus/metabolism , Barrett Esophagus/pathology , Caco-2 Cells , CDX2 Transcription Factor/genetics , CDX2 Transcription Factor/metabolism , Ectopic Gene Expression , Metaplasia , Phenotype
19.
Cell Commun Signal ; 21(1): 141, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328804

ABSTRACT

BACKGROUND: Metabolic reprogramming is a critical event for cell fate and function, making it an attractive target for clinical therapy. The function of metabolic reprogramming in Helicobacter pylori (H. pylori)-infected gastric intestinal metaplasia remained to be identified. METHODS: Xanthurenic acid (XA) was measured in gastric cancer cells treated with H. pylori or H. pylori virulence factor, respectively, and qPCR and WB were performed to detect CDX2 and key metabolic enzymes expression. A subcellular fractionation approach, luciferase and ChIP combined with immunofluorescence were applied to reveal the mechanism underlying H. pylori mediated kynurenine pathway in intestinal metaplasia in vivo and in vitro. RESULTS: Herein, we, for the first time, demonstrated that H. pylori contributed to gastric intestinal metaplasia characterized by enhanced Caudal-related homeobox transcription factor-2 (CDX2) and mucin2 (MUC2) expression, which was attributed to activation of kynurenine pathway. H. pylori promoted kynurenine aminotransferase II (KAT2)-mediated kynurenine pathway of tryptophan metabolism, leading to XA production, which further induced CDX2 expression in gastric epithelial cells. Mechanically, H. pylori activated cyclic guanylate adenylate synthase (cGAS)-interferon regulatory factor 3 (IRF3) pathway in gastric epithelial cells, leading to enhance IRF3 nuclear translocation and the binding of IRF3 to KAT2 promoter. Inhibition of KAT2 could significantly reverse the effect of H. pylori on CDX2 expression. Also, the rescue phenomenon was observed in gastric epithelial cells treated with H. pylori after IRF3 inhibition in vitro and in vivo. Most importantly, phospho-IRF3 was confirmed to be a clinical positive relationship with CDX2. CONCLUSION: These finding suggested H. pylori contributed to gastric intestinal metaplasia through KAT2-mediated kynurenine pathway of tryptophan metabolism via cGAS-IRF3 signaling, targeting the kynurenine pathway could be a promising strategy to prevent gastric intestinal metaplasia caused by H. pylori infection. Video Abstract.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Homeodomain Proteins/metabolism , CDX2 Transcription Factor/metabolism , Helicobacter pylori/metabolism , Kynurenine/metabolism , Gastric Mucosa/metabolism , Interferon Regulatory Factor-3/metabolism , Tryptophan/metabolism , Stomach Neoplasms/metabolism , Metaplasia/metabolism , Nucleotidyltransferases/metabolism , Helicobacter Infections/metabolism
20.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37240039

ABSTRACT

In gastric cancer (GC), intestinal metaplasia (IM) is a common precursor lesion, but its relationship to the MUC2/MUC5AC/CDX2 axis is not completely understood. Although V-set and immunoglobulin domain containing 1 (VSIG1) is supposed to be a specific marker for gastric mucosa and GC, respectively, no data about its relationship with IM or mucin phenotype have been published. The aim of our study was to explore the possible linkage between IM and these four molecules. The clinicopathological features of 60 randomly selected GCs were examined in association with VSIG1, MUC2, MUC5AC and CDX2. Two online database platforms were also used to establish the transcription factors (TFs) network involved in MUC2/MUC5AC/CDX2 cascade. IM was more frequently encountered in females (11/16 cases) and in patients below 60 years old (10/16 cases). Poorly differentiated (G3) carcinomas tended to show a loss of CDX2 (27/33 cases) but not of MUC2 and MUC5AC. MUC5AC and CDX2 were lost in parallel with the depth of invasion of the pT4 stage (28/35 and 29/35 cases), while an advanced Dukes-MAC-like stage was only correlated with CDX2 and VSIG1 loss (20/37 and 30/37 cases). VSIG1 was directly correlated with MUC5AC (p = 0.04) as an indicator of gastric phenotype. MUC2-negative cases showed a propensity towards lymphatic invasion (37/40 cases) and distant metastases, while CDX2-negative cases tended to associate with hematogenous dissemination (30/40 cases). Regarding the molecular network, only 3 of the 19 TFs involved in this carcinogenic cascade (SP1, RELA, NFKB1) interacted with all targeted genes. In GC, VSIG1 can be considered an indicator of gastric phenotype carcinomas, where carcinogenesis is mainly driven by MUC5AC. Although infrequently encountered in GC, CDX2 positivity might indicate a locally advanced stage and risk for vascular invasion, especially in tumors developed against the background of IM. The loss of VSIG1 indicates a risk for lymph node metastases.


Subject(s)
Carcinoma , Stomach Neoplasms , Female , Humans , Mucins/metabolism , Homeodomain Proteins/metabolism , CDX2 Transcription Factor/genetics , CDX2 Transcription Factor/metabolism , Mucin-2/genetics , Stomach Neoplasms/pathology , Phenotype , Carcinogenesis/genetics , Immunoglobulin Domains
SELECTION OF CITATIONS
SEARCH DETAIL