Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.589
Filter
1.
J Gen Physiol ; 156(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39230559

ABSTRACT

Ca2+ release from the sarcoplasmic reticulum (SR) plays a central role in excitation-contraction coupling (ECC) in skeletal muscles. However, the mechanism by which activation of the voltage-sensors/dihydropyridine receptors (DHPRs) in the membrane of the transverse tubular system leads to activation of the Ca2+-release channels/ryanodine receptors (RyRs) in the SR is not fully understood. Recent observations showing that a very small Ca2+ leak through RyR1s in mammalian skeletal muscle can markedly raise the background [Ca2+] in the junctional space (JS) above the Ca2+ level in the bulk of the cytosol indicate that there is a diffusional barrier between the JS and the cytosol at large. Here, I use a mathematical model to explore the hypothesis that a sudden rise in Ca2+ leak through DHPR-coupled RyR1s, caused by reduced inhibition at the RyR1 Ca2+/Mg2+ inhibitory I1-sites when the associated DHPRs are activated, is sufficient to enable synchronized responses that trigger a regenerative rise of Ca2+ release that remains under voltage control. In this way, the characteristic response to Ca2+ of RyR channels is key not only for the Ca2+ release mechanism in cardiac muscle and other tissues, but also for the DHPR-dependent Ca2+ release in skeletal muscle.


Subject(s)
Calcium Channels, L-Type , Calcium , Muscle, Skeletal , Ryanodine Receptor Calcium Release Channel , Ryanodine Receptor Calcium Release Channel/metabolism , Muscle, Skeletal/metabolism , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Sarcoplasmic Reticulum/metabolism , Calcium Signaling/physiology , Excitation Contraction Coupling , Models, Biological , Humans
2.
PLoS One ; 19(9): e0308809, 2024.
Article in English | MEDLINE | ID: mdl-39231135

ABSTRACT

Aging is a physiological process that is still poorly understood, especially with respect to effects on the brain. There are open questions about aging that are difficult to answer with an experimental approach. Underlying challenges include the difficulty of recording in vivo single cell and network activity simultaneously with submillisecond resolution, and brain compensatory mechanisms triggered by genetic, pharmacologic, or behavioral manipulations. Mathematical modeling can help address some of these questions by allowing us to fix parameters that cannot be controlled experimentally and investigate neural activity under different conditions. We present a biophysical minimal model of CA1 pyramidal cells (PCs) based on general expressions for transmembrane ion transport derived from thermodynamical principles. The model allows directly varying the contribution of ion channels by changing their number. By analyzing the dynamics of the model, we find parameter ranges that reproduce the variability in electrical activity seen in PCs. In addition, increasing the L-type Ca2+ channel expression in the model reproduces age-related changes in electrical activity that are qualitatively and quantitatively similar to those observed in PCs from aged animals. We also make predictions about age-related changes in PC bursting activity that, to our knowledge, have not been reported previously. We conclude that the model's biophysical nature, flexibility, and computational simplicity make it a potentially powerful complement to experimental studies of aging.


Subject(s)
Aging , CA1 Region, Hippocampal , Pyramidal Cells , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Animals , Aging/physiology , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/metabolism , Models, Neurological , Action Potentials/physiology , Calcium Channels, L-Type/metabolism , Biophysical Phenomena
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(9): 1045-1052, 2024 Sep 10.
Article in Chinese | MEDLINE | ID: mdl-39217481

ABSTRACT

OBJECTIVE: To explore the impact of CACNA1C rs58619945 genotype on the cortical thickness of attentional networks in patients with Bipolar 1 disorder type (BD-Ⅰ). METHODS: From August 2013 and August 2019, a total of 155 BD-Ⅰ patients were recruited from the outpatient and inpatient Departments of the Affiliated Brain Hospital of Guangzhou Medical University, along with 82 healthy controls (HC) from the community and university. Genotype for the CACNA1C rs58619945 locus was determined for all BD-I patients and HC subjects, followed by 3.0 T magnetic resonance imaging scans to measure the cortical thickness in the alert, orienting, and executive control subnetworks. General linear models (GLMs) were used to evaluate the impact of CACNA1C rs58619945 on the cortical thickness of attentional networks. Concurrently, attentional dimension functions were assessed using repeatable battery for the assessment of neuropsychological status (RBANS) and Cambridge neuropsychological test automated battery rapid visual information processing (CANTAB RVP) test. RESULTS: Compared with the HC group, the BD-I patients had shown reduced thickness in bilateral prefrontal cortex, bilateral posterior cingulate cortex, and bilateral superior temporal cortex. A significant interaction between the CACNA1C genotype and the cortical thickness of right prefrontal cortex, right posterior parietal cortex and right superior temporal cortex was noted. Partial correlation analysis has demonstrated a significant correlation between CANTAB RVP and RBANS attention indices and cortical thickness in the right prefrontal cortex, right posterior cingulate cortex, and right superior temporal cortex predominantly among carriers of the BD-I G allele. CONCLUSION: The G allele of CACNA1C rs58619945 is associated with cortical thickness of the right prefrontal cortex, right posterior cingulate cortex, and right superior temporal cortex in BD-Ⅰ, which are part of the alerting and orienting network.


Subject(s)
Attention , Bipolar Disorder , Calcium Channels, L-Type , Genotype , Humans , Adult , Bipolar Disorder/genetics , Bipolar Disorder/physiopathology , Bipolar Disorder/diagnostic imaging , Male , Female , Calcium Channels, L-Type/genetics , Magnetic Resonance Imaging , Cerebral Cortex/diagnostic imaging , Polymorphism, Single Nucleotide , Middle Aged , Young Adult
4.
Channels (Austin) ; 18(1): 2396346, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39217512

ABSTRACT

Variants in KCNMA1, encoding the voltage- and calcium-activated K+ (BK) channel, are associated with human neurological disease. The effects of gain-of-function (GOF) and loss-of-function (LOF) variants have been predominantly studied on BK channel currents evoked under steady-state voltage and Ca2+ conditions. However, in their physiological context, BK channels exist in partnership with voltage-gated Ca2+ channels and respond to dynamic changes in intracellular Ca2+ (Ca2+i). In this study, an L-type voltage-gated Ca2+ channel present in the brain, CaV1.2, was co-expressed with wild type and mutant BK channels containing GOF (D434G, N999S) and LOF (H444Q, D965V) patient-associated variants in HEK-293T cells. Whole-cell BK currents were recorded under CaV1.2 activation using buffering conditions that restrict Ca2+i to nano- or micro-domains. Both conditions permitted wild type BK current activation in response to CaV1.2 Ca2+ influx, but differences in behavior between wild type and mutant BK channels were reduced compared to prior studies in clamped Ca2+i. Only the N999S mutation produced an increase in BK current in both micro- and nano-domains using square voltage commands and was also detectable in BK current evoked by a neuronal action potential within a microdomain. These data corroborate the GOF effect of N999S on BK channel activity under dynamic voltage and Ca2+ stimuli, consistent with its pathogenicity in neurological disease. However, the patient-associated mutations D434G, H444Q, and D965V did not exhibit significant effects on BK current under CaV1.2-mediated Ca2+ influx, in contrast with prior steady-state protocols. These results demonstrate a differential potential for KCNMA1 variant pathogenicity compared under diverse voltage and Ca2+ conditions.


Subject(s)
Calcium Channels, L-Type , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Humans , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , HEK293 Cells , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Channelopathies/genetics , Channelopathies/metabolism , Calcium/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Large-Conductance Calcium-Activated Potassium Channels/genetics , Mutation
5.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 212-217, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097871

ABSTRACT

Due to the widespread use of methamphetamine (METH) among reproductive-aged women, the effects of intrauterine exposure to METH need to be investigated, as previous studies on this topic have been limited. The goal of this study is to examine the influence of two regulatory genes (miRNA-151-3p and CACNA1C) on the intrauterine life of mice exposed to METH. Pregnant mice received doses of 2 and 5 mg/kg of METH and saline from day 10 of pregnancy until the end. Their offspring were then evaluated for miRNA-151-3p and CACNA1C gene expression levels using real-time PCR. The findings indicated that exposure to METH reduced the expression levels of both miRNA-151-3p and CACNA1C genes in offspring compared to the control group (p≤0.001). In conclusion, intrauterine exposure to METH leads to a decrease in expression levels of both miRNA-151-3p and CACNA1C genes, potentially disrupting regulatory pathways involving these genes and having an impact on male reproductive health.


Subject(s)
Calcium Channels, L-Type , Down-Regulation , Methamphetamine , MicroRNAs , Prenatal Exposure Delayed Effects , Testis , Animals , Methamphetamine/toxicity , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Male , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/chemically induced , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Down-Regulation/drug effects , Down-Regulation/genetics , Testis/drug effects , Testis/metabolism , Rats , Mice
6.
CNS Neurosci Ther ; 30(8): e14890, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39097910

ABSTRACT

AIMS: To explore the role of voltage-gated calcium channels (VGCC) in 5-HT2A/2C receptor agonist 2,5-dimethoxy-4-iodophenyl-2-aminopropane hydrochloride's improvement of spinal cord injury (SCI) induced detrusor sphincter dyssynergia and the expressions of the 5-hydroxy tryptamine (5-HT) 2A receptors and VGCCs in lumbosacral cord after SCI. METHODS: Female Sprague-Dawley rats were randomized into normal control group and SCI group (N = 15 each). Cystometrogram (CMG), simultaneous CMG, and external urethral sphincter electromyography (EUS-EMG) were conducted in all groups under urethane anesthesia. Drugs were administered intrathecally during CMG and EUS-EMG. Rats were euthanized and L6-S1 spinal cord were acquired for immunofluorescence. RESULTS: In SCI rats, intrathecal administration of 2,5-dimethoxy-4-iodophenyl-2-aminopropane hydrochloride or L-type VGCC blocker, nifedipine, could significantly increase voiding volume, voiding efficiency, and the number of high-frequency oscillations. They could also prolong EUS bursting activity duration on EUS-EMG. Moreover, the effect of 2,5-dimethoxy-4-iodophenyl-2-aminopropane hydrochloride can be eliminated with the combined administration of L-type VGCC agonist, (±)-Bay K 8644. No significant differences were observed in CMG after intrathecal administration of T-type VGCC blocker TTA-P2. Additionally, immunofluorescence of the lumbosacral cord in control and SCI rats showed that the 5-HT2A receptor and Cav1.2 immunolabeling-positive neurons in the anterior horn of the lumbosacral cord were increased in SCI rats. CONCLUSIONS: Our study demonstrated that 5-HT2A/2C agonist 2,5-dimethoxy-4-iodophenyl-2-aminopropane hydrochloride may improve SCI-induced DSD by inhibiting the L-type voltage-gated calcium channel in lumbosacral cord motoneurons.


Subject(s)
Calcium Channels, L-Type , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/complications , Female , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/drug effects , Rats , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Amphetamines
7.
J Chem Inf Model ; 64(16): 6410-6420, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39110924

ABSTRACT

Predicting drug toxicity is a critical aspect of ensuring patient safety during the drug design process. Although conventional machine learning techniques have shown some success in this field, the scarcity of annotated toxicity data poses a significant challenge in enhancing models' performance. In this study, we explore the potential of leveraging large unlabeled small molecule data sets using semisupervised learning to improve drug cardiotoxicity predictive performance across three cardiac ion channel targets: the voltage-gated potassium channel (hERG), the voltage-gated sodium channel (Nav1.5), and the voltage-gated calcium channel (Cav1.2). We extensively mined the ChEMBL database, comprising approximately 2 million small molecules, and then employed semisupervised learning to construct robust classification models for this purpose. We achieved a performance boost on highly diverse (i.e., structurally dissimilar) test data sets across all three targets. Using our built models, we screened the whole ChEMBL database and a large set of FDA-approved drugs, identifying several compounds with potential cardiac ion channel activity. To ensure broad accessibility and usability for both technical and nontechnical users, we developed a cross-platform graphical user interface that allows users to make predictions and gain insights into the cardiotoxicity of drugs and other small molecules. The software is made available as open source under the permissive MIT license at https://github.com/issararab/CToxPred2.


Subject(s)
Calcium Channels, L-Type , Data Mining , NAV1.5 Voltage-Gated Sodium Channel , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/chemistry , Humans , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/chemistry , Supervised Machine Learning , Small Molecule Libraries/chemistry , Cardiotoxicity
8.
Nat Commun ; 15(1): 6649, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103356

ABSTRACT

Vasodilation in response to low oxygen (O2) tension (hypoxic vasodilation) is an essential homeostatic response of systemic arteries that facilitates O2 supply to tissues according to demand. However, how blood vessels react to O2 deficiency is not well understood. A common belief is that arterial myocytes are O2-sensitive. Supporting this concept, it has been shown that the activity of myocyte L-type Ca2+channels, the main ion channels responsible for vascular contractility, is reversibly inhibited by hypoxia, although the underlying molecular mechanisms have remained elusive. Here, we show that genetic or pharmacological disruption of mitochondrial electron transport selectively abolishes O2 modulation of Ca2+ channels and hypoxic vasodilation. Mitochondria function as O2 sensors and effectors that signal myocyte Ca2+ channels due to constitutive Hif1α-mediated expression of specific electron transport subunit isoforms. These findings reveal the acute O2-sensing mechanisms of vascular cells and may guide new developments in vascular pharmacology.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Mitochondria , Oxygen , Vasodilation , Animals , Mitochondria/metabolism , Oxygen/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Signal Transduction , Male , Hypoxia/metabolism , Mice, Inbred C57BL , Arteries/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Mice, Knockout , Electron Transport , Calcium Channels/metabolism , Calcium Channels/genetics
9.
PLoS Genet ; 20(8): e1011388, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39186815

ABSTRACT

Most neurons are not replaced after injury and thus possess robust intrinsic mechanisms for repair after damage. Axon injury triggers a calcium wave, and calcium and cAMP can augment axon regeneration. In comparison to axon regeneration, dendrite regeneration is poorly understood. To test whether calcium and cAMP might also be involved in dendrite injury signaling, we tracked the responses of Drosophila dendritic arborization neurons to laser severing of axons and dendrites. We found that calcium and subsequently cAMP accumulate in the cell body after both dendrite and axon injury. Two voltage-gated calcium channels (VGCCs), L-Type and T-Type, are required for the calcium influx in response to dendrite injury and play a role in rapid initiation of dendrite regeneration. The AC8 family adenylyl cyclase, Ac78C, is required for cAMP production after dendrite injury and timely initiation of regeneration. Injury-induced cAMP production is sensitive to VGCC reduction, placing calcium upstream of cAMP generation. We propose that two VGCCs initiate global calcium influx in response to dendrite injury followed by production of cAMP by Ac78C. This signaling pathway promotes timely initiation of dendrite regrowth several hours after dendrite damage.


Subject(s)
Adenylyl Cyclases , Calcium Channels, L-Type , Calcium , Cyclic AMP , Dendrites , Animals , Dendrites/metabolism , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Cyclic AMP/metabolism , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Axons/metabolism , Axons/physiology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/genetics , Calcium Signaling/genetics , Calcium Channels/metabolism , Calcium Channels/genetics , Signal Transduction , Regeneration/genetics , Regeneration/physiology , Neurons/metabolism , Nerve Regeneration/physiology , Nerve Regeneration/genetics , Drosophila/genetics
10.
Proc Natl Acad Sci U S A ; 121(35): e2407324121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39178228

ABSTRACT

Learning and memory require coordinated structural and functional plasticity at neuronal glutamatergic synapses located on dendritic spines. Here, we investigated how the endoplasmic reticulum (ER) controls postsynaptic Ca2+ signaling and long-term potentiation of dendritic spine size, i.e., sLTP that accompanies functional strengthening of glutamatergic synaptic transmission. In most ER-containing (ER+) spines, high-frequency optical glutamate uncaging (HFGU) induced long-lasting sLTP that was accompanied by a persistent increase in spine ER content downstream of a signaling cascade engaged by N-methyl-D-aspartate receptors (NMDARs), L-type Ca2+ channels (LTCCs), and Orai1 channels, the latter being activated by stromal interaction molecule 1 (STIM1) in response to ER Ca2+ release. In contrast, HFGU stimulation of ER-lacking (ER-) spines expressed only transient sLTP and exhibited weaker Ca2+ signals noticeably lacking Orai1 and ER contributions. Consistent with spine ER regulating structural metaplasticity, delivery of a second stimulus to ER- spines induced ER recruitment along with persistent sLTP, whereas ER+ spines showed no additional increases in size or ER content in response to sequential stimulation. Surprisingly, the physical interaction between STIM1 and Orai1 induced by ER Ca2+ release, but not the resulting Ca2+ entry through Orai1 channels, proved necessary for the persistent increases in both spine size and ER content required for expression of long-lasting late sLTP.


Subject(s)
Calcium Channels, L-Type , Dendritic Spines , Endoplasmic Reticulum , Neuronal Plasticity , ORAI1 Protein , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 1/genetics , Endoplasmic Reticulum/metabolism , Dendritic Spines/metabolism , Animals , ORAI1 Protein/metabolism , ORAI1 Protein/genetics , Neuronal Plasticity/physiology , Calcium Channels, L-Type/metabolism , Long-Term Potentiation/physiology , Calcium Signaling/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Calcium/metabolism , Mice , Signal Transduction/physiology , Rats
11.
Nat Commun ; 15(1): 7440, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198449

ABSTRACT

Skeletal muscle contractions are initiated by action potentials, which are sensed by the voltage-gated calcium channel (CaV1.1) and are conformationally coupled to calcium release from intracellular stores. Notably, CaV1.1 contains four separate voltage-sensing domains (VSDs), which activate channel gating and excitation-contraction (EC-) coupling at different voltages and with distinct kinetics. Here we show that a single VSD of CaV1.1 controls skeletal muscle EC-coupling. Whereas mutations in VSDs I, II and IV affect the current properties but not EC-coupling, only mutations in VSD III alter the voltage-dependence of depolarization-induced calcium release. Molecular dynamics simulations reveal comprehensive, non-canonical state transitions of VSD III in response to membrane depolarization. Identifying the voltage sensor that activates EC-coupling and detecting its unique conformational changes opens the door to unraveling the downstream events linking VSD III motion to the opening of the calcium release channel, and thus resolving the signal transduction mechanism of skeletal muscle EC-coupling.


Subject(s)
Calcium Channels, L-Type , Calcium , Excitation Contraction Coupling , Molecular Dynamics Simulation , Muscle, Skeletal , Protein Domains , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/chemistry , Muscle, Skeletal/metabolism , Animals , Calcium/metabolism , Humans , Mutation , Mice , Action Potentials/physiology , Ion Channel Gating , Male , HEK293 Cells , Female , Muscle Contraction/physiology
13.
Proc Natl Acad Sci U S A ; 121(34): e2405465121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39145932

ABSTRACT

Over half of spinal cord injury (SCI) patients develop opioid-resistant chronic neuropathic pain. Safer alternatives to opioids for treatment of neuropathic pain are gabapentinoids (e.g., pregabalin and gabapentin). Clinically, gabapentinoids appear to amplify opioid effects, increasing analgesia and overdose-related adverse outcomes, but in vitro proof of this amplification and its mechanism are lacking. We previously showed that after SCI, sensitivity to opioids is reduced by fourfold to sixfold in rat sensory neurons. Here, we demonstrate that after injury, gabapentinoids restore normal sensitivity of opioid inhibition of cyclic AMP (cAMP) generation, while reducing nociceptor hyperexcitability by inhibiting voltage-gated calcium channels (VGCCs). Increasing intracellular Ca2+ or activation of L-type VGCCs (L-VGCCs) suffices to mimic SCI effects on opioid sensitivity, in a manner dependent on the activity of the Raf1 proto-oncogene, serine/threonine-protein kinase C-Raf, but independent of neuronal depolarization. Together, our results provide a mechanism for potentiation of opioid effects by gabapentinoids after injury, via reduction of calcium influx through L-VGCCs, and suggest that other inhibitors targeting these channels may similarly enhance opioid treatment of neuropathic pain.


Subject(s)
Analgesics, Opioid , Cyclic AMP , Gabapentin , Neuralgia , Signal Transduction , Spinal Cord Injuries , Animals , Neuralgia/drug therapy , Neuralgia/metabolism , Cyclic AMP/metabolism , Rats , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Analgesics, Opioid/pharmacology , Gabapentin/pharmacology , Signal Transduction/drug effects , Rats, Sprague-Dawley , Male , Calcium Channels, L-Type/metabolism , Calcium/metabolism , Pregabalin/pharmacology , Pregabalin/therapeutic use , Drug Synergism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects
14.
J Am Heart Assoc ; 13(16): e035415, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39158577

ABSTRACT

BACKGROUND: Cardiovascular disease remains one of the leading causes of death globally. Myocardial ischemia and infarction, in particular, frequently cause disturbances in cardiac electrical activity that can trigger ventricular arrhythmias. We aimed to investigate whether catestatin, an endogenous catecholamine-inhibiting peptide, ameliorates myocardial ischemia-induced ventricular arrhythmias in rats and the underlying ionic mechanisms. METHODS AND RESULTS: Adult male Sprague-Dawley rats were randomly divided into control and catestatin groups. Ventricular arrhythmias were induced by ligation of the left anterior descending coronary artery and electrical stimulation. Action potential, transient outward potassium current, delayed rectifier potassium current, inward rectifying potassium current, and L-type calcium current (ICa-L) of rat ventricular myocytes were recorded using a patch-clamp technique. Catestatin notably reduced ventricular arrhythmia caused by myocardial ischemia/reperfusion and electrical stimulation of rats. In ventricular myocytes, catestatin markedly shortened the action potential duration of ventricular myocytes, which was counteracted by potassium channel antagonists TEACl and 4-AP, and ICa-L current channel agonist Bay K8644. In addition, catestatin significantly increased transient outward potassium current, delayed rectifier potassium current, and inward rectifying potassium current density in a concentration-dependent manner. Catestatin accelerated the activation and decelerated the inactivation of the transient outward potassium current channel. Furthermore, catestatin decreased ICa-L current density in a concentration-dependent manner. Catestatin also accelerated the inactivation of the ICa-L channel and slowed down the recovery of ICa-L from inactivation. CONCLUSIONS: Catestatin enhances the activity of transient outward potassium current, delayed rectifier potassium current, and inward rectifying potassium current, while suppressing the ICa-L in ventricular myocytes, leading to shortened action potential duration and ultimately reducing the ventricular arrhythmia in rats.


Subject(s)
Action Potentials , Chromogranin A , Myocytes, Cardiac , Peptide Fragments , Rats, Sprague-Dawley , Animals , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Chromogranin A/pharmacology , Chromogranin A/metabolism , Action Potentials/drug effects , Peptide Fragments/pharmacology , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/drug effects , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , Arrhythmias, Cardiac/metabolism , Anti-Arrhythmia Agents/pharmacology , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/drug effects , Disease Models, Animal , Potassium Channel Blockers/pharmacology , Rats , Patch-Clamp Techniques , Delayed Rectifier Potassium Channels/metabolism , Delayed Rectifier Potassium Channels/drug effects , Potassium Channels/metabolism , Potassium Channels/drug effects
15.
PLoS One ; 19(7): e0305248, 2024.
Article in English | MEDLINE | ID: mdl-38968219

ABSTRACT

Long QT Syndrome type 8 (LQT8) is a cardiac arrhythmic disorder associated with Timothy Syndrome, stemming from mutations in the CACNA1C gene, particularly the G406R mutation. While prior studies hint at CACNA1C mutations' role in ventricular arrhythmia genesis, the mechanisms, especially in G406R presence, are not fully understood. This computational study explores how the G406R mutation, causing increased transmural dispersion of repolarization, induces and sustains reentrant ventricular arrhythmias. Using three-dimensional numerical simulations on an idealized left-ventricular model, integrating the Bidomain equations with the ten Tusscher-Panfilov ionic model, we observe that G406R mutation with 11% and 50% heterozygosis significantly increases transmural dispersion of repolarization. During S1-S4 stimulation protocols, these gradients facilitate conduction blocks, triggering reentrant ventricular tachycardia. Sustained reentry pathways occur only with G406R mutation at 50% heterozygosis, while neglecting transmural heterogeneities of action potential duration prevents stable reentry, regardless of G406R mutation presence.


Subject(s)
Action Potentials , Calcium Channels, L-Type , Computer Simulation , Long QT Syndrome , Syndactyly , Humans , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Calcium Channels, L-Type/genetics , Syndactyly/genetics , Syndactyly/physiopathology , Mutation , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Heart Ventricles/physiopathology , Models, Cardiovascular , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/physiopathology
16.
J Gen Physiol ; 156(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38990175

ABSTRACT

L-type CaV1.2 current (ICa,L) links electrical excitation to contraction in cardiac myocytes. ICa,L is tightly regulated to control cardiac output. Rad is a Ras-related, monomeric protein that binds to L-type calcium channel ß subunits (CaVß) to promote inhibition of ICa,L. In addition to CaVß interaction conferred by the Rad core motif, the highly conserved Rad C-terminus can direct membrane association in vitro and inhibition of ICa,L in immortalized cell lines. In this work, we test the hypothesis that in cardiomyocytes the polybasic C-terminus of Rad confers t-tubular localization, and that membrane targeting is required for Rad-dependent ICa,L regulation. We introduced a 3xFlag epitope to the N-terminus of the endogenous mouse Rrad gene to facilitate analysis of subcellular localization. Full-length 3xFlag-Rad (Flag-Rad) mice were compared with a second transgenic mouse model, in which the extended polybasic C-termini of 3xFlag-Rad was truncated at alanine 277 (Flag-RadΔCT). Ventricular cardiomyocytes were isolated for anti-Flag-Rad immunocytochemistry and ex vivo electrophysiology. Full-length Flag-Rad showed a repeating t-tubular pattern whereas Flag-RadΔCT failed to display membrane association. ICa,L in Flag-RadΔCT cardiomyocytes showed a hyperpolarized activation midpoint and an increase in maximal conductance. Additionally, current decay was faster in Flag-RadΔCT cells. Myocardial ICa,L in a Rad C-terminal deletion model phenocopies ICa,L modulated in response to ß-AR stimulation. Mechanistically, the polybasic Rad C-terminus confers CaV1.2 regulation via membrane association. Interfering with Rad membrane association constitutes a specific target for boosting heart function as a treatment for heart failure with reduced ejection fraction.


Subject(s)
Calcium Channels, L-Type , Myocytes, Cardiac , Animals , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Mice , Myocytes, Cardiac/metabolism , Cell Membrane/metabolism , Monomeric GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics , Mice, Transgenic , ras Proteins
17.
J Pharmacol Sci ; 156(1): 45-48, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39068034

ABSTRACT

The gene product of ocular albinism 1 (OA1)/G-protein-coupled receptor (GPR)143 is a receptor for L-3,4-dihydroxyphenylanine (l-DOPA), the most effective agent for Parkinson's disease. When overexpressed, human wild-type GPR143, but not its mutants, inhibits neurite outgrowth in PC12 cells. We investigated the downstream signaling pathway for GPR143-induced inhibition of neurite outgrowth. Nifedipine restored GPR143-induced neurite outgrowth inhibition to the level of control transfectant but did not affect outgrowth in GPR143-knockdown cells. Cilnidipine and flunarizine also suppressed the GPR143-induced inhibition, but their effects at higher concentrations still occurred even in GPR143-knockdown cells. These results suggest that GPR143 regulates neurite outgrowth via L-type calcium channel(s).


Subject(s)
Calcium Channels, L-Type , Neuronal Outgrowth , Nifedipine , Receptors, G-Protein-Coupled , PC12 Cells , Animals , Rats , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Nifedipine/pharmacology , Neuronal Outgrowth/drug effects , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/physiology , Humans , Eye Proteins/genetics , Eye Proteins/metabolism , Eye Proteins/pharmacology , Flunarizine/pharmacology , Signal Transduction/drug effects , Levodopa/pharmacology , Gene Knockdown Techniques , Neurites/drug effects , Calcium Channel Blockers/pharmacology , Membrane Glycoproteins
18.
Int J Biol Macromol ; 276(Pt 2): 133825, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002900

ABSTRACT

Predicting compound-induced inhibition of cardiac ion channels is crucial and challenging, significantly impacting cardiac drug efficacy and safety assessments. Despite the development of various computational methods for compound-induced inhibition prediction in cardiac ion channels, their performance remains limited. Most methods struggle to fuse multi-source data, relying solely on specific dataset training, leading to poor accuracy and generalization. We introduce MultiCBlo, a model that fuses multimodal information through a progressive learning approach, designed to predict compound-induced inhibition of cardiac ion channels with high accuracy. MultiCBlo employs progressive multimodal information fusion technology to integrate the compound's SMILES sequence, graph structure, and fingerprint, enhancing its representation. This is the first application of progressive multimodal learning for predicting compound-induced inhibition of cardiac ion channels, to our knowledge. The objective of this study was to predict the compound-induced inhibition of three major cardiac ion channels: hERG, Cav1.2, and Nav1.5. The results indicate that MultiCBlo significantly outperforms current models in predicting compound-induced inhibition of cardiac ion channels. We hope that MultiCBlo will facilitate cardiac drug development and reduce compound toxicity risks. Code and data are accessible at: https://github.com/taowang11/MultiCBlo. The online prediction platform is freely accessible at: https://huggingface.co/spaces/wtttt/PCICB.


Subject(s)
Ion Channels , Humans , Ion Channels/metabolism , Ion Channels/antagonists & inhibitors , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/chemistry , Machine Learning , ERG1 Potassium Channel/metabolism , ERG1 Potassium Channel/antagonists & inhibitors
19.
Cell Rep ; 43(7): 114428, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38996073

ABSTRACT

To achieve the functional polarization that underlies brain computation, neurons sort protein material into distinct compartments. Ion channel composition, for example, differs between axons and dendrites, but the molecular determinants for their polarized trafficking remain obscure. Here, we identify mechanisms that target voltage-gated Ca2+ channels (CaVs) to distinct subcellular compartments. In hippocampal neurons, CaV2s trigger neurotransmitter release at the presynaptic active zone, and CaV1s localize somatodendritically. After knockout of all three CaV2s, expression of CaV2.1, but not CaV1.3, restores neurotransmitter release. We find that chimeric CaV1.3s with CaV2.1 intracellular C-termini localize to the active zone, mediate synaptic vesicle exocytosis, and render release sensitive to CaV1 blockers. This dominant targeting function of the CaV2.1 C-terminus requires the first EF hand in its proximal segment, and replacement of the CaV2.1 C-terminus with that of CaV1.3 abolishes CaV2.1 active zone localization and function. We conclude that CaV intracellular C-termini mediate compartment-specific targeting.


Subject(s)
Hippocampus , Animals , Hippocampus/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels/metabolism , Calcium Channels, N-Type/metabolism , Calcium Channels, N-Type/genetics , Neurons/metabolism , Humans , Mice , Rats , Synaptic Vesicles/metabolism , Exocytosis , HEK293 Cells
20.
Stem Cell Res ; 80: 103513, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39079396

ABSTRACT

Timothy syndrome, an extremely rare disease, is closely associated with a mutation in CACNA1C gene, which encodes the cardiac L-type voltage-gated calcium channel (Cav1.2). In this study, we generated a human induced pluripotent stem cell (iPSC) line from a Timothy syndrome infant carrying heterozygous CACNA1C mutation (transcript variant NM_000719.7c.1216G>A: p.G406R). The generated iPSC line showed typical stem cell morphology, positively expressed pluripotency and proliferation markers, normal karyotype, and trilineage differentiation potential. Therefore, this patient-specific iPSC can be of great significance in investigating the mechanisms underlying Timothy syndrome, and hence establishing effective intervention strategies.


Subject(s)
Autistic Disorder , Calcium Channels, L-Type , Heterozygote , Induced Pluripotent Stem Cells , Long QT Syndrome , Syndactyly , Humans , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Induced Pluripotent Stem Cells/metabolism , Syndactyly/genetics , Syndactyly/pathology , Long QT Syndrome/genetics , Long QT Syndrome/pathology , Long QT Syndrome/metabolism , Autistic Disorder/genetics , Autistic Disorder/pathology , Mutation , Cell Line , Cell Differentiation , Infant
SELECTION OF CITATIONS
SEARCH DETAIL