Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.386
1.
Channels (Austin) ; 18(1): 2355121, 2024 Dec.
Article En | MEDLINE | ID: mdl-38762910

L-type calcium channels (LTCCs), the major portal for Ca2+ entry into cardiomyocytes, are essential for excitation-contraction coupling and thus play a central role in regulating overall cardiac function. LTCC function is finely tuned by multiple signaling pathways and accessory proteins. Leucine-rich repeat-containing protein 10 (LRRC10) is a little studied cardiomyocyte-specific protein recently identified as a modulator of LTCCs. LRRC10 exerts a remarkable effect on LTCC function, more than doubling L-type Ca2+ current (ICa,L) amplitude in a heterologous expression system by altering the gating of the channels without changing their surface membrane expression. Genetic ablation of LRRC10 expression in mouse and zebrafish hearts leads to a significant reduction in ICa,L density and a slowly progressive dilated cardiomyopathy in mice. Rare sequence variants of LRRC10 have been identified in dilated cardiomyopathy and sudden unexplained nocturnal cardiac death syndrome, but these variants have not been clearly linked to disease. Nevertheless, the DCM-associated variant, I195T, converted LRRC10 from a ICa,L potentiator to a ICa,L suppressor, thus illustrating the wide dynamic range of LRRC10-mediated ICa,L regulation. This review focuses on the contemporary knowledge of LTCC modulation by LRRC10 and discusses potential directions for future investigations.


Calcium Channels, L-Type , Animals , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Humans , Myocytes, Cardiac/metabolism , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics
2.
Commun Biol ; 7(1): 620, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783117

A key player of excitable cells in the heart and brain is the L-type calcium channel CaV1.3. In the heart, it is required for voltage-dependent Ca2+-signaling, i.e., for controlling and modulating atrial cardiomyocyte excitation-contraction coupling. The clustering of CaV1.3 in functionally relevant channel multimers has not been addressed due to a lack of stoichiometric labeling combined with high-resolution imaging. Here, we developed a HaloTag-labeling strategy to visualize and quantify CaV1.3 clusters using STED nanoscopy to address the questions of cluster size and intra-cluster channel density. Channel clusters were identified in the plasma membrane of transfected live HEK293 cells as well as in giant plasma membrane vesicles derived from these cells that were spread on modified glass support to obtain supported plasma membrane bilayers (SPMBs). A small fraction of the channel clusters was colocalized with early and recycling endosomes at the membranes. STED nanoscopy in conjunction with live-cell and SPMB imaging enabled us to quantify CaV1.3 cluster sizes and their molecular density revealing significantly lower channel densities than expected for dense channel packing. CaV1.3 channel cluster size and molecular density were increased in SPMBs after treatment of the cells with the sympathomimetic compound isoprenaline, suggesting a regulated channel cluster condensation mechanism.


Calcium Channels, L-Type , Cell Membrane , Humans , HEK293 Cells , Cell Membrane/metabolism , Calcium Channels, L-Type/metabolism
3.
Molecules ; 29(10)2024 May 12.
Article En | MEDLINE | ID: mdl-38792145

The Cupressaceae family includes species considered to be medicinal. Their essential oil is used for headaches, colds, cough, and bronchitis. Cedar trees like Chamaecyparis lawsoniana (C. lawsoniana) are commonly found in urban areas. We investigated whether C. lawsoniana exerts some of its effects by modifying airway smooth muscle (ASM) contractility. The leaves of C. lawsoniana (363 g) were pulverized mechanically, and extracts were obtained by successive maceration 1:10 (w:w) with methanol/CHCl3. Guinea pig tracheal rings were contracted with KCl, tetraethylammonium (TEA), histamine (HIS), or carbachol (Cch) in organ baths. In the Cch experiments, tissues were pre-incubated with D-600, an antagonist of L-type voltage-dependent Ca2+ channels (L-VDCC) before the addition of C. lawsoniana. Interestingly, at different concentrations, C. lawsoniana diminished the tracheal contractions induced by KCl, TEA, HIS, and Cch. In ASM cells, C. lawsoniana significantly diminished L-type Ca2+ currents. ASM cells stimulated with Cch produced a transient Ca2+ peak followed by a sustained plateau maintained by L-VDCC and store-operated Ca2+ channels (SOCC). C. lawsoniana almost abolished this last response. These results show that C. lawsoniana, and its active metabolite quercetin, relax the ASM by inhibiting the L-VDCC and SOCC; further studies must be performed to obtain the complete set of metabolites of the extract and study at length their pharmacological properties.


Calcium , Chamaecyparis , Muscle Contraction , Muscle, Smooth , Plant Extracts , Quercetin , Trachea , Animals , Guinea Pigs , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Muscle Contraction/drug effects , Quercetin/pharmacology , Quercetin/chemistry , Trachea/drug effects , Trachea/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chamaecyparis/chemistry , Calcium/metabolism , Male , Calcium Channel Blockers/pharmacology , Histamine/metabolism , Calcium Channels, L-Type/metabolism , Plant Leaves/chemistry
4.
Mol Biol Cell ; 35(7): ar92, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38758660

Chromaffin cells of the adrenal medulla transduce sympathetic nerve activity into stress hormone secretion. The two neurotransmitters principally responsible for coupling cell stimulation to secretion are acetylcholine and pituitary adenylate activating polypeptide (PACAP). In contrast to acetylcholine, PACAP evokes a persistent secretory response from chromaffin cells. However, the mechanisms by which PACAP acts are poorly understood. Here, it is shown that PACAP induces sustained increases in cytosolic Ca2+ which are disrupted when Ca2+ influx through L-type channels is blocked or internal Ca2+ stores are depleted. PACAP liberates stored Ca2+ via inositol trisphosphate receptors (IP3Rs) on the endoplasmic reticulum (ER), thereby functionally coupling Ca2+ mobilization to Ca2+ influx and supporting Ca2+-induced Ca2+-release. These Ca2+ influx and mobilization pathways are unified by an absolute dependence on phospholipase C epsilon (PLCε) activity. Thus, the persistent secretory response that is a defining feature of PACAP activity, in situ, is regulated by a signaling network that promotes sustained elevations in intracellular Ca2+ through multiple pathways.


Calcium Signaling , Calcium , Chromaffin Cells , Endoplasmic Reticulum , Inositol 1,4,5-Trisphosphate Receptors , Pituitary Adenylate Cyclase-Activating Polypeptide , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Animals , Calcium/metabolism , Calcium Signaling/physiology , Endoplasmic Reticulum/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Chromaffin Cells/metabolism , Cattle , Calcium Channels, L-Type/metabolism
5.
Channels (Austin) ; 18(1): 2338782, 2024 Dec.
Article En | MEDLINE | ID: mdl-38691022

L-type calcium channels are essential for the excitation-contraction coupling in cardiac muscle. The CaV1.2 channel is the most predominant isoform in the ventricle which consists of a multi-subunit membrane complex that includes the CaV1.2 pore-forming subunit and auxiliary subunits like CaVα2δ and CaVß2b. The CaV1.2 channel's C-terminus undergoes proteolytic cleavage, and the distal C-terminal domain (DCtermD) associates with the channel core through two domains known as proximal and distal C-terminal regulatory domain (PCRD and DCRD, respectively). The interaction between the DCtermD and the remaining C-terminus reduces the channel activity and modifies voltage- and calcium-dependent inactivation mechanisms, leading to an autoinhibitory effect. In this study, we investigate how the interaction between DCRD and PCRD affects the inactivation processes and CaV1.2 activity. We expressed a 14-amino acid peptide miming the DCRD-PCRD interaction sequence in both heterologous systems and cardiomyocytes. Our results show that overexpression of this small peptide can displace the DCtermD and replicate the effects of the entire DCtermD on voltage-dependent inactivation and channel inhibition. However, the effect on calcium-dependent inactivation requires the full DCtermD and is prevented by overexpression of calmodulin. In conclusion, our results suggest that the interaction between DCRD and PCRD is sufficient to bring about the current inhibition and alter the voltage-dependent inactivation, possibly in an allosteric manner. Additionally, our data suggest that the DCtermD competitively modifies the calcium-dependent mechanism. The identified peptide sequence provides a valuable tool for further dissecting the molecular mechanisms that regulate L-type calcium channels' basal activity in cardiomyocytes.


Calcium Channels, L-Type , Myocytes, Cardiac , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/chemistry , Animals , Myocytes, Cardiac/metabolism , Humans , HEK293 Cells , Rats , Protein Domains
6.
Cell Mol Life Sci ; 81(1): 164, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575795

Diabetic hyperglycemia induces dysfunctions of arterial smooth muscle, leading to diabetic vascular complications. The CaV1.2 calcium channel is one primary pathway for Ca2+ influx, which initiates vasoconstriction. However, the long-term regulation mechanism(s) for vascular CaV1.2 functions under hyperglycemic condition remains unknown. Here, Sprague-Dawley rats fed with high-fat diet in combination with low dose streptozotocin and Goto-Kakizaki (GK) rats were used as diabetic models. Isolated mesenteric arteries (MAs) and vascular smooth muscle cells (VSMCs) from rat models were used to assess K+-induced arterial constriction and CaV1.2 channel functions using vascular myograph and whole-cell patch clamp, respectively. K+-induced vasoconstriction is persistently enhanced in the MAs from diabetic rats, and CaV1.2 alternative spliced exon 9* is increased, while exon 33 is decreased in rat diabetic arteries. Furthermore, CaV1.2 channels exhibit hyperpolarized current-voltage and activation curve in VSMCs from diabetic rats, which facilitates the channel function. Unexpectedly, the application of glycated serum (GS), mimicking advanced glycation end-products (AGEs), but not glucose, downregulates the expression of the splicing factor Rbfox1 in VSMCs. Moreover, GS application or Rbfox1 knockdown dynamically regulates alternative exons 9* and 33, leading to facilitated functions of CaV1.2 channels in VSMCs and MAs. Notably, GS increases K+-induced intracellular calcium concentration of VSMCs and the vasoconstriction of MAs. These results reveal that AGEs, not glucose, long-termly regulates CaV1.2 alternative splicing events by decreasing Rbfox1 expression, thereby enhancing channel functions and increasing vasoconstriction under diabetic hyperglycemia. This study identifies the specific molecular mechanism for enhanced vasoconstriction under hyperglycemia, providing a potential target for managing diabetic vascular complications.


Diabetes Mellitus, Experimental , Diabetic Angiopathies , Hyperglycemia , Animals , Rats , Calcium/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Constriction , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetic Angiopathies/metabolism , Glucose/metabolism , Hyperglycemia/genetics , Hyperglycemia/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Rats, Sprague-Dawley
7.
Channels (Austin) ; 18(1): 2341077, 2024 Dec.
Article En | MEDLINE | ID: mdl-38601983

Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.


Calcium Channels , Calcium , Calcium/metabolism , Calcium Channels/metabolism , Signal Transduction , Excitation Contraction Coupling , Ions/metabolism , Calcium Signaling/physiology , Calcium Channels, L-Type/metabolism
8.
Channels (Austin) ; 18(1): 2335469, 2024 Dec.
Article En | MEDLINE | ID: mdl-38564754

Studies in genetically modified animals and human genetics have recently provided new insight into the role of voltage-gated L-type Ca2+ channels in human disease. Therefore, the inhibition of L-type Ca2+ channels in vivo in wildtype and mutant mice by potent dihydropyridine (DHP) Ca2+ channel blockers serves as an important pharmacological tool. These drugs have a short plasma half-life in humans and especially in rodents and show high first-pass metabolism upon oral application. In the vast majority of in vivo studies, they have therefore been delivered through parenteral routes, mostly subcutaneously or intraperitoneally. High peak plasma concentrations of DHPs cause side effects, evident as DHP-induced aversive behaviors confounding the interpretation of behavioral readouts. Nevertheless, pharmacokinetic data measuring the exposure achieved with these applications are sparse. Moreover, parenteral injections require animal handling and can be associated with pain, discomfort and stress which could influence a variety of physiological processes, behavioral and other functional readouts. Here, we describe a noninvasive oral application of the DHP isradipine by training mice to quickly consume small volumes of flavored yogurt that can serve as drug vehicle. This procedure does not require animal handling, allows repeated drug application over several days and reproducibly achieves peak plasma concentrations over a wide range previously shown to be well-tolerated in humans. This protocol should facilitate ongoing nonclinical studies in mice exploring new indications for DHP Ca2+ channel blockers.


Calcium Channel Blockers , Calcium Channels, L-Type , Mice , Humans , Animals , Isradipine/pharmacology , Isradipine/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Administration, Oral
9.
Nature ; 628(8009): 818-825, 2024 Apr.
Article En | MEDLINE | ID: mdl-38658687

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions1. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A2-6. We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and, following transplantation, in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed7, we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons, suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly, these experiments illustrate how a multilevel, in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology.


Autistic Disorder , Long QT Syndrome , Oligonucleotides, Antisense , Syndactyly , Animals , Female , Humans , Male , Mice , Alternative Splicing/drug effects , Alternative Splicing/genetics , Autistic Disorder/drug therapy , Autistic Disorder/genetics , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Cell Movement/drug effects , Dendrites/metabolism , Exons/genetics , Long QT Syndrome/drug therapy , Long QT Syndrome/genetics , Neurons/metabolism , Neurons/drug effects , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Organoids/drug effects , Organoids/metabolism , Prosencephalon/metabolism , Prosencephalon/cytology , Syndactyly/drug therapy , Syndactyly/genetics , Interneurons/cytology , Interneurons/drug effects
10.
Nat Commun ; 15(1): 3528, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664444

Cardiac dysfunction is a hallmark of aging in humans and mice. Here we report that a two-week treatment to restore youthful Bridging Integrator 1 (BIN1) levels in the hearts of 24-month-old mice rejuvenates cardiac function and substantially reverses the aging phenotype. Our data indicate that age-associated overexpression of BIN1 occurs alongside dysregulated endosomal recycling and disrupted trafficking of cardiac CaV1.2 and type 2 ryanodine receptors. These deficiencies affect channel function at rest and their upregulation during acute stress. In vivo echocardiography reveals reduced systolic function in old mice. BIN1 knockdown using an adeno-associated virus serotype 9 packaged shRNA-mBIN1 restores the nanoscale distribution and clustering plasticity of ryanodine receptors and recovers Ca2+ transient amplitudes and cardiac systolic function toward youthful levels. Enhanced systolic function correlates with increased phosphorylation of the myofilament protein cardiac myosin binding protein-C. These results reveal BIN1 knockdown as a novel therapeutic strategy to rejuvenate the aging myocardium.


Adaptor Proteins, Signal Transducing , Aging , Myocardium , Nerve Tissue Proteins , Ryanodine Receptor Calcium Release Channel , Tumor Suppressor Proteins , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Male , Aging/metabolism , Mice , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Myocardium/metabolism , Myocardium/pathology , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Gene Knockdown Techniques , Endosomes/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Heart/physiopathology , Mice, Inbred C57BL , Humans , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Systole
11.
Arterioscler Thromb Vasc Biol ; 44(6): 1202-1221, 2024 Jun.
Article En | MEDLINE | ID: mdl-38602101

BACKGROUND: Hypertension is a major, prevalent risk factor for the development and progression of cerebrovascular disease. Regular exercise has been recommended as an excellent choice for the large population of individuals with mild-to-moderate elevations in blood pressure, but the mechanisms that underlie its vascular-protective and antihypertensive effects remain unknown. Here, we describe a mechanism by which myocyte AKAP150 (A-kinase anchoring protein 150) inhibition induced by exercise training alleviates voltage-dependent L-type Ca2+ channel (CaV1.2) activity and restores cerebral arterial function in hypertension. METHODS: Spontaneously hypertensive rats and newly generated smooth muscle-specific AKAP150 knockin mice were used to assess the role of myocyte AKAP150/CaV1.2 channel in regulating cerebral artery function after exercise intervention. RESULTS: Activation of the AKAP150/PKCα (protein kinase Cα) signaling increased CaV1.2 activity and Ca2+ influx of cerebral arterial myocyte, thus enhancing vascular tone in spontaneously hypertensive rats. Smooth muscle-specific AKAP150 knockin mice were hypertensive with higher CaV1.2 channel activity and increased vascular tone. Furthermore, treatment of Ang II (angiotensin II) resulted in a more pronounced increase in blood pressure in smooth muscle-specific AKAP150 knockin mice. Exercise training significantly reduced arterial myocyte AKAP150 expression and alleviated CaV1.2 channel activity, thus restoring cerebral arterial function in spontaneously hypertensive rats and smooth muscle-specific AKAP150 knockin mice. AT1R (AT1 receptor) and AKAP150 were interacted closely in arterial myocytes. Exercise decreased the circulating Ang II and Ang II-involved AT1R-AKAP150 association in myocytes of hypertension. CONCLUSIONS: The current study demonstrates that aerobic exercise ameliorates CaV1.2 channel function via inhibiting myocyte AKAP150, which contributes to reduced cerebral arterial tone in hypertension.


A Kinase Anchor Proteins , Calcium Channels, L-Type , Cerebral Arteries , Disease Models, Animal , Hypertension , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Rats, Inbred SHR , Animals , A Kinase Anchor Proteins/metabolism , A Kinase Anchor Proteins/genetics , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Hypertension/physiopathology , Hypertension/metabolism , Hypertension/genetics , Cerebral Arteries/metabolism , Cerebral Arteries/physiopathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiopathology , Male , Myocytes, Smooth Muscle/metabolism , Physical Conditioning, Animal/physiology , Protein Kinase C-alpha/metabolism , Protein Kinase C-alpha/genetics , Calcium Signaling , Mice, Inbred C57BL , Mice , Rats , Rats, Inbred WKY , Angiotensin II , Blood Pressure , Signal Transduction
12.
Nat Commun ; 15(1): 2772, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38555290

The voltage-gated calcium channel CaV1.2 is essential for cardiac and vessel smooth muscle contractility and brain function. Accumulating evidence demonstrates that malfunctions of CaV1.2 are involved in brain and heart diseases. Pharmacological inhibition of CaV1.2 is therefore of therapeutic value. Here, we report cryo-EM structures of CaV1.2 in the absence or presence of the antirheumatic drug tetrandrine or antihypertensive drug benidipine. Tetrandrine acts as a pore blocker in a pocket composed of S6II, S6III, and S6IV helices and forms extensive hydrophobic interactions with CaV1.2. Our structure elucidates that benidipine is located in the DIII-DIV fenestration site. Its hydrophobic sidechain, phenylpiperidine, is positioned at the exterior of the pore domain and cradled within a hydrophobic pocket formed by S5DIII, S6DIII, and S6DIV helices, providing additional interactions to exert inhibitory effects on both L-type and T-type voltage gated calcium channels. These findings provide the structural foundation for the rational design and optimization of therapeutic inhibitors of voltage-gated calcium channels.


Calcium Channels, L-Type , Calcium Channels, L-Type/metabolism , Protein Structure, Secondary
13.
Sci Adv ; 10(12): eadl1126, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38507485

Excitation-contraction coupling (ECC) is a fundamental mechanism in control of skeletal muscle contraction and occurs at triad junctions, where dihydropyridine receptors (DHPRs) on transverse tubules sense excitation signals and then cause calcium release from the sarcoplasmic reticulum via coupling to type 1 ryanodine receptors (RyR1s), inducing the subsequent contraction of muscle filaments. However, the molecular mechanism remains unclear due to the lack of structural details. Here, we explored the architecture of triad junction by cryo-electron tomography, solved the in situ structure of RyR1 in complex with FKBP12 and calmodulin with the resolution of 16.7 Angstrom, and found the intact RyR1-DHPR supercomplex. RyR1s arrange into two rows on the terminal cisternae membrane by forming right-hand corner-to-corner contacts, and tetrads of DHPRs bind to RyR1s in an alternating manner, forming another two rows on the transverse tubule membrane. This unique arrangement is important for synergistic calcium release and provides direct evidence of physical coupling in ECC.


Calcium , Ryanodine Receptor Calcium Release Channel , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium/metabolism , Muscle, Skeletal/metabolism , Calcium Channels, L-Type/analysis , Calcium Channels, L-Type/metabolism , Sarcoplasmic Reticulum/metabolism , Muscle Contraction/physiology
14.
Hypertension ; 81(4): 811-822, 2024 Apr.
Article En | MEDLINE | ID: mdl-38507511

BACKGROUND: The zona glomerulosa of the adrenal gland is responsible for the synthesis and release of the mineralocorticoid aldosterone. This steroid hormone regulates salt reabsorption in the kidney and blood pressure. The most important stimuli of aldosterone synthesis are the serum concentrations of angiotensin II and potassium. In response to these stimuli, voltage and intracellular calcium levels in the zona glomerulosa oscillate, providing the signal for aldosterone synthesis. It was proposed that the voltage-gated T-type calcium channel CaV3.2 is necessary for the generation of these oscillations. However, Cacna1h knock-out mice have normal plasma aldosterone levels, suggesting additional calcium entry pathways. METHODS: We used a combination of calcium imaging, patch clamp, and RNA sequencing to investigate calcium influx pathways in the murine zona glomerulosa. RESULTS: Cacna1h-/- glomerulosa cells still showed calcium oscillations with similar concentrations as wild-type mice. No calcium channels or transporters were upregulated to compensate for the loss of CaV3.2. The calcium oscillations observed were instead dependent on L-type voltage-gated calcium channels. Furthermore, we found that L-type channels can also partially compensate for an acute inhibition of CaV3.2 in wild-type mice. Only inhibition of both T- and L-type calcium channels abolished the increase of intracellular calcium caused by angiotensin II in wild-type. CONCLUSIONS: Our study demonstrates that T-type calcium channels are not strictly required to maintain glomerulosa calcium oscillations and aldosterone production. Pharmacological inhibition of T-type channels alone will likely not significantly impact aldosterone production in the long term.


Calcium Channels, L-Type , Zona Glomerulosa , Mice , Animals , Zona Glomerulosa/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channel Blockers/pharmacology , Aldosterone/metabolism , Calcium Signaling , Calcium/metabolism , Angiotensin II/pharmacology , Angiotensin II/metabolism
15.
Chem Biol Interact ; 394: 110949, 2024 May 01.
Article En | MEDLINE | ID: mdl-38555048

Methylglyoxal (MGO) is an endogenous, highly reactive dicarbonyl metabolite generated under hyperglycaemic conditions. MGO plays a role in developing pathophysiological conditions, including diabetic cardiomyopathy. However, the mechanisms involved and the molecular targets of MGO in the heart have not been elucidated. In this work, we studied the exposure-related effects of MGO on cardiac function in an isolated perfused rat heart ex vivo model. The effect of MGO on calcium homeostasis in cardiomyocytes was studied in vitro by the fluorescence indicator of intracellular calcium Fluo-4. We demonstrated that MGO induced cardiac dysfunction, both in contractility and diastolic function. In rat heart, the effects of MGO treatment were significantly limited by aminoguanidine, a scavenger of MGO, ruthenium red, a general cation channel blocker, and verapamil, an L-type voltage-dependent calcium channel blocker, demonstrating that this dysfunction involved alteration of calcium regulation. MGO induced a significant concentration-dependent increase of intracellular calcium in neonatal rat cardiomyocytes, which was limited by aminoguanidine and verapamil. These results suggest that the functionality of various calcium channels is altered by MGO, particularly the L-type calcium channel, thus explaining its cardiac toxicity. Therefore, MGO could participate in the development of diabetic cardiomyopathy through its impact on calcium homeostasis in cardiac cells.


Calcium , Myocytes, Cardiac , Pyruvaldehyde , Rats, Wistar , Animals , Pyruvaldehyde/toxicity , Rats , Calcium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Male , Guanidines/pharmacology , Calcium Channels, L-Type/metabolism , Heart/drug effects , Myocardium/metabolism , Verapamil/pharmacology , Myocardial Contraction/drug effects
16.
IEEE Trans Biomed Eng ; 71(6): 1980-1992, 2024 Jun.
Article En | MEDLINE | ID: mdl-38498749

OBJECTIVE: This study aims to explore the potential of organic electrolytic photocapacitors (OEPCs), an innovative photovoltaic device, in mediating the activation of native voltage-gated Cav1.2 channels (ICa,L) in Guinea pig ventricular cardiomyocytes. METHODS: Whole-cell patch-clamp recordings were employed to examine light-triggered OEPC mediated ICa,L activation, integrating the channel's kinetic properties into a multicompartment cell model to take intracellular ion concentrations into account. A multidomain model was additionally incorporated to evaluate effects of OEPC-mediated stimulation. The final model combines external stimulation, multicompartmental cell simulation, and a patch-clamp amplifier equivalent circuit to assess the impact on achievable intracellular voltage changes. RESULTS: Light pulses activated ICa,L, with amplitudes similar to voltage-clamp activation and high sensitivity to the L-type Ca2+ channel blocker, nifedipine. Light-triggered ICa,L inactivation exhibited kinetic parameters comparable to voltage-induced inactivation. CONCLUSION: OEPC-mediated activation of ICa,L demonstrates their potential for nongenetic optical modulation of cellular physiology potentially paving the way for the development of innovative therapies in cardiovascular health. The integrated model proves the light-mediated activation of ICa,L and advances the understanding of the interplay between the patch-clamp amplifier and external stimulation devices. SIGNIFICANCE: Treating cardiac conduction disorders by minimal-invasive means without genetic modifications could advance therapeutic approaches increasing patients' quality of life compared with conventional methods employing electronic devices.


Calcium Channels, L-Type , Computer Simulation , Myocytes, Cardiac , Animals , Guinea Pigs , Myocytes, Cardiac/physiology , Calcium Channels, L-Type/metabolism , Patch-Clamp Techniques , Models, Cardiovascular , Action Potentials/physiology , Action Potentials/radiation effects , Light
17.
Neuron ; 112(11): 1832-1847.e7, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38460523

KCNQs are voltage-gated K+ channels that control neuronal excitability and are mutated in epilepsy and autism spectrum disorder (ASD). KCNQs have been extensively studied in neurons, but their function in glia is unknown. Using voltage, calcium, and GABA imaging, optogenetics, and behavioral assays, we show here for the first time in Caenorhabditis elegans (C. elegans) that glial KCNQ channels control neuronal excitability by mediating GABA release from glia via regulation of the function of L-type voltage-gated Ca2+ channels. Further, we show that human KCNQ channels have the same role when expressed in nematode glia, underscoring conservation of function across species. Finally, we show that pathogenic loss-of-function and gain-of-function human KCNQ2 mutations alter glia-to-neuron GABA signaling in distinct ways and that the KCNQ channel opener retigabine exerts rescuing effects. This work identifies glial KCNQ channels as key regulators of neuronal excitability via control of GABA release from glia.


Caenorhabditis elegans , Carbamates , KCNQ Potassium Channels , Neuroglia , gamma-Aminobutyric Acid , Animals , gamma-Aminobutyric Acid/metabolism , Neuroglia/metabolism , Carbamates/pharmacology , KCNQ Potassium Channels/metabolism , Humans , KCNQ2 Potassium Channel/metabolism , KCNQ2 Potassium Channel/genetics , Neurons/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Phenylenediamines/pharmacology , Calcium Channels, L-Type/metabolism
18.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article En | MEDLINE | ID: mdl-38474172

Aland island eye disease (AIED), an incomplete form of X-linked congenital stationary night blindness (CSNB2A), and X-linked cone-rod dystrophy type 3 (CORDX3) display many overlapping clinical findings. They result from mutations in the CACNA1F gene encoding the α1F subunit of the Cav1.4 channel, which plays a key role in neurotransmission from rod and cone photoreceptors to bipolar cells. Case report: A 57-year-old Caucasian man who had suffered since his early childhood from nystagmus, nyctalopia, low visual acuity and high myopia in both eyes (OU) presented to expand the diagnostic process, because similar symptoms had occurred in his 2-month-old grandson. Additionally, the patient was diagnosed with protanomalous color vision deficiency, diffuse thinning, and moderate hypopigmentation of the retina. Optical coherence tomography of the macula revealed retinoschisis in the right eye and foveal hypoplasia in the left eye. Dark-adapted (DA) 3.0 flash full-field electroretinography (ffERG) amplitudes of a-waves were attenuated, and the amplitudes of b-waves were abolished, which resulted in a negative pattern of the ERG. Moreover, the light-adapted 3.0 and 3.0 flicker ffERG as well as the DA 0.01 ffERG were consistent with severely reduced responses OU. Genetic testing revealed a hemizygous form of a stop-gained mutation (c.4051C>T) in exon 35 of the CACNA1F gene. This pathogenic variant has so far been described in combination with a phenotype corresponding to CSNB2A and CORDX3. This report contributes to expanding the knowledge of the clinical spectrum of CACNA1F-related disease. Wide variability and the overlapping clinical manifestations observed within AIED and its allelic disorders may not be explained solely by the consequences of different mutations on proteins. The lack of distinct genotype-phenotype correlations indicates the presence of additional, not yet identified, disease-modifying factors.


Albinism, Ocular , Eye Diseases, Hereditary , Genetic Diseases, X-Linked , Myopia , Night Blindness , Retinal Diseases , Retinitis Pigmentosa , Retinoschisis , Male , Humans , Child, Preschool , Infant , Middle Aged , Calcium Channels, L-Type/metabolism , Genetic Diseases, X-Linked/genetics , Retina/metabolism , Mutation
19.
Eur J Pharmacol ; 967: 176400, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38331336

In the search for novel, bi-functional compounds acting as CaV1.2 channel blockers and K+ channel stimulators, which represent an effective therapy for hypertension, 3,3'-O-dimethylquercetin was isolated for the first time from Brazilian Caatinga green propolis. Its effects were investigated through electrophysiological, functional, and computational approaches. In rat tail artery myocytes, 3,3'-O-dimethylquercetin blocked Ba2+ currents through CaV1.2 channels (IBa1.2) in a concentration-dependent manner, with the inhibition being reversed upon washout. The compound also shifted the voltage dependence of the steady-state inactivation curve to more negative potentials without affecting the slope of the inactivation and activation curves. Furthermore, the flavonoid stimulated KCa1.1 channel currents (IKCa1.1). In silico simulations provided additional evidence for the binding of 3,3'-O-dimethylquercetin to KCa1.1 and CaV1.2 channels and elucidated its mechanism of action. In depolarized rat tail artery rings, the flavonoid induced a concentration-dependent relaxation. Moreover, in rat aorta rings its antispasmodic effect was inversely related to the transmembrane K+ gradient. In conclusion, 3,3'-O-dimethylquercetin demonstrates effective in vitro vasodilatory properties, encouraging the exploration of its scaffold to develop novel derivatives for potential use in the treatment of hypertension.


Mimosa , Propolis , Rats , Animals , Vasodilator Agents/pharmacology , Vasodilator Agents/metabolism , Mimosa/metabolism , Propolis/pharmacology , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Flavonoids/pharmacology , Calcium Channels, L-Type/metabolism
20.
J Clin Invest ; 134(5)2024 Jan 16.
Article En | MEDLINE | ID: mdl-38227371

The ability to fight or flee from a threat relies on an acute adrenergic surge that augments cardiac output, which is dependent on increased cardiac contractility and heart rate. This cardiac response depends on ß-adrenergic-initiated reversal of the small RGK G protein Rad-mediated inhibition of voltage-gated calcium channels (CaV) acting through the Cavß subunit. Here, we investigate how Rad couples phosphorylation to augmented Ca2+ influx and increased cardiac contraction. We show that reversal required phosphorylation of Ser272 and Ser300 within Rad's polybasic, hydrophobic C-terminal domain (CTD). Phosphorylation of Ser25 and Ser38 in Rad's N-terminal domain (NTD) alone was ineffective. Phosphorylation of Ser272 and Ser300 or the addition of 4 Asp residues to the CTD reduced Rad's association with the negatively charged, cytoplasmic plasmalemmal surface and with CaVß, even in the absence of CaVα, measured here by FRET. Addition of a posttranslationally prenylated CAAX motif to Rad's C-terminus, which constitutively tethers Rad to the membrane, prevented the physiological and biochemical effects of both phosphorylation and Asp substitution. Thus, dissociation of Rad from the sarcolemma, and consequently from CaVß, is sufficient for sympathetic upregulation of Ca2+ currents.


Adrenergic Agents , Monomeric GTP-Binding Proteins , Humans , Adrenergic Agents/metabolism , Adrenergic Agents/pharmacology , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Myocytes, Cardiac/metabolism , Monomeric GTP-Binding Proteins/metabolism , Arrhythmias, Cardiac/metabolism
...