Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27.179
1.
Cells ; 13(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38727264

Natural killer (NK) cells can migrate quickly to the tumor site to exert cytotoxic effects on tumors, and some chemokines, including CXCL8, CXCL10 or and CXCL12, can regulate the migration of NK cells. Activin A, a member of the transforming growth factor ß (TGF-ß) superfamily, is highly expressed in tumor tissues and involved in tumor development and immune cell activation. In this study, we focus on the effects of activin A on NK cell migration. In vitro, activin A induced NK cell migration and invasion, promoted cell polarization and inhibited cell adhesion. Moreover, activin A increased Ca2+, p-SMAD3 and p-AKT levels in NK cells. An AKT inhibitor and Ca2+ chelator partially blocked activin A-induced NK cell migration. In vivo, exogenous activin A increased tumor-infiltrating NK cells in NS-1 cell solid tumors and inhibited tumor growth, and blocking endogenous activin A with anti-activin A antibody reduced tumor-infiltrating NK cells in 4T-1 cell solid tumors. These results suggest that activin A induces NK cell migration through AKT signaling and calcium signaling and may enhance the antitumor effect of NK cells by increasing tumor-infiltrating NK cells.


Activins , Calcium Signaling , Cell Movement , Killer Cells, Natural , Proto-Oncogene Proteins c-akt , Activins/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Animals , Cell Movement/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Mice , Calcium Signaling/drug effects , Cell Line, Tumor , Mice, Inbred C57BL
2.
Appl Microbiol Biotechnol ; 108(1): 317, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700737

Perylenequinones (PQs) are natural photosensitizing compounds used as photodynamic therapy, and heat stress (HS) is the main limiting factor of mycelial growth and secondary metabolism of fungi. This study aimed to unravel the impact of HS-induced Ca2+ and the calcium signaling pathway on PQ biosynthesis of Shiraia sp. Slf14(w). Meanwhile, the intricate interplay between HS-induced NO and Ca2+ and the calcium signaling pathway was investigated. The outcomes disclosed that Ca2+ and the calcium signaling pathway activated by HS could effectively enhance the production of PQs in Shiraia sp. Slf14(w). Further investigations elucidated the specific mechanism through which NO signaling molecules induced by HS act upon the Ca2+/CaM (calmodulin) signaling pathway, thus propelling PQ biosynthesis in Shiraia sp. Slf14(w). This was substantiated by decoding the downstream positioning of the CaM/CaN (calcineurin) pathway in relation to NO through comprehensive analyses encompassing transcript levels, enzyme assays, and the introduction of chemical agents. Concurrently, the engagement of Ca2+ and the calcium signaling pathway in heat shock signaling was also evidenced. The implications of our study underscore the pivotal role of HS-induced Ca2+ and the calcium signaling pathway, which not only participate in heat shock signal transduction but also play an instrumental role in promoting PQ biosynthesis. Consequently, our study not only enriches our comprehension of the mechanisms driving HS signaling transduction in fungi but also offers novel insights into the PQ synthesis paradigm within Shiraia sp. Slf14(w). KEY POINTS: • The calcium signaling pathway was proposed to participate in PQ biosynthesis under HS. • HS-induced NO was revealed to act upon the calcium signaling pathway for the first time.


Ascomycota , Calcium Signaling , Perylene , Perylene/analogs & derivatives , Quinones , Ascomycota/metabolism , Ascomycota/genetics , Ascomycota/growth & development , Quinones/metabolism , Perylene/metabolism , Nitric Oxide/metabolism , Heat-Shock Response , Calcium/metabolism , Hot Temperature
3.
Front Immunol ; 15: 1386719, 2024.
Article En | MEDLINE | ID: mdl-38694510

Introduction: B-cell activation triggers the release of endoplasmic reticulum calcium stores through the store-operated calcium entry (SOCE) pathway resulting in calcium influx by calcium release-activated calcium (CRAC) channels on the plasma membrane. B-cell-specific murine knockouts of SOCE do not impact humoral immunity suggesting that alternative channels may be important. Methods: We identified a member of the calcium-permeable transient receptor potential (TRP) ion channel family, TRPV5, as a candidate channel expressed in B cells by a quantitative polymerase chain reaction (qPCR) screen. To further investigate the role of TRPV5 in B-cell responses, we generated a murine TRPV5 knockout (KO) by CRISPR-Cas9. Results: We found TRPV5 polarized to B-cell receptor (BCR) clusters upon stimulation in a PI3K-RhoA-dependent manner. TRPV5 KO mice have normal B-cell development and mature B-cell numbers. Surprisingly, calcium influx upon BCR stimulation in primary TRPV5 KO B cells was not impaired; however, differential expression of other calcium-regulating proteins, such as ORAI1, may contribute to a compensatory mechanism for calcium signaling in these cells. We demonstrate that TRPV5 KO B cells have impaired spreading and contraction in response to membrane-bound antigen. Consistent with this, TRPV5 KO B cells have reduced BCR signaling measured through phospho-tyrosine residues. Lastly, we also found that TRPV5 is important for early T-dependent antigen specific responses post-immunization. Discussion: Thus, our findings identify a role for TRPV5 in BCR signaling and B-cell activation.


B-Lymphocytes , Calcium Signaling , Lymphocyte Activation , Mice, Knockout , Receptors, Antigen, B-Cell , TRPV Cation Channels , Animals , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Calcium/metabolism , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology , Signal Transduction , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
4.
Life Sci Alliance ; 7(8)2024 Aug.
Article En | MEDLINE | ID: mdl-38749544

Calcium signaling is integral for neuronal activity and synaptic plasticity. We demonstrate that the calcium response generated by different sources modulates neuronal activity-mediated protein synthesis, another process essential for synaptic plasticity. Stimulation of NMDARs generates a protein synthesis response involving three phases-increased translation inhibition, followed by a decrease in translation inhibition, and increased translation activation. We show that these phases are linked to NMDAR-mediated calcium response. Calcium influx through NMDARs elicits increased translation inhibition, which is necessary for the successive phases. Calcium through L-VGCCs acts as a switch from translation inhibition to the activation phase. NMDAR-mediated translation activation requires the contribution of L-VGCCs, RyRs, and SOCE. Furthermore, we show that IP3-mediated calcium release and SOCE are essential for mGluR-mediated translation up-regulation. Finally, we signify the relevance of our findings in the context of Alzheimer's disease. Using neurons derived from human fAD iPSCs and transgenic AD mice, we demonstrate the dysregulation of NMDAR-mediated calcium and translation response. Our study highlights the complex interplay between calcium signaling and protein synthesis, and its implications in neurodegeneration.


Calcium Signaling , Calcium , Neurons , Protein Biosynthesis , Receptors, Metabotropic Glutamate , Receptors, N-Methyl-D-Aspartate , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Mice , Calcium/metabolism , Receptors, Metabotropic Glutamate/metabolism , Humans , Neurons/metabolism , Mice, Transgenic , Alzheimer Disease/metabolism , Neuronal Plasticity , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology
5.
PLoS One ; 19(5): e0297947, 2024.
Article En | MEDLINE | ID: mdl-38768116

In various biological systems, analyzing how cell behaviors are coordinated over time would enable a deeper understanding of tissue-scale response to physiologic or superphysiologic stimuli. Such data is necessary for establishing both normal tissue function and the sequence of events after injury that lead to chronic disease. However, collecting and analyzing these large datasets presents a challenge-such systems are time-consuming to process, and the overwhelming scale of data makes it difficult to parse overall behaviors. This problem calls for an analysis technique that can quickly provide an overview of the groups present in the entire system and also produce meaningful categorization of cell behaviors. Here, we demonstrate the application of an unsupervised method-the Variational Autoencoder (VAE)-to learn the features of cells in cartilage tissue after impact-induced injury and identify meaningful clusters of chondrocyte behavior. This technique quickly generated new insights into the spatial distribution of specific cell behavior phenotypes and connected specific peracute calcium signaling timeseries with long term cellular outcomes, demonstrating the value of the VAE technique.


Cartilage, Articular , Chondrocytes , Cartilage, Articular/cytology , Chondrocytes/cytology , Animals , Cluster Analysis , Calcium Signaling
6.
PLoS Comput Biol ; 20(5): e1012130, 2024 May.
Article En | MEDLINE | ID: mdl-38739680

Within the islets of Langerhans, beta cells orchestrate synchronized insulin secretion, a pivotal aspect of metabolic homeostasis. Despite the inherent heterogeneity and multimodal activity of individual cells, intercellular coupling acts as a homogenizing force, enabling coordinated responses through the propagation of intercellular waves. Disruptions in this coordination are implicated in irregular insulin secretion, a hallmark of diabetes. Recently, innovative approaches, such as integrating multicellular calcium imaging with network analysis, have emerged for a quantitative assessment of the cellular activity in islets. However, different groups use distinct experimental preparations, microscopic techniques, apply different methods to process the measured signals and use various methods to derive functional connectivity patterns. This makes comparisons between findings and their integration into a bigger picture difficult and has led to disputes in functional connectivity interpretations. To address these issues, we present here a systematic analysis of how different approaches influence the network representation of islet activity. Our findings show that the choice of methods used to construct networks is not crucial, although care is needed when combining data from different islets. Conversely, the conclusions drawn from network analysis can be heavily affected by the pre-processing of the time series, the type of the oscillatory component in the signals, and by the experimental preparation. Our tutorial-like investigation aims to resolve interpretational issues, reconcile conflicting views, advance functional implications, and encourage researchers to adopt connectivity analysis. As we conclude, we outline challenges for future research, emphasizing the broader applicability of our conclusions to other tissues exhibiting complex multicellular dynamics.


Islets of Langerhans , Islets of Langerhans/physiology , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Animals , Computational Biology/methods , Mice , Insulin/metabolism , Humans , Insulin-Secreting Cells/physiology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/cytology , Insulin Secretion/physiology , Models, Biological , Calcium/metabolism , Calcium Signaling/physiology
7.
Science ; 384(6699): eadd6260, 2024 May 31.
Article En | MEDLINE | ID: mdl-38815015

Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex. Binding of ReS19-T to septins restores filament assembly in the disease state and restrains calcium entry through SOCCs. In amyloid-ß and tau-driven mouse models of disease, ReS19-T agents restored synaptic plasticity, normalized brain network activity, and attenuated the development of both amyloid-ß and tau pathology. Our findings identify the septin cytoskeleton as a potential therapeutic target for the development of disease-modifying AD treatments.


Alzheimer Disease , Amyloid beta-Peptides , Calcium , Disease Models, Animal , Homeostasis , Neuroprotective Agents , Septins , tau Proteins , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Septins/metabolism , Mice , Calcium/metabolism , tau Proteins/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Amyloid beta-Peptides/metabolism , Humans , Neuronal Plasticity/drug effects , Calcium Signaling/drug effects , Calcium Channels/metabolism , Cytoskeleton/metabolism , Cytoskeleton/drug effects
8.
Int J Mol Sci ; 25(10)2024 May 11.
Article En | MEDLINE | ID: mdl-38791278

Recent advancements in understanding the intricate molecular mechanisms underlying immunological responses have underscored the critical involvement of ion channels in regulating calcium influx, particularly in inflammation. Nootkatone, a natural sesquiterpenoid found in Alpinia oxyphylla and various citrus species, has gained attention for its diverse pharmacological properties, including anti-inflammatory effects. This study aimed to elucidate the potential of nootkatone in modulating ion channels associated with calcium signaling, particularly CRAC, KV1.3, and KCa3.1 channels, which play pivotal roles in immune cell activation and proliferation. Using electrophysiological techniques, we demonstrated the inhibitory effects of nootkatone on CRAC, KV1.3, and KCa3.1 channels in HEK293T cells overexpressing respective channel proteins. Nootkatone exhibited dose-dependent inhibition of channel currents, with IC50 values determined for each channel. Nootkatone treatment did not significantly affect cell viability, indicating its potential safety for therapeutic applications. Furthermore, we observed that nootkatone treatment attenuated calcium influx through activated CRAC channels and showed anti-proliferative effects, suggesting its role in regulating inflammatory T cell activation. These findings highlight the potential of nootkatone as a natural compound for modulating calcium signaling pathways by targeting related key ion channels and it holds promise as a novel therapeutic agent for inflammatory disorders.


Calcium Signaling , Intermediate-Conductance Calcium-Activated Potassium Channels , Polycyclic Sesquiterpenes , T-Lymphocytes , Humans , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Polycyclic Sesquiterpenes/pharmacology , HEK293 Cells , Calcium Signaling/drug effects , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Cell Proliferation/drug effects , Calcium Release Activated Calcium Channels/metabolism , Calcium/metabolism , Kv1.3 Potassium Channel/metabolism , Kv1.3 Potassium Channel/antagonists & inhibitors , Cell Survival/drug effects , Lymphocyte Activation/drug effects , Sesquiterpenes/pharmacology
9.
J Biol Phys ; 50(2): 229-251, 2024 Jun.
Article En | MEDLINE | ID: mdl-38753214

Studying the calcium dynamics within a fibroblast cell individually has provided only a restricted understanding of its functions. However, research efforts focusing on systems biology approaches for such investigations have been largely neglected by researchers until now. Fibroblast cells rely on signaling from calcium ( C a 2 + ) and nitric oxide (NO) to maintain their physiological functions and structural stability. Various studies have demonstrated the correlation between NO and the control of C a 2 + dynamics in cells. However, there is currently no existing model to assess the disruptions caused by various factors in regulatory dynamics, potentially resulting in diverse fibrotic disorders. A mathematical model has been developed to investigate the effects of changes in parameters such as buffer, receptor, sarcoplasmic endoplasmic reticulum C a 2 + -ATPase (SERCA) pump, and source influx on the regulation and dysregulation of spatiotemporal calcium and NO dynamics in fibroblast cells. This model is based on a system of reaction-diffusion equations, and numerical simulations are conducted using the finite element method. Disturbances in key processes related to calcium and nitric oxide, including source influx, buffer mechanism, SERCA pump, and inositol trisphosphate ( I P 3 ) receptor, may contribute to deregulation in the calcium and NO dynamics within fibroblasts. The findings also provide new insights into the extent and severity of disorders resulting from alterations in various parameters, potentially leading to deregulation and the development of fibrotic disease.


Calcium , Fibroblasts , Fibrosis , Models, Biological , Nitric Oxide , Fibroblasts/metabolism , Nitric Oxide/metabolism , Calcium/metabolism , Signal Transduction , Humans , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Calcium Signaling
10.
Mol Med Rep ; 30(1)2024 Jul.
Article En | MEDLINE | ID: mdl-38695251

Although exogenous calcitonin gene­related peptide (CGRP) protects against hyperoxia­induced lung injury (HILI), the underlying mechanisms remain unclear. The present study attempted to elucidate the molecular mechanism by which CGRP protects against hyperoxia­induced alveolar cell injury. Human alveolar A549 cells were treated with 95% hyperoxia to establish a hyperoxic cell injury model. ELISA was performed to detect the CGRP secretion. Immunofluorescence, quantitative (q)PCR, and western blotting were used to detect the expression and localization of CGRP receptor (CGRPR) and transient receptor potential vanilloid 1 (TRPV1). Cell counting kit­8 and flow cytometry were used to examine the proliferation and apoptosis of treated cells. Digital calcium imaging and patch clamp were used to analyze the changes in intracellular Ca2+ signaling and membrane currents induced by CGRP in A549 cells. The mRNA and protein expression levels of Cyclin D1, proliferating cell nuclear antigen (PCNA), Bcl­2 and Bax were detected by qPCR and western blotting. The expression levels of CGRPR and TRPV1 in A549 cells were significantly downregulated by hyperoxic treatment, but there was no significant difference in CGRP release between cells cultured under normal air and hyperoxic conditions. CGRP promoted cell proliferation and inhibited apoptosis in hyperoxia, but selective inhibitors of CGRPR and TRPV1 channels could effectively attenuate these effects; TRPV1 knockdown also attenuated this effect. CGRP induced Ca2+ entry via the TRPV1 channels and enhanced the membrane non­selective currents through TRPV1 channels. The CGRP­induced increase in intracellular Ca2+ was reduced by inhibiting the phospholipase C (PLC)/protein kinase C (PKC) pathway. Moreover, PLC and PKC inhibitors attenuated the effects of CGRP in promoting cell proliferation and inhibiting apoptosis. In conclusion, exogenous CGRP acted by inversely regulating the function of TRPV1 channels in alveolar cells. Importantly, CGRP protected alveolar cells from hyperoxia­induced injury via the CGRPR/TRPV1/Ca2+ axis, which may be a potential target for the prevention and treatment of the HILI.


Alveolar Epithelial Cells , Calcitonin Gene-Related Peptide , Hyperoxia , Lung Injury , Humans , A549 Cells , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Apoptosis/drug effects , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Calcium/metabolism , Calcium Signaling/drug effects , Cell Proliferation/drug effects , Hyperoxia/metabolism , Hyperoxia/pathology , Receptors, Calcitonin Gene-Related Peptide/metabolism , Signal Transduction/drug effects , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Lung Injury/metabolism , Lung Injury/pathology
11.
J Am Heart Assoc ; 13(10): e033998, 2024 May 21.
Article En | MEDLINE | ID: mdl-38726925

BACKGROUND: The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS: Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS: The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.


Angiotensin II , Brain , Calcium , Hypertension , Kidney , Microvessels , Nitric Oxide , Vasoconstriction , Animals , Nitric Oxide/metabolism , Angiotensin II/pharmacology , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/drug therapy , Kidney/blood supply , Kidney/metabolism , Calcium/metabolism , Vasoconstriction/drug effects , Microvessels/metabolism , Microvessels/drug effects , Microvessels/pathology , Brain/metabolism , Brain/blood supply , Mice , Disease Models, Animal , Male , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice, Inbred C57BL , Calcium Signaling/drug effects
12.
PLoS One ; 19(5): e0303540, 2024.
Article En | MEDLINE | ID: mdl-38820336

INTRODUCTION: Microvascular dysfunction (MVD) is a hallmark feature of chronic graft dysfunction in patients that underwent orthotopic heart transplantation (OHT) and is the main contributor to impaired long-term graft survival. The aim of this study was to determine the effect of MVD on functional and structural properties of cardiomyocytes isolated from ventricular biopsies of OHT patients. METHODS: We included 14 patients post-OHT, who had been transplanted for 8.1 years [5.0; 15.7 years]. Mean age was 49.6 ± 14.3 years; 64% were male. Coronary microvasculature was assessed using guidewire-based coronary flow reserve(CFR)/index of microvascular resistance (IMR) measurements. Ventricular myocardial biopsies were obtained and cardiomyocytes were isolated using enzymatic digestion. Cells were electrically stimulated and subcellular Ca2+ signalling as well as mitochondrial density were measured using confocal imaging. RESULTS: MVD measured by IMR was present in 6 of 14 patients with a mean IMR of 53±10 vs. 12±2 in MVD vs. controls (CTRL), respectively. CFR did not differ between MVD and CTRL. Ca2+ transients during excitation-contraction coupling in isolated ventricular cardiomyocytes from a subset of patients showed unaltered amplitudes. In addition, Ca2+ release and Ca2+ removal were not significantly different between MVD and CTRL. However, mitochondrial density was significantly increased in MVD vs. CTRL (34±1 vs. 29±2%), indicating subcellular changes associated with MVD. CONCLUSION: In-vivo ventricular microvascular dysfunction post OHT is associated with preserved excitation-contraction coupling in-vitro, potentially owing to compensatory changes on the mitochondrial level or due to the potentially reversible cause of the disease.


Heart Transplantation , Myocytes, Cardiac , Humans , Male , Heart Transplantation/adverse effects , Middle Aged , Female , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Adult , Excitation Contraction Coupling , Microvessels/pathology , Microvessels/physiopathology , Calcium/metabolism , Mitochondria, Heart/metabolism , Calcium Signaling
13.
Biomed Pharmacother ; 175: 116751, 2024 Jun.
Article En | MEDLINE | ID: mdl-38754266

Anesthesia inhibits neural activity in the brain, causing patients to lose consciousness and sensation during the surgery. Layers 2/3 of the cortex are important structures for the integration of information and consciousness, which are closely related to normal cognitive function. However, the dynamics of the large-scale population of neurons across multiple regions in layer 2/3 during anesthesia and recovery processes remains unclear. We conducted simultaneous observations and analysis of large-scale calcium signaling dynamics across multiple cortical regions within cortical layer 2/3 during isoflurane anesthesia and recovery in vivo by high-resolution wide-field microscopy. Under isoflurane-induced anesthesia, there is an overall decrease in neuronal activity across multiple regions in the cortical layer 2/3. Notably, some neurons display a paradoxical increase in activity during anesthesia. Additionally, the activity among multiple cortical regions under anesthesia was homogeneous. It is only during the recovery phase that variability emerges in the extent of increased neural activity across different cortical regions. Within the same duration of anesthesia, neural activity did not return to preanesthetic levels. To sum up, anesthesia as a dynamic alteration of brain functional networks, encompassing shifts in patterns of neural activity, homogeneousness among cortical neurons and regions, and changes in functional connectivity. Recovery from anesthesia does not entail a reversal of these effects within the same timeframe.


Anesthetics, Inhalation , Cerebral Cortex , Isoflurane , Neurons , Isoflurane/pharmacology , Neurons/drug effects , Neurons/physiology , Animals , Anesthetics, Inhalation/pharmacology , Male , Cerebral Cortex/drug effects , Mice , Calcium Signaling/drug effects , Mice, Inbred C57BL
14.
Nature ; 629(8014): 1118-1125, 2024 May.
Article En | MEDLINE | ID: mdl-38778102

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Arabidopsis , Calcium Signaling , Calcium , Germination , Osmolar Concentration , Pollen , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Germination/genetics , Mutation , Pollen/genetics , Pollen/metabolism , Water/metabolism , HEK293 Cells , Humans , Dehydration
15.
Biosystems ; 240: 105227, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718915

Hepatocyte lipid and glucose metabolism is regulated not only by major hormones like insulin and glucagon but also by many other factors, including calcium ions. Recently, mitochondria-associated membrane (MAM) dysfunction combined with incorrect IP3-receptor regulation has been shown to result in abnormal calcium signaling in hepatocytes. This dysfunction could further lead to hepatic metabolism pathology. However, the exact contribution of MAM dysfunction, incorrect IP3-receptor regulation and insulin resistance to the calcium-insulin-glucagon interplay is not understood yet. In this work, we analyze the role of abnormal calcium signaling and insulin dysfunction in hepatocytes by proposing a model of hepatocyte metabolic regulatory network with a detailed focus on the model construction details besides the biological aspect. In this work, we analyze the role of abnormal calcium signaling and insulin dysfunction in hepatocytes by proposing a model of hepatocyte metabolic regulatory network. We focus on the model construction details, model validation, and predictions. We describe the dynamic regulation of signaling processes by sigmoid Hill function. In particular, we study the effect of both the Hill function slope and the distance between Hill function extremes on metabolic processes in hepatocytes as a model of nonspecific insulin dysfunction. We also address the significant time difference between characteristic time of glucose hepatic processing and a typical calcium oscillation period in hepatocytes. Our modeling results show that calcium signaling dysfunction results in an abnormal increase in postprandial glucose levels, an abnormal glucose decrease in fasting, and a decreased amount of stored glycogen. An insulin dysfunction of glucose phosphorylation, glucose dephosphorylation, and glycogen breakdown also cause a noticeable effect. We also get some insight into the so-called hepatic insulin resistance paradox, confirming the hypothesis regarding indirect insulin action on hepatocytes via dysfunctional adipocyte lipolysis.


Calcium Signaling , Calcium , Glucose , Hepatocytes , Lipid Metabolism , Models, Biological , Hepatocytes/metabolism , Glucose/metabolism , Calcium/metabolism , Lipid Metabolism/physiology , Calcium Signaling/physiology , Humans , Insulin/metabolism , Animals , Insulin Resistance/physiology , Metabolic Networks and Pathways
16.
Nat Commun ; 15(1): 4503, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802334

The emergence of glioblastoma in cortical tissue initiates early and persistent neural hyperexcitability with signs ranging from mild cognitive impairment to convulsive seizures. The influence of peritumoral synaptic density, expansion dynamics, and spatial contours of excess glutamate upon higher order neuronal network modularity is unknown. We combined cellular and widefield imaging of calcium and glutamate fluorescent reporters in two glioblastoma mouse models with distinct synaptic microenvironments and infiltration profiles. Functional metrics of neural ensembles are dysregulated during tumor invasion depending on the stage of malignant progression and tumor cell proximity. Neural activity is differentially modulated during periods of accelerated and inhibited tumor expansion. Abnormal glutamate accumulation precedes and outpaces the spatial extent of baseline neuronal calcium signaling, indicating these processes are uncoupled in tumor cortex. Distinctive excitability homeostasis patterns and functional connectivity of local and remote neuronal populations support the promise of precision genetic diagnosis and management of this devastating brain disease.


Brain Neoplasms , Glioblastoma , Nerve Net , Glioblastoma/pathology , Glioblastoma/diagnostic imaging , Glioblastoma/physiopathology , Glioblastoma/genetics , Animals , Brain Neoplasms/pathology , Brain Neoplasms/diagnostic imaging , Mice , Humans , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Glutamic Acid/metabolism , Neurons/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Calcium Signaling , Disease Models, Animal , Male , Calcium/metabolism , Female
17.
Adv Biol Regul ; 92: 101033, 2024 May.
Article En | MEDLINE | ID: mdl-38739986

Calcium (Ca2+) is a highly versatile intracellular messenger that regulates several cellular processes. Although it is unclear how a single-second messenger coordinates various effects within a cell, there is growing evidence that spatial patterns of Ca2+ signals play an essential role in determining their specificity. Ca2+ signaling patterns can differ in various cell regions, and Ca2+ signals in the nuclear and cytoplasmic compartments have been observed to occur independently. The initiation and function of Ca2+ signaling within the nucleus are not yet fully understood. Receptor tyrosine kinases (RTKs) induce Ca2+ signaling resulting from phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and inositol 1,4,5-trisphosphate (InsP3) formation within the nucleus. This signaling mechanism may be responsible for the effects of specific growth factors on cell proliferation and gene transcription. This review highlights the recent advances in RTK trafficking to the nucleus and explains how these receptors initiate nuclear calcium signaling.


Calcium Signaling , Cell Nucleus , Receptor Protein-Tyrosine Kinases , Humans , Cell Nucleus/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Animals , Calcium/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism
18.
eNeuro ; 11(6)2024 Jun.
Article En | MEDLINE | ID: mdl-38744490

Oligodendrocytes, the myelin-producing glial cells of the central nervous system (CNS), crucially contribute to myelination and circuit function. An increasing amount of evidence suggests that intracellular calcium (Ca2+) dynamics in oligodendrocytes mediates activity-dependent and activity-independent myelination. Unraveling how myelinating oligodendrocytes orchestrate and integrate Ca2+ signals, particularly in relation to axonal firing, is crucial for gaining insights into their role in the CNS development and function, both in health and disease. In this framework, we used the recombinant adeno-associated virus/Olig001 capsid variant to express the genetically encoded Ca2+ indicator jGCaMP8s, under the control of the myelin basic protein promoter. In our study, this tool exhibits excellent tropism and selectivity for myelinating and mature oligodendrocytes, and it allows monitoring Ca2+ activity in myelin-forming cells, both in isolated primary cultures and organotypic spinal cord explants. By live imaging of myelin Ca2+ events in oligodendrocytes within organ cultures, we observed a rapid decline in the amplitude and duration of Ca2+ events across different in vitro developmental stages. Active myelin sheath remodeling and growth are modulated at the level of myelin-axon interface through Ca2+ signaling, and, during early myelination in organ cultures, this phase is finely tuned by the firing of axon action potentials. In the later stages of myelination, Ca2+ events in mature oligodendrocytes no longer display such a modulation, underscoring the involvement of complex Ca2+ signaling in CNS myelination.


Calcium , Dependovirus , Myelin Sheath , Oligodendroglia , Organ Culture Techniques , Spinal Cord , Animals , Oligodendroglia/metabolism , Spinal Cord/metabolism , Spinal Cord/cytology , Calcium/metabolism , Dependovirus/genetics , Myelin Sheath/metabolism , Calcium Signaling/physiology , Mice, Inbred C57BL , Mice , Cells, Cultured , Female , Rats
19.
Mol Biol Cell ; 35(7): ar92, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38758660

Chromaffin cells of the adrenal medulla transduce sympathetic nerve activity into stress hormone secretion. The two neurotransmitters principally responsible for coupling cell stimulation to secretion are acetylcholine and pituitary adenylate activating polypeptide (PACAP). In contrast to acetylcholine, PACAP evokes a persistent secretory response from chromaffin cells. However, the mechanisms by which PACAP acts are poorly understood. Here, it is shown that PACAP induces sustained increases in cytosolic Ca2+ which are disrupted when Ca2+ influx through L-type channels is blocked or internal Ca2+ stores are depleted. PACAP liberates stored Ca2+ via inositol trisphosphate receptors (IP3Rs) on the endoplasmic reticulum (ER), thereby functionally coupling Ca2+ mobilization to Ca2+ influx and supporting Ca2+-induced Ca2+-release. These Ca2+ influx and mobilization pathways are unified by an absolute dependence on phospholipase C epsilon (PLCε) activity. Thus, the persistent secretory response that is a defining feature of PACAP activity, in situ, is regulated by a signaling network that promotes sustained elevations in intracellular Ca2+ through multiple pathways.


Calcium Signaling , Calcium , Chromaffin Cells , Endoplasmic Reticulum , Inositol 1,4,5-Trisphosphate Receptors , Pituitary Adenylate Cyclase-Activating Polypeptide , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Animals , Calcium/metabolism , Calcium Signaling/physiology , Endoplasmic Reticulum/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Chromaffin Cells/metabolism , Cattle , Calcium Channels, L-Type/metabolism
20.
Toxicol Appl Pharmacol ; 487: 116976, 2024 Jun.
Article En | MEDLINE | ID: mdl-38777097

Staff and animals in livestock buildings are constantly exposed to fine particulate matter (PM2.5), which affects their respiratory health. However, its exact pathogenic mechanism remains unclear. Regulator of G-protein signaling 2 (RGS2) has been reported to play a regulatory role in pneumonia. The aim of this study was to explore the therapeutic potential of RGS2 in cowshed PM2.5-induced respiratory damage. PM2.5 was collected from a cattle farm, and the alveolar macrophages (NR8383) of the model animal rat were stimulated with different treatment conditions of cowshed PM2.5. The RGS2 overexpression vector was constructed and transfected it into cells. Compared with the control group, cowshed PM2.5 significantly induced a decrease in cell viability and increased the levels of apoptosis and proinflammatory factor expression. Overexpression of RGS2 ameliorated the above-mentioned cellular changes induced by cowshed PM2.5. In addition, PM2.5 has significantly induced intracellular Ca2+ dysregulation. Affinity inhibition of Gq/11 by RGS2 attenuated the cytosolic calcium signaling pathway mediated by PLCß/IP3R. To further investigate the causes and mechanisms of action of differential RGS2 expression, the possible effects of oxidative stress and TLR2/4 activation were investigated. The results have shown that RGS2 expression was not only regulated by oxidative stress-induced nitric oxide during cowshed PM2.5 cells stimulation but the activation of TLR2/4 had also an important inhibitory effect on its protein expression. The present study demonstrates the intracellular Ca2+ regulatory role of RGS2 during cellular injury, which could be a potential target for the prevention and treatment of PM2.5-induced respiratory injury.


Macrophages, Alveolar , Particulate Matter , RGS Proteins , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Animals , RGS Proteins/genetics , RGS Proteins/metabolism , Particulate Matter/toxicity , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Rats , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Cattle , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Cell Line , Calcium Signaling/drug effects , Calcium/metabolism , Apoptosis/drug effects , Air Pollutants/toxicity
...