Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Nat Commun ; 15(1): 8038, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271683

ABSTRACT

Diabetic kidney disease (DKD) is the main cause of chronic kidney disease worldwide. While injury to the podocytes, visceral epithelial cells that comprise the glomerular filtration barrier, drives albuminuria, proximal tubule (PT) dysfunction is the critical mediator of DKD progression. Here, we report that the podocyte-specific induction of human KLF6, a zinc-finger binding transcription factor, attenuates podocyte loss, PT dysfunction, and eventual interstitial fibrosis in a male murine model of DKD. Utilizing combination of snRNA-seq, snATAC-seq, and tandem mass spectrometry, we demonstrate that podocyte-specific KLF6 triggers the release of secretory ApoJ to activate calcium/calmodulin dependent protein kinase 1D (CaMK1D) signaling in neighboring PT cells. CaMK1D is enriched in the first segment of the PT, proximal to the podocytes, and is critical to attenuating mitochondrial fission and restoring mitochondrial function under diabetic conditions. Targeting podocyte-PT signaling by enhancing ApoJ-CaMK1D might be a key therapeutic strategy in attenuating the progression of DKD.


Subject(s)
Diabetic Nephropathies , Kidney Tubules, Proximal , Kruppel-Like Factor 6 , Podocytes , Signal Transduction , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Podocytes/metabolism , Podocytes/pathology , Animals , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Male , Humans , Mice , Kruppel-Like Factor 6/metabolism , Kruppel-Like Factor 6/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Mice, Inbred C57BL , Disease Models, Animal
2.
J Physiol Investig ; 67(2): 69-78, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38780291

ABSTRACT

ABSTRACT: Vascular calcification (VC), a major complication in chronic kidney disease (CKD), is predominantly driven by osteoblastic differentiation. Recent studies have highlighted the crucial role of microRNAs in CKD's pathogenesis. Here, our research focused on the effects of miR-204-5p and its molecular mechanisms within VC. We initially found a notable decrease in miR-204-5p levels in human aortic vascular smooth muscle cells stimulated with inorganic phosphate, using this as a VC model in vitro. Following the overexpression of miR-204-5p, a decrease in VC was observed, as indicated by alizarin red S staining and measurements of calcium content. This decrease was accompanied by lower levels of the osteogenic marker, runt-related transcription factor 2, and higher levels of α-smooth muscle actin, a marker of contractility. Further investigation showed that calcium/calmodulin-dependent protein kinase 1 (CAMK1), which is a predicted target of miR-204-5p, promotes VC. Conversely, overexpressing miR-204-5p reduced VC by suppressing CAMK1 activity. Overexpressing miR-204-5p also effectively mitigated aortic calcification in an in vivo rat model. In summary, our research indicated that targeting the miR-204-5p/CAMK1 pathway could be a viable strategy for mitigating VC in CKD patients.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 1 , MicroRNAs , Renal Insufficiency, Chronic , Vascular Calcification , Male , Animals , Rats , Rats, Sprague-Dawley , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , MicroRNAs/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Myocytes, Smooth Muscle/metabolism , Cell Differentiation , Vascular Calcification/drug therapy , Vascular Calcification/metabolism , Vascular Calcification/pathology , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Phosphates/metabolism
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167022, 2024 03.
Article in English | MEDLINE | ID: mdl-38216068

ABSTRACT

BACKGROUND: CAMK1 has been shown to be involved in human disease progression via regulating mitochondrial dynamics. However, whether CAMK1 mediates mitochondrial dynamics to regulate diabetic nephropathy (DN) process remains unclear. METHODS: Mice were injected with streptozotocin (STZ) to mimic diabetic mice models in vivo, and mice with proximal tubule-specific knockout of CAMK1 (CAMK1-KO) were generated. HK-2 cells were treated with high-glucose (HG) to mimic DN cell model in vitro. Histopathological analysis was performed to confirm kidney injury in mice. ROS production and apoptosis were assessed by DHE staining and TUNEL staining. Mitochondria morphology was observed and analyzed by electron microscopy. Mitochondrial membrane potential was detected by JC-1 staining, and cell proliferation was measured by EdU assay. The mRNA and protein expression were examined by qRT-PCR, western blot and immunostaining. RNA interaction was confirmed by RIP assay and dual-luciferase reporter assay. The mRNA stability was tested by actinomycin D treatment, and m6A level was examined by MeRIP assay. RESULTS: CAMK1 was reduced in DN patients and STZ-induced diabetic mice. Conditional deletion of CAMK1 aggravated kidney injury and promoted mitochondrial fission in diabetic mice. CAMK1 overexpression inhibited mitochondrial fission to alleviate HG-induced HK-2 cell apoptosis. IGF2BP3 promoted the stability of CAMK1 mRNA by m6A modification. IGF2BP3 inhibited mitochondrial fission to repress cell apoptosis in vitro and kidney injury in vivo by increasing CAMK1 expression. CONCLUSION: IGF2BP3-mediated CAMK1 mRNA stability alleviated DN progression by inhibiting mitochondria fission.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Humans , Mice , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/pathology , Kidney Tubules/pathology , Mitochondrial Dynamics/physiology , RNA, Messenger/metabolism
4.
Nat Metab ; 5(6): 1045-1058, 2023 06.
Article in English | MEDLINE | ID: mdl-37277610

ABSTRACT

Hypothalamic AgRP/NPY neurons are key players in the control of feeding behaviour. Ghrelin, a major orexigenic hormone, activates AgRP/NPY neurons to stimulate food intake and adiposity. However, cell-autonomous ghrelin-dependent signalling mechanisms in AgRP/NPY neurons remain poorly defined. Here we show that calcium/calmodulin-dependent protein kinase ID (CaMK1D), a genetic hot spot in type 2 diabetes, is activated upon ghrelin stimulation and acts in AgRP/NPY neurons to mediate ghrelin-dependent food intake. Global Camk1d-knockout male mice are resistant to ghrelin, gain less body weight and are protected against high-fat-diet-induced obesity. Deletion of Camk1d in AgRP/NPY, but not in POMC, neurons is sufficient to recapitulate above phenotypes. In response to ghrelin, lack of CaMK1D attenuates phosphorylation of CREB and CREB-dependent expression of the orexigenic neuropeptides AgRP/NPY in fibre projections to the paraventricular nucleus (PVN). Hence, CaMK1D links ghrelin action to transcriptional control of orexigenic neuropeptide availability in AgRP neurons.


Subject(s)
Diabetes Mellitus, Type 2 , Ghrelin , Mice , Animals , Male , Ghrelin/metabolism , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Diabetes Mellitus, Type 2/metabolism , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Neurons/metabolism , Obesity/metabolism , Mice, Knockout , Eating , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism
5.
Mol Cell Biochem ; 478(4): 791-805, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36094721

ABSTRACT

Connexin 43 (Cx43, also known as Gja1) is the most abundant testicular gap junction protein. It has a crucial role in the support of spermatogenesis by Sertoli cells in the seminiferous tubules as well as in androgen synthesis by Leydig cells. The multifunctional family of Ca2+/calmodulin-dependent protein kinases (CaMK) is composed of CaMK I, II, and IV and each can serve as a mediator of nuclear Ca2+ signals. These kinases can control gene expression by phosphorylation of key regulatory sites on transcription factors. Among these, AP-1 members cFos and cJun are interesting candidates that seem to cooperate with CaMKs to regulate Cx43 expression in Leydig cells. In this study, the Cx43 promoter region important for CaMK-dependent activation is characterized using co-transfection of plasmid reporter-constructs with different plasmids coding for CaMKs and/or AP-1 members in MA-10 Leydig cells. Here we report that the activation of Cx43 expression by cFos and cJun is increased by CaMKI. Furthermore, results from chromatin immunoprecipitation suggest that the recruitment of AP-1 family members to the proximal region of the Cx43 promoter may involve another uncharacterized AP-1 DNA regulatory element and/or protein-protein interactions with other partners. Thus, our data provide new insights into the molecular regulatory mechanisms that control mouse Cx43 transcription in testicular Leydig cells.


Subject(s)
Leydig Cells , Neoplasms , Male , Mice , Animals , Leydig Cells/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Neoplasms/metabolism
6.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36361957

ABSTRACT

Hormone-induced Leydig cell steroidogenesis requires rapid changes in gene expression in response to various hormones, cytokines, and growth factors. These proteins act by binding to their receptors on the surface of Leydig cells leading to activation of multiple intracellular signaling cascades, downstream of which are several kinases, including protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase I (CAMKI), and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). These kinases participate in hormone-induced steroidogenesis by phosphorylating numerous proteins including transcription factors leading to increased steroidogenic gene expression. How these various kinases and transcription factors come together to appropriately induce steroidogenic gene expression in response to specific stimuli remains poorly understood. In the present work, we compared the effect of PKA, CAMKI and ERK1/2 on the transactivation potential of 15 transcription factors belonging to 5 distinct families on the activity of the Star gene promoter. We not only validated known cooperation between kinases and transcription factors, but we also identified novel cooperations that have not yet been before reported. Some transcription factors were found to respond to all three kinases, whereas others were only activated by one specific kinase. Differential responses were also observed within a family of transcription factors. The diverse response to kinases provides flexibility to ensure proper genomic response of steroidogenic cells to different stimuli.


Subject(s)
Phosphoproteins , Transcription Factors , Humans , Male , Cyclic AMP-Dependent Protein Kinases/metabolism , Hormones/metabolism , Leydig Cells/metabolism , Phosphoproteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 1/metabolism
7.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36293185

ABSTRACT

The expression of the Calcium/Calmodulin-Dependent Protein Kinase I gamma (encoded by the Camk1g gene) depends on the activation of glucocorticoid receptors (GR) and is strongly regulated by stress. Since Camk1g is primarily expressed in neuronal cells of the limbic system in the brain, we hypothesized that it could be involved in signaling mechanisms that underlie the adaptive or maladaptive responses to stress. Here, we find that restraint-induced stress and the GR agonist dexamethasone robustly increase the expression of Camk1g in neurons of the amygdalar nuclei in the mouse brain. To assess the functional role of Camk1g expression, we performed a virally induced knock-down of the transcript. Mice with bilateral amygdala-specific Camk1g knock-down showed increased anxiety-like behaviors in the light-dark box, and an increase in freezing behavior after fear-conditioning, but normal spatial working memory during exploration of a Y-maze. Thus, we confirm that Camk1g is a neuron-specific GR-regulated transcript, and show that it is specifically involved in behaviors related to anxiety, as well as responses conditioned by aversive stimuli.


Subject(s)
Central Amygdaloid Nucleus , Glucocorticoids , Mice , Animals , Glucocorticoids/pharmacology , Central Amygdaloid Nucleus/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Calcium , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Anxiety/metabolism , Dexamethasone/pharmacology , Behavior, Animal
8.
Proc Natl Acad Sci U S A ; 119(16): e2117435119, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35412911

ABSTRACT

Elevation of intracellular Ca2+ concentration ([Ca2+]i) activates Ca2+/calmodulin-dependent kinases (CaMK) and promotes gene transcription. This signaling pathway is referred to as excitation­transcription (E-T) coupling. Although vascular myocytes can exhibit E-T coupling, the molecular mechanisms and physiological/pathological roles are unknown. Multiscale analysis spanning from single molecules to whole organisms has revealed essential steps in mouse vascular myocyte E-T coupling. Upon a depolarizing stimulus, Ca2+ influx through Cav1.2 voltage-dependent Ca2+ channels activates CaMKK2 and CaMK1a, resulting in intranuclear CREB phosphorylation. Within caveolae, the formation of a molecular complex of Cav1.2/CaMKK2/CaMK1a is promoted in vascular myocytes. Live imaging using a genetically encoded Ca2+ indicator revealed direct activation of CaMKK2 by Ca2+ influx through Cav1.2 localized to caveolae. CaMK1a is phosphorylated by CaMKK2 at caveolae and translocated to the nucleus upon membrane depolarization. In addition, sustained depolarization of a mesenteric artery preparation induced genes related to chemotaxis, leukocyte adhesion, and inflammation, and these changes were reversed by inhibitors of Cav1.2, CaMKK2, and CaMK, or disruption of caveolae. In the context of pathophysiology, when the mesenteric artery was loaded by high pressure in vivo, we observed CREB phosphorylation in myocytes, macrophage accumulation at adventitia, and an increase in thickness and cross-sectional area of the tunica media. These changes were reduced in caveolin1-knockout mice or in mice treated with the CaMKK2 inhibitor STO609. In summary, E-T coupling depends on Cav1.2/CaMKK2/CaMK1a localized to caveolae, and this complex converts [Ca2+]i changes into gene transcription. This ultimately leads to macrophage accumulation and media remodeling for adaptation to increased circumferential stretch.


Subject(s)
Calcium Channels, L-Type , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Calcium-Calmodulin-Dependent Protein Kinase Type 1 , Caveolae , Transcription, Genetic , Vascular Remodeling , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Caveolae/metabolism , Caveolin 1/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Excitation Contraction Coupling , Mice , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Neurons/metabolism , Phosphorylation
9.
Commun Biol ; 5(1): 124, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145192

ABSTRACT

Statins play a major role in reducing circulating cholesterol levels and are widely used to prevent coronary artery disease. Although they are recently confirmed to up-regulate mitophagy, little is known about the molecular mechanisms and its effect on endothelial progenitor cell (EPC). Here, we explore the role and mechanism underlying statin (pitavastatin, PTV)-activated mitophagy in EPC proliferation. ApoE-/- mice are fed a high-fat diet for 8 weeks to induce atherosclerosis. In these mice, EPC proliferation decreases and is accompanied by mitochondrial dysfunction and mitophagy impairment via the PINK1-PARK2 pathway. PTV reverses mitophagy and reduction in proliferation. Pink1 knockout or silencing Atg7 blocks PTV-induced proliferation improvement, suggesting that mitophagy contributes to the EPC proliferation increase. PTV elicits mitochondrial calcium release into the cytoplasm and further phosphorylates CAMK1. Phosphorylated CAMK1 contributes to PINK1 phosphorylation as well as mitophagy and mitochondrial function recover in EPCs. Together, our findings describe a molecular mechanism of mitophagy activation, where mitochondrial calcium release promotes CAMK1 phosphorylation of threonine177 before phosphorylation of PINK1 at serine228, which recruits PARK2 and phosphorylates its serine65 to activate mitophagy. Our results further account for the pleiotropic effects of statins on the cardiovascular system and provide a promising and potential therapeutic target for atherosclerosis.


Subject(s)
Atherosclerosis , Calcium Signaling , Calcium-Calmodulin-Dependent Protein Kinase Type 1 , Endothelial Progenitor Cells , Protein Kinases , Quinolines , Animals , Mice , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Calcium/metabolism , Calcium Signaling/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Cell Proliferation/drug effects , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/metabolism , Mitophagy , Protein Kinases/genetics , Protein Kinases/metabolism , Quinolines/pharmacology , Ubiquitin-Protein Ligases/metabolism
10.
Biochem Biophys Res Commun ; 587: 160-165, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34875535

ABSTRACT

Ca2+/calmodulin-dependent protein kinase kinases (CaMKKα and ß) are regulatory kinases for multiple downstream kinases, including CaMKI, CaMKIV, PKB/Akt, and AMP-activated protein kinase (AMPK) through phosphorylation of each activation-loop Thr residue. In this report, we biochemically characterize the oligomeric structure of CaMKK isoforms through a heterologous expression system using COS-7 cells. Oligomerization of CaMKK isoforms was readily observed by treating CaMKK transfected cells with cell membrane permeable crosslinkers. In addition, His-tagged CaMKKα (His-CaMKKα) pulled down with FLAG-tagged CaMKKα (FLAG-CaMKKα) in transfected cells. The oligomerization of CaMKKα was confirmed by the fact that GST-CaMKKα/His-CaMKKα complex from transiently expressed COS-7 cells extracts was purified to near homogeneity by the sequential chromatography using glutathione-sepharose/Ni-sepharose and was observed in a Ca2+/CaM-independent manner by reciprocal pulldown assay, suggesting the direct interaction between monomeric CaMKKα. Furthermore, the His-CaMKKα kinase-dead mutant (D293A) complexed with FLAG-CaMKKα exhibited significant CaMKK activity, indicating the active CaMKKα multimeric complex. Collectively, these results suggest that CaMKKα can self-associate in the cells, constituting a catalytically active oligomer that might be important for the efficient activation of CaMKK-mediated intracellular signaling.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase/chemistry , Calcium-Calmodulin-Dependent Protein Kinase Type 1/chemistry , Glutathione Transferase/chemistry , Recombinant Fusion Proteins/chemistry , Animals , Binding Sites , COS Cells , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Chlorocebus aethiops , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Phosphorylation , Protein Binding , Protein Multimerization , Rats , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction
11.
Molecules ; 26(24)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34946752

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia worldwide. Despite extensive research and targeting of the main molecular components of the disease, beta-amyloid (Aß) and tau, there are currently no treatments that alter the progression of the disease. Here, we examine the effects of two specific kinase inhibitors for calcium/calmodulin-dependent protein kinase type 1D (CaMK1D) on Aß-mediated toxicity, using mouse primary cortical neurons. Tau hyperphosphorylation and cell death were used as AD indicators. These specific inhibitors were found to prevent Aß induced tau hyperphosphorylation in culture, but were not able to protect cells from Aß induced toxicity. While inhibitors were able to alter AD pathology in cell culture, they were insufficient to prevent cell death. With further research and development, these inhibitors could contribute to a multi-drug strategy to combat AD.


Subject(s)
Alzheimer Disease/drug therapy , Calcium-Calmodulin-Dependent Protein Kinase Type 1/antagonists & inhibitors , Disease Models, Animal , Neurons/drug effects , Protein Kinase Inhibitors/pharmacology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Cell Survival/drug effects , Cells, Cultured , Mice , Mice, Inbred BALB C , Models, Molecular , Neurons/metabolism , Neurons/pathology , Protein Kinase Inhibitors/chemistry
12.
Eur Rev Med Pharmacol Sci ; 25(4): 1899-1909, 2021 02.
Article in English | MEDLINE | ID: mdl-33660800

ABSTRACT

OBJECTIVE: Circular ribonucleic acids (circRNAs) are considered as the key regulatory factors for human malignancies in recent years, and lung adenocarcinoma (LUAD) is a common malignancy worldwide, but the molecular mechanism of circRNAs in LUAD has not been completely investigated. Therefore, the mechanism by which circRNA protein kinase C iota (circPRKCI) regulates LUAD cell migration proliferation, and cycle was preliminarily explored in this research, so as to provide new ideas for the treatment of LUAD. PATIENTS AND METHODS: First of all, the circPRKCI expression level in LUAD tissues was tested via quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay, and the relationship between circPRKCI and the patients' prognosis was analyzed. Then, circPRKCI expression was inhibited by small interfering RNA (siRNA), and the influence of circPRKCI on t LUAD cells' ability to proliferate was verified via 5-ethynyl-2'-deoxyuridine (EdU) and cell counting kit-8 (CCK-8) assays. Moreover, the influence of circPRKCI on LUAD cells' ability to migrate was testified by transwell assay, and the regulation of LUAD cell cycle by circPRKCI was confirmed by flow cytometry. The micro RNAs (miRNAs) with binding sites to the 3' untranslated region (UTR) of circPRKCI and the genes binding to miRNAs were discovered using bioinformatics websites, and their associative relation was further explored through Dual-Luciferase reporter gene assay, qRT-PCR assay, Pearson correlation analysis and reverse experiment. RESULTS: It was verified via qRT-PCR assay that circPRKCI was expressed at a remarkably higher level in LUAD tissues relative to that in paracancerous normal tissues. The highly expressed circPRKCI led to poor prognosis of patients. Besides, qRT-PCR assessment results indicated that circPRKCI expression level rose notably in LUAD cell lines, while it was lowered markedly in LUAD cells transfected with si-circPRKCI. According to CCK-8 and EdU assay results, the proliferative ability of LUAD cells was weakened clearly after knocking down circPRKCI. It was manifested in the results of transwell assay that the knockdown of circPRKCI significantly repressed the capacity of LUAD cells to migrate. Furthermore, the results of cell cycle test displayed that inhibiting circPRKCI could induce the arrest of LUAD cell cycle in the G1 phase. It was discovered through bioinformatics websites that miR-219a-5p had binding sites to circPRKCI 3'UTR, and the results of Dual-Luciferase reporter gene assay revealed that circPRKCI was able to bind to miR-219a-5p. It was uncovered by the qRT-PCR assay results that miR-219a-5p was lowly expressed in LUAD tissues, and its relative expression had an inverse relation with that of circPRKCI according to the Pearson correlation analysis. In addition, it was shown in the results of reverse experiment that miR-219a-5p could regulate the influence of circPRKCI on the malignant phenotype of LUAD. It was found by means of bioinformatics websites that calcium/calmodulin dependent protein kinase ID (CAMK1D) was a downstream target gene of miR-219a-5p and could the two conjugated with each other based on the results of Dual-Luciferase reporter gene assay. Moreover, qRT-PCR assay findings illustrated that CAMK1D was evidently highly expressed in LUAD tissues, and the results of Pearson correlation analysis revealed that CAMK1D expression exhibited a negative association with that of miR-219a-5p and a positive correlation with that of circPRKCI. CONCLUSIONS: CircPRKCI is significantly highly expressed in LUAD, and the highly expressed circPRKCI is capable of facilitating LUAD cell migration, proliferation and cycle. CircPRKCI may regulate the malignant phenotype of LUAD via the miR-219a-5p/CAMK1D axis.


Subject(s)
Adenocarcinoma of Lung/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Lung Neoplasms/metabolism , MicroRNAs/metabolism , RNA, Circular/metabolism , Adenocarcinoma of Lung/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Cell Cycle , Cell Movement , Cell Proliferation , Cells, Cultured , Humans , Lung Neoplasms/pathology , MicroRNAs/genetics , RNA, Circular/genetics
13.
J Biochem ; 169(4): 445-458, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33417706

ABSTRACT

Ca2+/calmodulin (CaM)-dependent protein kinase Iδ (CaMKIδ) is a Ser/Thr kinase that plays pivotal roles in Ca2+ signalling. CaMKIδ is activated by Ca2+/CaM-binding and phosphorylation at Thr180 by CaMK kinase (CaMKK). In this study, we characterized four splice variants of mouse CaMKIδ (mCaMKIδs: a, b, c and d) found by in silico analysis. Recombinant mCaMKIδs expressed in Escherichia coli were phosphorylated by CaMKK; however, only mCaMKIδ-a and c showed protein kinase activities towards myelin basic protein in vitro, with mCaMKIδ-b and mCaMKIδ-d being inactive. Although mCaMKIδ-a and mCaMKIδ-c underwent autophosphorylation in vitro, only mCaMKIδ-c underwent autophosphorylation in 293T cells. Site-directed mutagenesis showed that the autophosphorylation site is Ser349, which is found in the C-terminal region of only variants c and b (Ser324). Furthermore, phosphorylation of these sites (Ser324 and Ser349) in mCaMKIδ-b and c was more efficiently catalyzed by cAMP-dependent protein kinase in vitro and in cellulo as compared to the autophosphorylation of mCaMKIδ-c. Thus, variants of mCaMKIδ possess distinct properties in terms of kinase activities, autophosphorylation and phosphorylation by another kinase, suggesting that they play physiologically different roles in murine cells.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 1 , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 1/chemistry , Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Cell Line , Cyclic AMP/genetics , Cyclic AMP/metabolism , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Phosphorylation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
14.
J Cell Mol Med ; 25(2): 1198-1206, 2021 01.
Article in English | MEDLINE | ID: mdl-33342045

ABSTRACT

Calcium/calmodulin-dependent protein kinase (CAMKs) can control a wide range of cancer-related functions in multiple tumour types. Herein, we explore the expressions and clinical significances of calcium/calmodulin-dependent protein kinase 1 (CAMK1) in pancreatic cancer (PC). The expression of CAMK1 in PC was analysed by Gene Expression Profiling Interactive Analysis 2 (GEPIA 2) database and the Oncomine database. For further validation, the protein level of CAMK1 in PC tissues was also detected in the Human Protein Atlas (HPA) database and the tissue microarray (TMA)-based immunohistochemistry (IHC). GEPIA 2 and Kaplan-Meier Plotter (KM Plotter) databases were used to explore the prognostic significances of CAMK1 in overall survival (OS) and disease-free survival (DFS) of PC at mRNA level. The relationship between CAMK1 expression and the clinicopathological characteristics of PC was further explored. Additionally, the Search Tool for the Retrieval of Interacting Genes (STRING) database was used to analyse protein-protein interactions (PPI). We found CAMK1 was highly expressed in PC both in bioinformatics analyses and TMA-IHC results. The prognostic analyses from the public databases also showed consistent results with follow-up data. The PPI network suggested that CALM1, CALM3, CREB1, CALM2, SYN1, NOS3, ATF1, GAPDH, PPM1F and FBXL12 were important significant genes associated with CAMK1. Our finding revealed CAMK1 has prognostic value in PC patients, suggesting that CAMK1 may has a distinct role in PC patients and can be used as a candidate marker for investigating clinical prognosis of PC.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Databases, Genetic , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Protein Interaction Maps , Reproducibility of Results
15.
Vascul Pharmacol ; 136: 106820, 2021 02.
Article in English | MEDLINE | ID: mdl-33238205

ABSTRACT

AIM: Exsomes play a significant role in increasing pathophysiological processes by delivering their content. Recently, a variety of studies have showed exosomal microRNAs (miRNAs) are involved in pulmonary hypertension (PH) notably. In this study, we found that exosomal miR-211 was overexpressed in hypoxia-induced PH rats but its intrinsic regulation was unclear. Therefore, our aim was to reveal the underlying mechanism which overexpressed exosomal miR-211 targeted in the development of PH. METHODS: 18 male SD rats were randomly divided into normoxia and hypoxia group, housed in normal or hypoxic chamber for 3 weeks respectively. Then, mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance(PVR), right ventricular hypertrophy index(RV/(LV + S)), the percentage of medial wall area (WA%) and the percentage of medial wall thickness (WT%) were measured. Expression of miR-211 in exosomes was detected by qRT-PCR. Expression of Ca2+/calmodulin-dependent kinase1(CaMK1)and peroxisome proliferator-activated receptors-γ(PPAR-γ)in lung tissue were detected by Western blot(WB); After miR-211 overexpressed exosomes were injected to rats through caudal vein, mPAP, PVR, RV/(LV + S), WA% and WT% were also measured. Sequentially, hypoxia rats were injected with lentivirus riched in miR-211 inhibitor via tail vein, and PH-related indicators were measured. In vitro, after miR-211 was positively or negatively regulated in pulmonary arterial smooth muscle cell (PASMC) by plasmid transfection, proliferation of PASMC was detected by CCK8, as well as the expression of CaMK1 and PPAR- γ. Further, the relationship between CaMK1 and miR-211 was verified by Dual-Luciferase assay. And the regulatory relationship of CaMK1/PPAR- γ aixs was demonstrated in PASMC. RESULTS: Evident increases of mPAP, PVR, RVHI, WT% and WA% were observed with hypoxia administration. And the concentration of plasma exosomes in hypoxia rats was increased and positively correlated with the above indexes. miR-211 in exosomes of PH was upregulated while the expression of CaMK1 and PPAR-γ decreased in lung tissues. Further, injection of exosomes overexpressed with miR-211 demonstrated that exosomal miR-211 aggravated PH while inhibition of miR-211 attenuated PH in rats. In vitro, overexpression of miR-211 promoted the proliferation of PASMC and inhibited expression of CaMK1 and PPAR-γ in PASMC. And Dual-luciferase assay demonstrated that CaMK1 was a downstream gene of miR-211. Plasmid transfection experiments indicated that CaMK1 can promote PPAR-γ expression. CONCLUSION: Exosomal miR-211 promoted PH via inhibiting CaMK1/PPAR-γ axis, promoting PASMC proliferation in rats.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Exosomes/metabolism , MicroRNAs/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , PPAR gamma/metabolism , Vascular Remodeling , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Exosomes/genetics , Exosomes/transplantation , Hypoxia/complications , Male , MicroRNAs/genetics , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , PPAR gamma/genetics , Pulmonary Arterial Hypertension/enzymology , Pulmonary Arterial Hypertension/etiology , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/enzymology , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Signal Transduction
16.
Int J Mol Sci ; 21(22)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228180

ABSTRACT

Reactive oxygen species (ROS) are not only harmful to cell survival but also essential to cell signaling through cysteine-based redox switches. In fact, ROS triggers the potential activation of mitogen-activated protein kinases (MAPKs). The 90 kDa ribosomal S6 kinase 1 (RSK1), one of the downstream mediators of the MAPK pathway, is implicated in various cellular processes through phosphorylating different substrates. As such, RSK1 associates with and phosphorylates neuronal nitric oxide (NO) synthase (nNOS) at Ser847, leading to a decrease in NO generation. In addition, the RSK1 activity is sensitive to inhibition by reversible cysteine-based redox modification of its Cys223 during oxidative stress. Aside from oxidative stress, nitrosative stress also contributes to cysteine-based redox modification. Thus, the protein kinases such as Ca2+/calmodulin (CaM)-dependent protein kinase I (CaMKI) and II (CaMKII) that phosphorylate nNOS could be potentially regulated by cysteine-based redox modification. In this review, we focus on the role of post-translational modifications in regulating nNOS and nNOS-phosphorylating protein kinases and communication among themselves.


Subject(s)
Nitric Oxide Synthase Type I/metabolism , Nitric Oxide/metabolism , Oxidative Stress/genetics , Protein Processing, Post-Translational , Reactive Oxygen Species/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cysteine/metabolism , Glutathione/metabolism , Humans , Huntington Disease/enzymology , Huntington Disease/genetics , Huntington Disease/pathology , Nitric Oxide Synthase Type I/genetics , Oxidation-Reduction , Phosphorylation , Ribosomal Protein S6 Kinases, 90-kDa/genetics
17.
Cancer Genomics Proteomics ; 17(6): 747-755, 2020.
Article in English | MEDLINE | ID: mdl-33099476

ABSTRACT

BACKGROUND/AIM: Pregnancy up-regulated non-ubiquitous calmodulin kinase (PNCK) is a member of calmodulin kinase, and overexpression of PNCK with involvement in carcinogenesis have been reported in HER-2 amplified breast cancer, clear cell renal cell carcinoma and nasopharygeal carcinoma. However, the expression of PNCK and its clinical implication have not been elucidated in hepatocellular carcinoma (HCC). MATERIALS AND METHODS: We investigated PNCK expression at both the protein and mRNA level using immunohistochemistry (IHC) and microarray gene expression profiling in HCC tissue samples, and evaluated its association with clinicopathological parameters and their potential prognostic significance. RESULTS: High PNCK protein expression and high PNCK mRNA level was observed in 61.7% and 34.7% of total HCC cases, respectively. PNCK mRNA level was higher in tumor tissues than in background non-tumor tissues, and significantly correlated with protein expression by IHC. High PNCK expression was associated with higher Edmondson grade, intrahepatic metastasis, microvascular invasion and higher AFP levels. Patients with high PNCK expression showed shorter recurrence-free survival and disease-specific survival, and high mRNA expression of PNCK was an independent prognostic factor in disease-specific survival. CONCLUSION: Up-regulation of PNCK expression as well as its association with poor prognosis was demonstrated in HCC. PNCK might be a prognostic biomarker of HCC, and could be a potential candidate therapeutic target.


Subject(s)
Biomarkers, Tumor/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Carcinoma, Hepatocellular/secondary , Liver Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/surgery , Female , Follow-Up Studies , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/surgery , Male , Middle Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/surgery , Prognosis , Survival Rate
18.
Cell Rep ; 32(9): 108104, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32877683

ABSTRACT

Rare variants in GRIN genes, which encode NMDAR subunits, are strongly associated with neurodevelopmental disorders. Among these, GRIN2A, which encodes the GluN2A subunit of NMDARs, is widely accepted as an epilepsy-causative gene. Here, we functionally characterize the de novo GluN2A-S1459G mutation identified in an epilepsy patient. We show that S1459 is a CaMKIIα phosphorylation site, and that endogenous phosphorylation is regulated during development and in response to synaptic activity in a dark rearing model. GluN2A-S1459 phosphorylation results in preferential binding of NMDARs to SNX27 and a corresponding decrease in PSD-95 binding, which consequently regulates NMDAR trafficking. Furthermore, the epilepsy-associated GluN2A-S1459G variant displays defects in interactions with both SNX27 and PSD-95, resulting in trafficking deficits, reduced spine density, and decreased excitatory synaptic transmission. These data demonstrate a role for CaMKIIα phosphorylation of GluN2A in receptor targeting and implicate NMDAR trafficking defects as a link to epilepsy.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Epilepsy/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Epilepsy/genetics , Female , HEK293 Cells , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/genetics
19.
Biochem Biophys Res Commun ; 530(3): 513-519, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32600616

ABSTRACT

Protein phosphatase PPM1H is known to participate in various biological or pathophysiological mechanisms. However, little is known about the molecular mechanisms of its regulation. In this study, we investigated the protein kinases that directly phosphorylate PPM1H, identifying them as cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase I (CaMKI). In vitro and in silico analyses showed that the phosphorylation sites of PPM1H by PKA and CaMKI were Ser-123 and Ser-210, respectively. The phosphorylation state of PPM1H in cells exhibited the kinase activator- and inhibitor-dependent changes. In mouse neuroblastoma Neuro2a cells, phosphorylation of Ser-210 was much higher in the phospho-mimetic mutant (S123D) than in the non-phosphorylatable mutant (S123A) when they were treated with ionomycin. This suggests that a hierarchical phosphorylation, with initial phosphorylation of Ser-123 promoting subsequent phosphorylation of Ser-210, occurs in these neuron-like cells. Moreover, in cell-based assay a PPM1H(S123A/S210A) double mutant barely dephosphorylated Smad1, a transcription factor known as an endogenous substrate of PPM1H. These results suggest that cAMP and Ca2+/calmodulin regulate dephosphorylation of Smad1 through the dual phosphorylation of PPM1H at Ser-123 and Ser-210.


Subject(s)
Smad1 Protein/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Cell Line, Tumor , Cyclic AMP-Dependent Protein Kinases/metabolism , HEK293 Cells , Humans , Mice , Phosphorylation
20.
Cell ; 181(7): 1547-1565.e15, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32492405

ABSTRACT

Homeostasis of neural firing properties is important in stabilizing neuronal circuitry, but how such plasticity might depend on alternative splicing is not known. Here we report that chronic inactivity homeostatically increases action potential duration by changing alternative splicing of BK channels; this requires nuclear export of the splicing factor Nova-2. Inactivity and Nova-2 relocation were connected by a novel synapto-nuclear signaling pathway that surprisingly invoked mechanisms akin to Hebbian plasticity: Ca2+-permeable AMPA receptor upregulation, L-type Ca2+ channel activation, enhanced spine Ca2+ transients, nuclear translocation of a CaM shuttle, and nuclear CaMKIV activation. These findings not only uncover commonalities between homeostatic and Hebbian plasticity but also connect homeostatic regulation of synaptic transmission and neuronal excitability. The signaling cascade provides a full-loop mechanism for a classic autoregulatory feedback loop proposed ∼25 years ago. Each element of the loop has been implicated previously in neuropsychiatric disease.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels/metabolism , Long-Term Potentiation/physiology , Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/metabolism , Action Potentials/physiology , Alternative Splicing/genetics , Alternative Splicing/physiology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Female , HEK293 Cells , Homeostasis/physiology , Humans , Large-Conductance Calcium-Activated Potassium Channels/genetics , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/physiology , Neuro-Oncological Ventral Antigen , Neuronal Plasticity/physiology , Neurons/metabolism , RNA-Binding Proteins/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction , Synapses/metabolism , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL