Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 209
Filter
1.
Biochem Biophys Res Commun ; 725: 150260, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38878760

ABSTRACT

This study introduces an innovative brain-targeted drug delivery system, RVG-Exo/CBD, utilizing rabies virus glycoprotein (RVG)-engineered exosomes for encapsulating cannabidiol (CBD). The novel delivery system was meticulously characterized, confirming the maintenance of exosomal integrity, size, and successful drug encapsulation with a high drug loading rate of 83.0 %. Evaluation of the RVG-Exo/CBD's brain-targeting capability demonstrated superior distribution and retention in brain tissue compared to unmodified exosomes, primarily validated through in vivo fluorescence imaging. The efficacy of this delivery system was assessed using a behavioral sensitization model in mice, where RVG-Exo/CBD notably suppressed methamphetamine-induced hyperactivity more effectively than CBD alone, indicating a reduction in effective dose and enhanced bioavailability. Overall, the RVG-Exo/CBD system emerges as a promising strategy for enhancing the therapeutic efficacy and safety of CBD, particularly for neurological applications, highlighting its potential for addressing the limitations associated with traditional CBD administration in clinical settings.


Subject(s)
Brain , Cannabidiol , Cannabidiol/administration & dosage , Cannabidiol/chemistry , Cannabidiol/pharmacology , Animals , Brain/metabolism , Brain/drug effects , Mice , Male , Glycoproteins/chemistry , Glycoproteins/metabolism , Glycoproteins/administration & dosage , Drug Delivery Systems/methods , Peptide Fragments , Viral Proteins
2.
Food Res Int ; 188: 114498, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823878

ABSTRACT

The emulsifying potential of a biocompatible ionic liquid (IL) to produce lipid-based nanosystems developed to enhance the bioaccessibility of cannabidiol (CBD) was investigated. The IL (cholinium oleate) was evaluated at concentrations of 1 % and 2 % to produce nanoemulsions (NE-IL) and nanostructured lipid carriers (NLC-IL) loaded with CBD. The IL concentration of 1 % demonstrated to be sufficient to produce both NE-IL and NLC-IL with excellent stability properties, entrapment efficiency superior to 99 %, and CBD retention rate of 100 % during the storage period evaluated (i.e. 28 days at 25 °C). The in vitro digestion evaluation demonstrated that the NLC-IL provided a higher stability to the CBD, while the NE-IL improved the CBD bioaccessibility, which was mainly related to the composition of the lipid matrices used to obtain each nanosystem. Finally, it was observed that the CBD cytotoxicity was reduced when the compound was entrapped into both nanosystems.


Subject(s)
Cannabidiol , Emulsifying Agents , Ionic Liquids , Cannabidiol/chemistry , Ionic Liquids/chemistry , Ionic Liquids/toxicity , Emulsifying Agents/chemistry , Humans , Emulsions , Digestion , Nanostructures/chemistry , Cell Survival/drug effects , Biological Availability , Nanoparticles/chemistry , Drug Carriers/chemistry , Caco-2 Cells , Particle Size
3.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892121

ABSTRACT

Dermatology and cosmetology currently prioritize healthy, youthful-looking skin. As a result, research is being conducted worldwide to uncover natural substances and carriers that allow for controlled release, which could aid in the battle against a variety of skin illnesses and slow the aging process. This study examined the biological and physicochemical features of novel hydrogels containing cannabidiol (CBD) and α-terpineol (TER). The hydrogels were obtained from ε-caprolactone (CL) and poly(ethylene glycol) (PEG) copolymers, diethylene glycol (DEG), poly(tetrahydrofuran) (PTHF), 1,6-diisocyanatohexane (HDI), and chitosan (CHT) components, whereas the biodegradable oligomers were synthesized using the enzyme ring-opening polymerization (e-ROP) method. The in vitro release rate of the active compounds from the hydrogels was characterized by mainly first-order kinetics, without a "burst release". The antimicrobial, anti-inflammatory, cytotoxic, antioxidant, and anti-aging qualities of the designed drug delivery systems (DDSs) were evaluated. The findings indicate that the hydrogel carriers that were developed have the ability to scavenge free radicals and impact the activity of antioxidant enzymes while avoiding any negative effects on keratinocytes and fibroblasts. Furthermore, they have anti-inflammatory qualities by impeding protein denaturation as well as the activity of proteinase and lipoxygenase. Additionally, their ability to reduce the multiplication of pathogenic bacteria and inhibit the activity of collagenase and elastase has been demonstrated. Thus, the developed hydrogel carriers may be effective systems for the controlled delivery of CBD, which may become a valuable tool for cosmetologists and dermatologists.


Subject(s)
Cannabidiol , Hydrogels , Skin , Hydrogels/chemistry , Hydrogels/pharmacology , Cannabidiol/pharmacology , Cannabidiol/chemistry , Skin/drug effects , Skin/metabolism , Humans , Cyclohexane Monoterpenes/chemistry , Cyclohexane Monoterpenes/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Regeneration/drug effects , Polymers/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Keratinocytes/drug effects , HaCaT Cells , Drug Carriers/chemistry , Drug Delivery Systems , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
4.
Top Curr Chem (Cham) ; 382(2): 20, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829467

ABSTRACT

Cannabis sativa has long been used for neurological and psychological healing. Recently, cannabidiol (CBD) extracted from cannabis sativa has gained prominence in the medical field due to its non-psychotropic therapeutic effects on the central and peripheral nervous systems. CBD, also acting as a potent antioxidant, displays diverse clinical properties such as anticancer, antiinflammatory, antidepressant, antioxidant, antiemetic, anxiolytic, antiepileptic, and antipsychotic effects. In this review, we summarized the structural activity relationship of CBD with different receptors by both experimental and computational techniques and investigated the mechanism of interaction between related receptors and CBD. The discovery of structural activity relationship between CBD and target receptors would provide a direction to optimize the scaffold of CBD and its derivatives, which would give potential medical applications on CBD-based therapies in various illnesses.


Subject(s)
Cannabidiol , Cannabidiol/chemistry , Cannabidiol/pharmacology , Cannabidiol/metabolism , Humans , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Cannabis/chemistry , Structure-Activity Relationship , Receptors, Cannabinoid/metabolism , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology
5.
AAPS PharmSciTech ; 25(5): 136, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862810

ABSTRACT

Cannabidiol (CBD) is a highly lipophilic compound with poor oral bioavailability, due to poor aqueous solubility and extensive pre-systemic metabolism. The aim of this study was to explore the potential of employing Hot Melt Extrusion (HME) technology for the continuous production of Self Emulsifying Drug Delivery Systems (SEDDS) to improve the solubility and in vitro dissolution performance of CBD. Accordingly, different placebos were processed through HME in order to obtain a lead CBD loaded solid SEDDS. Two SEDDS were prepared with sesame oil, Poloxamer 188, Gelucire®59/14, PEO N80 and Soluplus®. Moreover, Vitamin E was added as an antioxidant. The SEDDS formulations demonstrated emulsification times of 9.19 and 9.30 min for F1 and F2 respectively. The formed emulsions showed smaller droplet size ranging from 150-400 nm that could improve lymphatic uptake of CBD and reduce first pass metabolism. Both formulations showed significantly faster in vitro dissolution rate (90% for F1 and 83% for F2) compared to 14% for the pure CBD within the first hour, giving an enhanced release profile. The formulations were tested for stability over a 60-day time period at 4°C, 25°C, and 40°C. Formulation F1 was stable over the 60-day time-period at 4°C. Therefore, the continuous HME technology could replace conventional methods for processing SEDDS and improve the oral delivery of CBD for better therapeutic outcomes.


Subject(s)
Cannabidiol , Chemistry, Pharmaceutical , Drug Delivery Systems , Emulsions , Solubility , Cannabidiol/chemistry , Cannabidiol/administration & dosage , Emulsions/chemistry , Drug Delivery Systems/methods , Administration, Oral , Chemistry, Pharmaceutical/methods , Hot Melt Extrusion Technology/methods , Drug Liberation , Particle Size , Biological Availability , Drug Compounding/methods , Polyethylene Glycols/chemistry , Drug Stability , Sesame Oil/chemistry , Polyvinyls
6.
Photochem Photobiol Sci ; 23(7): 1239-1249, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38739326

ABSTRACT

Δ9-THC, the psychotropic cannabinoid in Cannabis sativa L., for many years has been the focus of all the pharmacological attention as the main promising principle of the plant. Recently, however, cannabidiol (CBD) has brought a sudden change in the scenario, exponentially increasing the interest in pharmacology as the main non-psychotropic cannabinoid with potential therapeutic, cosmetical and clinical applications. Although the reactivity of CBD and Δ9-THC has been considered, little attention has been paid to the possible photodegradation of these cannabinoids in the vegetal matrix and the data available in the literature are, in some cases, contradictory. The aim of the present work is to provide a characterization of the photochemical behaviour of CBD and Δ9-THC in three cannabis chemotypes, namely I (Δ9-THC 2.50%w/w), II (CBD:Δ9-THC 5.82%w/w:3.19%w/w) and III (CBD 3.02%w/w).


Subject(s)
Cannabidiol , Cannabis , Dronabinol , Photolysis , Cannabidiol/chemistry , Cannabis/chemistry , Dronabinol/chemistry
7.
J Am Soc Mass Spectrom ; 35(7): 1413-1421, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38804709

ABSTRACT

The 2018 Farm Bill defines marijuana as Cannabis sativa L. or any derivative thereof that contains greater than 0.3% Δ9-tetrahydrocannabinol (Δ9-THC) on a dry weight basis. The main cannabinoids present in Cannabis sativa L., Δ9-THC and cannabidiol (CBD), are structural isomers that cannot be differentiated using direct mass spectrometry with soft ionization techniques alone. Due to the classification of marijuana as a Schedule I controlled substance, the differentiation of Δ9-THC and CBD is crucial within the seized drug community. This study explores the use of Ag-ligand ion complexation and electrospray ionization tandem mass spectrometry (ESI-MS/MS) for the differentiation of Δ9-THC and CBD using six different Ag complexes. Differences between the binding affinities of Δ9-THC and CBD for [Ag(PPh3)(OTf)]2 lead to the formation of unique product ions at m/z 421/423, m/z 353/355, and m/z 231 for CBD, enabling the differentiation of CBD from Δ9-THC. When applied to the analysis of known Δ9-THC:CBD mixture ratios, the developed [Ag(PPh3)(OTf)]2 ion complexation method was able to differentiate Δ9-THC-rich and CBD-rich samples based on the average abundance of the product ions at m/z 421/423. The developed approach was then applied to methanolic extracts of 20 authentic cannabis samples with known Δ9-THC and CBD compositions, resulting in a 95% correct classification rate. Even though the developed Ag-ligand ion complexation method was only demonstrated for the qualitative differentiation of Δ9-THC-rich and CBD-rich cannabis, this study establishes a foundation for the use of Ag-ligand ion complexation that is essential for future quantitative approaches.


Subject(s)
Cannabidiol , Dronabinol , Silver , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Dronabinol/chemistry , Dronabinol/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Silver/chemistry , Tandem Mass Spectrometry/methods , Cannabidiol/chemistry , Cannabidiol/analysis , Ligands , Cannabis/chemistry , Ions/chemistry
8.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731434

ABSTRACT

Cannabidiol (CBD), a non-psychoactive ingredient extracted from the hemp plant, has shown therapeutic effects in a variety of diseases, including anxiety, nervous system disorders, inflammation, and tumors. CBD can exert its antitumor effect by regulating the cell cycle, inducing tumor cell apoptosis and autophagy, and inhibiting tumor cell invasion, migration, and angiogenesis. This article reviews the proposed antitumor mechanisms of CBD, aiming to provide references for the clinical treatment of tumor diseases and the rational use of CBD.


Subject(s)
Apoptosis , Cannabidiol , Neoplasms , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cannabidiol/chemistry , Humans , Apoptosis/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Animals , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Movement/drug effects , Cell Cycle/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
9.
ACS Appl Bio Mater ; 7(6): 3890-3899, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38776245

ABSTRACT

Photodynamic therapy (PDT) and cannabidiol (CBD) have been explored for their potential in synergistic cancer treatment. In this study, we employed CBD oil as a lipid phase, encapsulated within AZB-I@Lec-T to create lipid-based nanoparticles. Here, CBD oil does two tasks: it acts as a pyroptosis agent to destroy liver cancer cells and as a lipid phase to dissolve the photosensitizer. It was expected that this system would offer synergistic therapy between CBD and PDT better than a single use of each treatment. With a series of in vitro experiments, the nanoparticles exhibited induced apoptosis in 68% of HepG2 cells treated with AZB-I@Lec-T@CBD and near-infrared (NIR)-light irradiation, reducing expression levels of antioxidant defense system genes. Furthermore, both components worked well in a submicromolar range when combined in our formulation. These results highlight the potential for amplifying primary cellular damage with the combination of PDT and CBD encapsulation, providing a promising therapeutic approach for liver cancer treatment guidelines.


Subject(s)
Biocompatible Materials , Boron Compounds , Cannabidiol , Drug Screening Assays, Antitumor , Liver Neoplasms , Materials Testing , Particle Size , Photochemotherapy , Photosensitizing Agents , Humans , Cannabidiol/chemistry , Cannabidiol/pharmacology , Hep G2 Cells , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Boron Compounds/chemistry , Boron Compounds/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Nanoparticles/chemistry
10.
Int J Pharm ; 659: 124267, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38797251

ABSTRACT

In this study, Cannabidiol crystals (CBD) were used as a BCS class II model drug to generate a novel therapeutic deep eutectic solvent (THEDES) with easy preparation using caprylic acid (CA). The hydrogen bonding interaction was confirmed by different techniques such as FT-IR and NMR, resulting in a hydrophobic system suitable for liquid formulations. The CBD-based THEDES, combined with a specific mixture of surfactants and co-surfactants, successfully formed a self-emulsifying drug delivery system (SEDDS) that generated uniform nano-sized droplets once dispersed in water. Hence, the THEDES showed compatibility with the self-emulsifying approach, offering an alternative method to load drugs at their therapeutic dosage. Physical stability concerns regarding the unconventional oily phase were addressed through stress tests using multiple and dynamic light scattering, demonstrating the robustness of the system. In addition, the formulated SEDDS proved effective in protecting CBD from the harsh acidic gastric environment for up to 2 h at pH 1.2. Furthermore, in vitro studies have confirmed the safety of the formulation and the ability of CBD to permeate Caco-2 cells when formulated. This investigation highlights the potential incorporation of THEDES in lipid-based formulations like SEDDS, expanding the avenues for innovative oral drug delivery approaches.


Subject(s)
Cannabidiol , Caprylates , Drug Delivery Systems , Emulsions , Solvents , Caco-2 Cells , Humans , Solvents/chemistry , Drug Delivery Systems/methods , Cannabidiol/chemistry , Cannabidiol/administration & dosage , Caprylates/chemistry , Surface-Active Agents/chemistry , Hydrophobic and Hydrophilic Interactions , Drug Stability , Chemistry, Pharmaceutical/methods , Emulsifying Agents/chemistry
11.
Int J Pharm ; 659: 124235, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38762165

ABSTRACT

Pulmonary delivery is an efficient route of administration to deliver cannabidiol (CBD) due to the high bioavailability and fast onset of action. The major formulation challenge is the poor aqueous solubility of CBD. This study aimed to produce inhalable CBD powders with enhanced solubility and characterise their solid-state properties. CBD was spray freeze dried with mannitol or trehalose dihydrate with and without dipalmitoylphosphatidylcholine (DPPC). All four powders had acceptable yields at > 70 % with porous and spherical particles. The two crystalline mannitol powders contained less residual solvent than both amorphous trehalose ones. The addition of DPPC did not affect the crystallinity and residual solvent level of the powders. Instead, DPPC made the particles more porous, decreased the particle size from 19-23 µm to 11-13 µm, and increased CBD solubility from 0.36 µg/mL to over 2 µg/mL. The two DPPC powders were dispersed from a low resistance RS01 inhaler, showing acceptable aerosol performance with emitted fractions at 91-93 % and fine particle fractions < 5 µm at 34-43 %. These formulations can be used as a platform to deliver CBD and other cannabinoids by inhalation.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine , Aerosols , Cannabidiol , Freeze Drying , Particle Size , Powders , Solubility , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Cannabidiol/chemistry , Cannabidiol/administration & dosage , Administration, Inhalation , Mannitol/chemistry , Trehalose/chemistry , Excipients/chemistry , Porosity , Chemistry, Pharmaceutical/methods
12.
Int J Nanomedicine ; 19: 4061-4079, 2024.
Article in English | MEDLINE | ID: mdl-38736651

ABSTRACT

Purpose: Transdermal Drug Delivery System (TDDS) offers a promising alternative for delivering poorly soluble drugs, challenged by the stratum corneum's barrier effect, which restricts the pool of drug candidates suitable for TDDS. This study aims to establish a delivery platform specifically for highly lipophilic drugs requiring high doses (log P > 5, dose > 10 mg/kg/d), to improve their intradermal delivery and enhance solubility. Methods: Cannabidiol (CBD, log P = 5.91) served as the model drug. A CBD nanosuspension (CBD-NS) was prepared using a bottom-up method. The particle size, polydispersity index (PDI), zeta potential, and concentration of the CBD-NS were characterized. Subsequently, CBD-NS was incorporated into dissolving microneedles (DMNs) through a one-step manufacturing process. The intradermal dissolution abilities, physicochemical properties, mechanical strength, insertion depth, and release behavior of the DMNs were evaluated. Sprague-Dawley (SD) rats were utilized to assess the efficacy of the DMN patch in treating knee synovitis and to analyze its skin permeation kinetics and pharmacokinetic performance. Results: The CBD-NS, stabilized with Tween 80, exhibited a particle size of 166.83 ± 3.33 nm, a PDI of 0.21 ± 0.07, and a concentration of 46.11 ± 0.52 mg/mL. The DMN loaded with CBD-NS demonstrated favorable intradermal dissolution and mechanical properties. It effectively increased the delivery of CBD into the skin, extended the action's duration in vivo, and enhanced bioavailability. CBD-NS DMN exhibited superior therapeutic efficacy and safety in a rat model of knee synovitis, significantly inhibiting TNF-α and IL-1ß compared with the methotrexate subcutaneous injection method. Conclusion: NS technology effectively enhances the solubility of the poorly soluble drug CBD, while DMN facilitates penetration, extends the duration of action in vivo, and improves bioavailability. Furthermore, CBD has shown promising therapeutic outcomes in treating knee synovitis. This innovative drug delivery system is expected to offer a more efficient solution for the administration of highly lipophilic drugs akin to CBD, thereby facilitating high-dose administration.


Subject(s)
Administration, Cutaneous , Cannabidiol , Needles , Particle Size , Rats, Sprague-Dawley , Skin Absorption , Suspensions , Animals , Cannabidiol/pharmacokinetics , Cannabidiol/administration & dosage , Cannabidiol/chemistry , Skin Absorption/drug effects , Rats , Suspensions/chemistry , Male , Skin/metabolism , Skin/drug effects , Solubility , Drug Delivery Systems/methods , Transdermal Patch , Nanoparticles/chemistry , Microinjections/methods , Microinjections/instrumentation
13.
Asian Pac J Cancer Prev ; 25(5): 1649-1661, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809637

ABSTRACT

OBJECTIVE: Triple-negative breast cancer presents a significant challenge in oncology due to its complex treatment and aggressive nature. This subtype lacks common cancer cell receptors like estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. This study aimed to identify, through bioinformatic analysis, the key genes associated with triple-negative breast cancer. In addition, CBD analogs with potential inhibitory effects on these genes were evaluated through docking and molecular dynamics. METHODS: Gene expression profiles from the GSE178748 dataset were analyzed, focusing on MDA-MB-231 breast cancer cell lines. Differentially expressed genes were determined through protein-protein interaction networks and subsequently validated. Additionally, the inhibitory effects of cannabidiol analogs on these hub genes were assessed using molecular docking and dynamics. RESULTS:  Analysis of the hub highlighted RPL7A, NHP2L1, and PSMD11 as significant players in TNBC regulation. Ligand 44409296 showed the best affinity energy with RPL7A, while 166505341 exhibited the highest affinity with NHP2L1 and PSMD11, surpassing CBD. Analyses of RMSD, RMSF, SASA, and Gyration Radius indicated structural stability and interactions of the proteins with ligands over time. MMGBSA calculations showed favorable binding energies for the ligands with the target proteins. CONCLUSION: In conclusion, this study identified key genes, namely RPL7A, NHP2L1, and PSMD11, associated with triple-negative breast cancer and demonstrated promising interactions with cannabidiol analogs, particularly 44409296 and 166505341. These findings suggest potential therapeutic targets and highlight the relevance of further clinical investigations. Additionally, the ligands exhibited favorable ADME properties and low toxicity, underscoring their potential in future drug development for TNBC treatment.


Subject(s)
Cannabidiol , Molecular Docking Simulation , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Humans , Cannabidiol/pharmacology , Cannabidiol/chemistry , Female , Computational Biology/methods , Computer Simulation , Gene Expression Regulation, Neoplastic/drug effects , Protein Interaction Maps/drug effects , Molecular Dynamics Simulation , Antineoplastic Agents/pharmacology , Cell Line, Tumor
14.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731964

ABSTRACT

Cannabidiol (CBD) is a non-psychoactive compound derived from Cannabis sativa. It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor solubility and bioavailability. This study introduces an effective method for preparing CBD-loaded solid lipid nanoparticles (CBD-SLNs) using a combination of low-energy hot homogenization and ultrasonication. We enhanced this process by employing statistical optimization with response surface methodology (RSM). The optimized CBD-SLN formulation utilizes glyceryl monostearate as the primary lipid component of the nanocarrier. The CBD-SLN formulation is screened as a potential tool for managing chronic inflammation. Stable, uniformly dispersed spherical nanoparticles with a size of 123 nm, a surface charge of -32.1 mV, an encapsulation efficiency of 95.16%, and a drug loading of 2.36% were obtained. The CBD-SLNs exhibited sustained release properties, ensuring prolonged and controlled CBD delivery, which could potentially amplify its therapeutic effects. Additionally, we observed that CBD-SLNs significantly reduced both reactive oxygen and nitrogen species and proinflammatory cytokines in chondrocyte and macrophage cell lines, with these inhibitory effects being more pronounced than those of free CBD. In conclusion, CBD-SLNs demonstrated superiority over free CBD, highlighting its potential as an effective delivery system for CBD.


Subject(s)
Cannabidiol , Cytokines , Inflammation , Nanoparticles , Cannabidiol/chemistry , Cannabidiol/pharmacology , Nanoparticles/chemistry , Cytokines/metabolism , Inflammation/drug therapy , Humans , Animals , Free Radicals , Mice , Drug Carriers/chemistry , Lipids/chemistry , Cell Line , Reactive Oxygen Species/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Liposomes
15.
Int J Nanomedicine ; 19: 4321-4337, 2024.
Article in English | MEDLINE | ID: mdl-38770103

ABSTRACT

Purpose: Cannabidiol (CBD) is a promising therapeutic drug with low addictive potential and a favorable safety profile. However, CBD did face certain challenges, including poor solubility in water and low oral bioavailability. To harness the potential of CBD by combining it with a transdermal drug delivery system (TDDS). This innovative approach sought to develop a transdermal patch dosage form with micellar vesicular nanocarriers to enhance the bioavailability of CBD, leading to improved therapeutic outcomes. Methods: A skin-penetrating micellar vesicular nanocarriers, prepared using nano emulsion method, cannabidiol loaded transdermal nanocarriers-12 (CTD-12) was presented with a small particle size, high encapsulation efficiency, and a drug-loaded ratio for CBD. The skin permeation ability used Strat-M™ membrane with a transdermal diffusion system to evaluate the CTD and patch of CTD-12 (PCTD-12) within 24 hrs. PCTD-12 was used in a preliminary pharmacokinetic study in rats to demonstrate the potential of the developed transdermal nanocarrier drug patch for future applications. Results: In the transdermal application of CTD-12, the relative bioavailability of the formulation was 3.68 ± 0.17-fold greater than in the free CBD application. Moreover, PCTD-12 indicated 2.46 ± 0.18-fold higher relative bioavailability comparing with free CBD patch in the ex vivo evaluation. Most importantly, in the pharmacokinetics of PCTD-12, the relative bioavailability of PCTD-12 was 9.47 ± 0.88-fold higher than in the oral application. Conclusion: CTD-12, a transdermal nanocarrier, represents a promising approach for CBD delivery, suggesting its potential as an effective transdermal dosage form.


Subject(s)
Administration, Cutaneous , Biological Availability , Cannabidiol , Drug Carriers , Nanoparticles , Skin Absorption , Transdermal Patch , Cannabidiol/pharmacokinetics , Cannabidiol/chemistry , Cannabidiol/administration & dosage , Animals , Skin Absorption/drug effects , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Male , Nanoparticles/chemistry , Rats , Rats, Sprague-Dawley , Particle Size , Skin/metabolism , Skin/drug effects , Micelles
16.
AAPS PharmSciTech ; 25(5): 120, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816596

ABSTRACT

Cannabinoids, such as ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD), are effective bioactive compounds that improve the quality of life of patients with certain chronic conditions. The copolymer poly(lactic-co-glycolic acid) (PLGA) has been used to encapsulate such compounds separately, providing pharmaceutical grade edible products with unique features. In this work, a variety of PLGA based nanoformulations that maintain the natural cannabinoid profile found in the plant (known as full-spectrum) are proposed and evaluated. Three different cannabis sources were used, representing the three most relevant cannabis chemotypes. PLGA nanocapsules loaded with different amounts of cannabinoids were prepared by nanoemulsion, and were then functionalized with three of the most common coating polymers: pectin, alginate and chitosan. In order to evaluate the suitability of the proposed formulations, all the synthesized nanocapsules were characterized, and their cannabinoid content, size, zeta-potential, morphology and in vitro bioaccessibility was determined. Regardless of the employed cannabis source, its load and the functionalization, high cannabinoid content PLGA nanocapsules with suitable particle size and zeta-potential were obtained. Study of nanocapsules' morphology and in vitro release assays in gastro-intestinal media suggested that high cannabis source load may compromise the structure of nanocapsules and their release properties, and hence, the use of lower content of cannabis source is recommended.


Subject(s)
Cannabis , Nanoparticles , Particle Size , Plant Extracts , Polylactic Acid-Polyglycolic Acid Copolymer , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Cannabis/chemistry , Nanoparticles/chemistry , Plant Extracts/chemistry , Drug Liberation , Cannabinoids/chemistry , Cannabidiol/chemistry , Nanocapsules/chemistry , Drug Carriers/chemistry , Polyglycolic Acid/chemistry , Lactic Acid/chemistry , Chitosan/chemistry , Chemistry, Pharmaceutical/methods , Alginates/chemistry , Pectins/chemistry , Gastrointestinal Tract/metabolism
17.
Recent Pat Biotechnol ; 18(4): 316-331, 2024.
Article in English | MEDLINE | ID: mdl-38817009

ABSTRACT

BACKGROUND: Since the COVID-19 outbreak in early 2020, researchers and studies are continuing to find drugs and/or vaccines against the disease. As shown before, medicinal plants can be very good sources against viruses because of their secondary compounds which may cure diseases and help in survival of patients. There is a growing trend in the filed patents in this field. AIMS: In the present study, we test and suggest the inhibitory potential of five herbal based extracts including 7α-acetoxyroyleanone, Curzerene, Incensole, Harmaline, and Cannabidiol with antivirus activity on the models of the significant antiviral targets for COVID-19 like spike glycoprotein, Papain-like protease (PLpro), non-structural protein 15 (NSP15), RNA-dependent RNA polymerase and core protease by molecular docking study. METHODS: The Salvia rythida root was extracted, dried, and pulverized by a milling machine. The aqueous phase and the dichloromethane phase of the root extractive were separated by two-phase extraction using a separatory funnel. The separation was performed using the column chromatography method. The model of the important antivirus drug target of COVID-19 was obtained from the Protein Data Bank (PDB) and modified. TO study the binding difference between the studied molecules, the docking study was performed. RESULTS: These herbal compounds are extracted from Salvia rhytidea, Curcuma zeodaria, Frankincense, Peganum harmala, and Cannabis herbs, respectively. The binding energies of all compounds on COVID-19 main targets are located in the limited area of 2.22-5.30 kcal/mol. This range of binding energies can support our hypothesis for the presence of the inhibitory effects of the secondary metabolites of mentioned structures on COVID-19. Generally, among the investigated herbal structures, Cannabidiol and 7α- acetoxyroyleanone compounds with the highest binding energy have the most inhibitory potential. The least inhibitory effects are related to the Curzerene and Incensole structures by the lowest binding affinity. CONCLUSION: The general arrangement of the basis of the potential barrier of binding energies is in the order below: Cannabidiol > 7α-acetoxyroyleanone > Harmaline> Incensole > Curzerene. Finally, the range of docking scores for investigated herbal compounds on the mentioned targets indicates that the probably inhibitory effects on these targets obey the following order: main protease> RNA-dependent RNA polymerase> PLpro> NSP15> spike glycoprotein.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Cannabidiol , Molecular Docking Simulation , Plant Extracts , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Cannabidiol/chemistry , Cannabidiol/pharmacology , SARS-CoV-2/drug effects , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Harmaline/pharmacology , Harmaline/chemistry , COVID-19/virology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Patents as Topic , Secondary Metabolism
18.
J Nat Prod ; 87(6): 1501-1512, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38603577

ABSTRACT

Epithelial ovarian cancer is among the deadliest gynecological tumors worldwide. Clinical treatment usually consists of surgery and adjuvant chemo- and radiotherapies. Due to the high rate of recurrence and rapid development of drug resistance, the current focus of research is on finding effective natural products with minimal toxic side effects for treating epithelial ovarian tumors. Cannabidiol is among the most abundant cannabinoids and has a non-psychoactive effect compared to tetrahydrocannabinol, which is a key advantage for clinical application. Studies have shown that cannabidiol has antiproliferative, pro-apoptotic, cytotoxic, antiangiogenic, anti-inflammatory, and immunomodulatory properties. However, its therapeutic value for epithelial ovarian tumors remains unclear. This study aims to investigate the effects of cannabidiol on epithelial ovarian tumors and to elucidate the underlying mechanisms. The results showed that cannabidiol has a significant inhibitory effect on epithelial ovarian tumors. In vivo experiments demonstrated that cannabidiol could inhibit tumor growth by modulating the intestinal microbiome and increasing the abundance of beneficial bacteria. Western blot assays showed that cannabidiol bound to EGFR/AKT/MMPs proteins and suppressed EGFR/AKT/MMPs expression in a dose-dependent manner. Network pharmacology and molecular docking results suggested that cannabidiol could affect the EGFR/AKT/MMPs signaling pathway.


Subject(s)
Cannabidiol , Carcinoma, Ovarian Epithelial , Gastrointestinal Microbiome , Ovarian Neoplasms , Cannabidiol/pharmacology , Cannabidiol/chemistry , Gastrointestinal Microbiome/drug effects , Female , Humans , Carcinoma, Ovarian Epithelial/drug therapy , Ovarian Neoplasms/drug therapy , Animals , Mice , ErbB Receptors/metabolism , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Structure
19.
Int J Pharm ; 657: 124110, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38604539

ABSTRACT

The goal of this investigation is to develop stable ophthalmic nanoformulations containing cannabidiol (CBD) and its analog cannabidiol-valine-hemisuccinate (CBD-VHS) for improved ocular delivery. Two nanoformulations, nanoemulsion (NE) and nanomicelles (NMC), were developed and evaluated for physicochemical characteristics, drug-excipient compatibility, sterilization, thermal analysis, surface morphology, ex-vivo transcorneal permeation, corneal deposition, and stability. The saturation solubility studies revealed that among the surfactants tested, Cremophor EL had the highest solubilizing capacity for CBD (23.3 ± 0.1 mg/mL) and CBD-VHS (11.2 ± 0.2 mg/mL). The globule size for the lead CBD formulations (NE and NMC) ranged between 205 and 270 nm while CBD-VHS-NMC formulation had a particle size of about 78 nm. The sterilized formulations, except for CBD-VHS-NMC at 40 °C, were stable for three months of storage (last time point tested). Release, in terms of CBD, in the in-vitro release/diffusion studies over 18 h, were faster from the CBD-VHS nanomicelles (38 %) compared to that from the CBD nanoemulsion (16 %) and nanomicelles (33 %). Transcorneal permeation studies revealed improvement in CBD permeability and flux with both formulations; however, a greater improvement was observed with the NMC formulation compared to the NE formulation. In conclusion, the nanoformulations prepared could serve as efficient topical ocular drug delivery platforms for CBD and its analog.


Subject(s)
Administration, Ophthalmic , Cannabidiol , Cornea , Drug Stability , Emulsions , Nanoparticles , Particle Size , Solubility , Cannabidiol/administration & dosage , Cannabidiol/chemistry , Cannabidiol/pharmacokinetics , Animals , Cornea/metabolism , Cornea/drug effects , Nanoparticles/chemistry , Rabbits , Micelles , Valine/analogs & derivatives , Valine/chemistry , Valine/administration & dosage , Valine/pharmacokinetics , Drug Liberation , Lipids/chemistry , Excipients/chemistry , Permeability , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Surface-Active Agents/chemistry , Ophthalmic Solutions/administration & dosage
20.
Int J Pharm ; 657: 124173, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38685441

ABSTRACT

Cannabidiol (CBD) suffers from poor oral bioavailability due to poor aqueous solubility and high metabolism, and is generally administered in liquid lipid vehicles. Solid-state formulations of CBD have been developed, but their ability to increase the oral bioavailability has not yet been proven in vivo. Various approaches are investigated to increase this bioavailability. This study aimed to demonstrate the enhancement of the oral bioavailability of oral solid dosage forms of amorphous CBD and lipid-based CBD formulation compared to crystalline CBD. Six piglets received the three formulations, in a cross-over design. CBD and 7 - COOH - CBD, a secondary metabolite used as an indicator of hepatic degradation, were analyzed in plasma. A 10.9-fold and 6.8-fold increase in oral bioavailability was observed for the amorphous and lipid formulations, respectively. However, the lipid-based formulation allowed reducing the inter-variability when administered to fasted animals. An entero-hepatic cycle was confirmed for amorphous formulations. Finally, this study showed that the expected protective effect of lipids against hepatic degradation of the lipid-based formulation did not occur, since the ratio CBD/metabolite was higher than that of the amorphous one.


Subject(s)
Biological Availability , Cannabidiol , Lipids , Animals , Cannabidiol/pharmacokinetics , Cannabidiol/administration & dosage , Cannabidiol/blood , Cannabidiol/chemistry , Swine , Administration, Oral , Lipids/chemistry , Cross-Over Studies , Liver/metabolism , Drug Compounding , Solubility , Chemistry, Pharmaceutical/methods , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...