Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 368
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928068

ABSTRACT

As a low-calorie sugar, D-allulose is produced from D-fructose catalyzed by D-allulose 3-epimerase (DAE). Here, to improve the catalytic activity, stability, and processability of DAE, we reported a novel method by forming organic-inorganic hybrid nanoflowers (NF-DAEs) and co-immobilizing them on resins to form composites (Re-NF-DAEs). NF-DAEs were prepared by combining DAE with metal ions (Co2+, Cu2+, Zn2+, Ca2+, Ni2+, Fe2+, and Fe3+) in PBS buffer, and were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and X-ray diffraction. All of the NF-DAEs showed higher catalytic activities than free DAE, and the NF-DAE with Ni2+ (NF-DAE-Ni) reached the highest relative activity of 218%. The NF-DAEs improved the thermal stability of DAE, and the longest half-life reached 228 min for NF-DAE-Co compared with 105 min for the free DAE at 55 °C. To further improve the recycling performance of the NF-DAEs in practical applications, we combined resins and NF-DAEs to form Re-NF-DAEs. Resins and NF-DAEs co-effected the performance of the composites, and ReA (LXTE-606 neutral hydrophobic epoxy-based polypropylene macroreticular resins)-based composites (ReA-NF-DAEs) exhibited outstanding relative activities, thermal stabilities, storage stabilities, and processabilities. The ReA-NF-DAEs were able to be reused to catalyze the conversion from D-fructose to D-allulose, and kept more than 60% of their activities after eight cycles.


Subject(s)
Enzyme Stability , Enzymes, Immobilized , Enzymes, Immobilized/chemistry , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Nanostructures/chemistry , Fructose/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
2.
Int J Biol Macromol ; 273(Pt 1): 133027, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857717

ABSTRACT

D-allulose, a low-calorie rare sugar catalyzed by D-allulose 3-epimerase (DAE), is highly sought after for its potential health benefits. However, poor reusability and stability of DAE limited its popularization in industrial applications. Although metal-organic frameworks (MOFs) offer a promising enzyme platform for enzyme immobilization, developing customized strategies for MOF immobilization of enzymes remains challenging. In this study, we introduce a designable strategy involving the construction of bimetal-organic frameworks (ZnCo-MOF) based on metal ions compatibility. The DAE@MOFs materials were prepared and characterized, and the immobilization of DAE and the enzymatic characteristics of the MOF-immobilized DAE were subsequently evaluated. Remarkably, DAE@ZnCo-MOF exhibited superior recyclability which could maintain 95 % relative activity after 8 consecutive cycles. The storage stability is significantly improved compared to the free form, with a relative activity of 116 % remaining after 30 days. Molecular docking was also employed to investigate the interaction between DAE and the components of MOFs synthesis. The results demonstrate that the DAE@ZnCo-MOF exhibited enhanced catalytic efficiency and increased stability. This study introduces a viable and adaptable MOF-based immobilization strategy for enzymes, which holds the potential to expand the implementation of enzyme biocatalysts in a multitude of disciplines.


Subject(s)
Enzymes, Immobilized , Metal-Organic Frameworks , Molecular Docking Simulation , Metal-Organic Frameworks/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Enzyme Stability , Ions/chemistry , Fructose
3.
Nat Commun ; 15(1): 3897, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719841

ABSTRACT

Understanding enzyme catalysis as connected to protein motions is a major challenge. Here, based on temperature kinetic studies combined with isotope effect measurements, we obtain energetic description of C-H activation in NAD-dependent UDP-glucuronic acid C4 epimerase. Approach from the ensemble-averaged ground state (GS) to the transition state-like reactive conformation (TSRC) involves, alongside uptake of heat ( Δ H ‡ = 54 kJ mol-1), significant loss in entropy ( - T Δ S ‡ = 20 kJ mol-1; 298 K) and negative activation heat capacity ( Δ C p ‡ = -0.64 kJ mol-1 K-1). Thermodynamic changes suggest the requirement for restricting configurational freedom at the GS to populate the TSRC. Enzyme variants affecting the electrostatic GS preorganization reveal active-site interactions important for precise TSRC sampling and H-transfer. Collectively, our study captures thermodynamic effects associated with TSRC sampling and establishes rigid positioning for C-H activation in an enzyme active site that requires conformational flexibility in fulfillment of its natural epimerase function.


Subject(s)
Catalytic Domain , Thermodynamics , Kinetics , Protein Conformation , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Carbohydrate Epimerases/genetics , Biocatalysis , Catalysis , Models, Molecular
4.
Int J Biol Macromol ; 269(Pt 1): 131986, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697423

ABSTRACT

D-allulose, a highly desirable sugar substitute, is primarily produced using the D-allulose 3-epimerase (DAE). However, the availability of usable DAE enzymes is limited. In this study, we discovered and engineered a novel DAE Rum55, derived from a human gut bacterium Ruminococcus sp. CAG55. The activity of Rum55 was strictly dependent on the presence of Co2+, and it exhibited an equilibrium conversion rate of 30.6 % and a half-life of 4.5 h at 50 °C. To enhance its performance, we engineered the interface interaction of Rum55 to stabilize its tetramer structure, and the best variant E268R was then attached with a self-assembling peptide to form active enzyme aggregates as carrier-free immobilization. The half-life of the best variant E268R-EKL16 at 50 °C was dramatically increased 30-fold to 135.3 h, and it maintained 90 % of its activity after 13 consecutive reaction cycles. Additionally, we identified that metal ions played a key role in stabilizing the tetramer structure of Rum55, and the dependence on metal ions for E268R-EKL16 was significantly reduced. This study provides a useful route for improving the thermostability of DAEs, opening up new possibilities for the industrial production of D-allulose.


Subject(s)
Enzyme Stability , Protein Engineering , Ruminococcus , Ruminococcus/enzymology , Ruminococcus/genetics , Protein Engineering/methods , Peptides/chemistry , Peptides/metabolism , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Kinetics , Models, Molecular , Fructose/metabolism , Fructose/chemistry
5.
Enzyme Microb Technol ; 178: 110448, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38657401

ABSTRACT

D-allulose is a naturally occurring rare sugar and beneficial to human health. However, the efficient biosynthesis of D-allulose remains a challenge. Here, we mined a new D-tagatose 3-epimerase from Kroppenstedtia eburnean (KeDt3e) with high catalytic efficiency. Initially, crucial factors contributing to the low conversion of KeDt3e were identified through crystal structure analysis, density functional theory calculations (DFT), and molecular dynamics (MD) simulations. Subsequently, based on the mechanism, combining restructuring the flexible region, proline substitution based onconsensus sequence analysis, introducing disulfide bonds, and grafting properties, and reshaping the active center, the optimal mutant M5 of KeDt3e was obtained with enhanced thermostability and activity. The optimal mutant M5 exhibited an enzyme activity of 130.8 U/mg, representing a 1.2-fold increase; Tm value increased from 52.7 °C to 71.2 °C; and half-life at 55 °C extended to 273.7 min, representing a 58.2-fold improvement, and the detailed mechanism of performance improvement was analyzed. Finally, by screening the ribosome-binding site (RBS) of the optimal mutant M5 recombinant bacterium (G01), the engineered strain G08 with higher expression levels was obtained. The engineered strain G08 catalyzed 500 g/L D-fructose to produce 172.4 g/L D-allulose, with a conversion of 34.4% in 0.5 h and productivity of 344.8 g/L/h on a 1 L scale. This study presents a promising approach for industrial-scale production of D-allulose.


Subject(s)
Carbohydrate Epimerases , Enzyme Stability , Hexoses , Hexoses/metabolism , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Carbohydrate Epimerases/chemistry , Molecular Dynamics Simulation , Fructose/metabolism , Kinetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Substrate Specificity , Protein Engineering , Racemases and Epimerases/metabolism , Racemases and Epimerases/genetics , Racemases and Epimerases/chemistry
6.
FEBS Lett ; 598(11): 1422-1437, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649293

ABSTRACT

Among the epimerases specific to alginate, some of them in Azotobacter genera convert ß-d-mannuronic acid to α-l-guluronic acid but also have lyase activity to degrade alginate. The remarkable characteristics of these epimerases make it a promising enzyme for tailoring alginates to meet specific demands. Here, we determined the structure of the bifunctional mannuronan C-5 epimerase AlgE3 from Azotobacter chroococcum (AcAlgE3) in complex with several mannuronic acid oligomers as well as in apo form, which allowed us to elucidate the binding manner of each mannuronic acid oligomer, and the structural plasticity, which is dependent on calcium ions. Moreover, a comprehensive analysis of the lyase activity profiles of AcAlgE3 combined with structural characteristics explained the preference for different chain length oligomers.


Subject(s)
Alginates , Azotobacter , Carbohydrate Epimerases , Azotobacter/enzymology , Azotobacter/metabolism , Alginates/chemistry , Alginates/metabolism , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Carbohydrate Epimerases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Hexuronic Acids/chemistry , Hexuronic Acids/metabolism , Substrate Specificity , Calcium/metabolism , Calcium/chemistry , Models, Molecular , Crystallography, X-Ray , Protein Binding , Catalytic Domain
7.
Bioprocess Biosyst Eng ; 47(6): 841-850, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38676737

ABSTRACT

D-Allulose 3-epimerase (DAE) is a vital biocatalyst for the industrial synthesis of D-allulose, an ultra-low calorie rare sugar. However, limited thermostability of DAEs hinders their use at high-temperature production. In this research, hyperthermophilic TI-DAE (Tm = 98.4 ± 0.7 ℃) from Thermotoga sp. was identified via in silico screening. A comparative study of the structure and function of site-directed saturation mutagenesis mutants pinpointed the residue I100 as pivotal in maintaining the high-temperature activity and thermostability of TI-DAE. Employing TI-DAE as a biocatalyst, D-allulose was produced from D-fructose with a conversion rate of 32.5%. Moreover, TI-DAE demonstrated excellent catalytic synergy with glucose isomerase CAGI, enabling the one-step conversion of D-glucose to D-allulose with a conversion rate of 21.6%. This study offers a promising resource for the enzyme engineering of DAEs and a high-performance biocatalyst for industrial D-allulose production.


Subject(s)
Thermotoga , Thermotoga/enzymology , Thermotoga/genetics , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Carbohydrate Epimerases/biosynthesis , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Racemases and Epimerases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/biosynthesis , Fructose/metabolism , Fructose/biosynthesis , Fructose/chemistry , Enzyme Stability , Biocatalysis , Mutagenesis, Site-Directed , Hot Temperature
8.
J Biol Chem ; 299(10): 105200, 2023 10.
Article in English | MEDLINE | ID: mdl-37660908

ABSTRACT

The sugar, 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, was first identified ∼40 years ago in the O-antigen of Pseudomonas aeruginosa O:3,a,d. Since then, it has been observed on the O-antigens of various pathogenic Gram-negative bacteria including Bordetella pertussis, Escherichia albertii, and Pseudomonas mediterranea. Previous studies have established that five enzymes are required for its biosynthesis beginning with uridine dinucleotide (UDP)-N-acetyl-d-glucosamine (UDP-GlcNAc). The final step in the pathway is catalyzed by a 2-epimerase, which utilizes UDP-2,3-diacetamido-2,3-dideoxy-d-glucuronic acid as its substrate. Curious as to whether this biochemical pathway is found in extreme thermophiles, we examined the published genome sequence for Thermus thermophilus HB27 and identified five ORFs that could possibly encode for the required enzymes. The focus of this investigation is on the ORF WP_011172736, which we demonstrate encodes for a 2-epimerase. For this investigation, ten high resolution X-ray crystallographic structures were determined to resolutions of 2.3 Å or higher. The models have revealed the manner in which the 2-epimerase anchors its UDP-sugar substrate as well as its UDP-sugar product into the active site. In addition, this study reveals for the first time the manner in which any sugar 2-epimerase can simultaneously bind UDP-sugars in both the active site and the allosteric binding region. We have also demonstrated that the T. thermophilus enzyme is allosterically regulated by UDP-GlcNAc. Whereas the sugar 2-epimerases that function on UDP-GlcNAc have been the focus of past biochemical and structural analyses, this is the first detailed investigation of a 2-epimerase that specifically utilizes UDP-2,3-diacetamido-2,3-dideoxy-d-glucuronic acid as its substrate.


Subject(s)
Racemases and Epimerases , Sugars , Thermus thermophilus , Carbohydrate Epimerases/chemistry , Catalytic Domain , O Antigens , Racemases and Epimerases/metabolism , Uridine Diphosphate Sugars , Thermus thermophilus/enzymology , Biocatalysis
9.
Chembiochem ; 24(24): e202300555, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37769151

ABSTRACT

Uridine diphosphate N-acetylglucosamine 2-epimerase (GNE) is a key enzyme in the sialic acid biosynthesis pathway. Sialic acids are primarily terminal carbohydrates on glycans and play fundamental roles in health and disease. In search of effective GNE inhibitors not based on a carbohydrate scaffold, we performed a high-throughput screening campaign of 68,640 drug-like small molecules against recombinant GNE using a UDP detection assay. We validated nine of the primary actives with an orthogonal real-time NMR assay and verified their IC50 values in the low micromolar to nanomolar range manually. Stability and solubility studies revealed three compounds for further evaluation. Thermal shift assays, analytical size exclusion, and interferometric scattering microscopy demonstrated that the GNE inhibitors acted on the oligomeric state of the protein. Finally, hydrogen-deuterium exchange mass spectrometry (HDX-MS) revealed which sections of GNE were shifted upon the addition of the inhibitors. In summary, we have identified three small molecules as GNE inhibitors with high potency in vitro, which serve as promising candidates to modulate sialic acid biosynthesis in more complex systems.


Subject(s)
Carbohydrate Epimerases , N-Acetylneuraminic Acid , Humans , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Sialic Acids/chemistry , Carbohydrates , Polysaccharides
10.
Acta Crystallogr D Struct Biol ; 79(Pt 7): 585-595, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37314406

ABSTRACT

Mannose 2-epimerase (ME), a member of the acylglucosamine 2-epimerase (AGE) superfamily that catalyzes epimerization of D-mannose and D-glucose, has recently been characterized to have potential for D-mannose production. However, the substrate-recognition and catalytic mechanism of ME remains unknown. In this study, structures of Runella slithyformis ME (RsME) and its D254A mutant [RsME(D254A)] were determined in their apo forms and as intermediate-analog complexes [RsME-D-glucitol and RsME(D254A)-D-glucitol]. RsME possesses the (α/α)6-barrel of the AGE superfamily members but has a unique pocket-covering long loop (loopα7-α8). The RsME-D-glucitol structure showed that loopα7-α8 moves towards D-glucitol and closes the active pocket. Trp251 and Asp254 in loopα7-α8 are only conserved in MEs and interact with D-glucitol. Kinetic analyses of the mutants confirmed the importance of these residues for RsME activity. Moreover, the structures of RsME(D254A) and RsME(D254A)-D-glucitol revealed that Asp254 is vital for binding the ligand in a correct conformation and for active-pocket closure. Docking calculations and structural comparison with other 2-epimerases show that the longer loopα7-α8 in RsME causes steric hindrance upon binding to disaccharides. A detailed substrate-recognition and catalytic mechanism for monosaccharide-specific epimerization in RsME has been proposed.


Subject(s)
Mannose , Racemases and Epimerases , Mannose/metabolism , Substrate Specificity , Carbohydrate Epimerases/chemistry
11.
Essays Biochem ; 67(3): 615-627, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36876890

ABSTRACT

Alginate is a polysaccharide consisting of ß-D-mannuronate (M) and α-L-guluronate (G) produced by brown algae and some bacterial species. Alginate has a wide range of industrial and pharmaceutical applications, owing mainly to its gelling and viscosifying properties. Alginates with high G content are considered more valuable since the G residues can form hydrogels with divalent cations. Alginates are modified by lyases, acetylases, and epimerases. Alginate lyases are produced by alginate-producing organisms and by organisms that use alginate as a carbon source. Acetylation protects alginate from lyases and epimerases. Following biosynthesis, alginate C-5 epimerases convert M to G residues at the polymer level. Alginate epimerases have been found in brown algae and alginate-producing bacteria, predominantly Azotobacter and Pseudomonas species. The best characterised epimerases are the extracellular family of AlgE1-7 from Azotobacter vinelandii(Av). AlgE1-7 all consist of combinations of one or two catalytic A-modules and one to seven regulatory R-modules, but even though they are sequentially and structurally similar, they create different epimerisation patterns. This makes the AlgE enzymes promising for tailoring of alginates to have the desired properties. The present review describes the current state of knowledge regarding alginate-active enzymes with focus on epimerases, characterisation of the epimerase reaction, and how alginate epimerases can be used in alginate production.


Subject(s)
Azotobacter vinelandii , Lyases , Racemases and Epimerases , Alginates/chemistry , Carbohydrate Epimerases/chemistry
12.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1180-1191, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048157

ABSTRACT

D-Allulose, a low-calorie rare sugar with various physiological functions, is mainly produced through the isomerization of D-fructose by ketose 3-epimerases (KEases), which exhibit various substrate specificities. A novel KEase from a Clostridia bacterium (CDAE) was identified to be a D-allulose 3-epimerase and was further characterized as thermostable and metal-dependent. In order to explore its structure-function relationship, the crystal structure of CDAE was determined using X-ray diffraction at 2.10 Šresolution, revealing a homodimeric D-allulose 3-epimerase structure with extensive interactions formed at the dimeric interface that contribute to structure stability. Structural analysis identified the structural features of CDAE, which displays a common (ß/α)8-TIM barrel and an ordered Mn2+-binding architecture at the active center, which may explain the positive effects of Mn2+ on the activity and stability of CDAE. Furthermore, comparison of CDAE and other KEase structures revealed several structural differences, highlighting the remarkable differences in enzyme-substrate binding at the O4, O5 and O6 sites of the bound substrate, which are mainly induced by distinct hydrophobic pockets in the active center. The shape and hydrophobicity of this pocket appear to produce the differences in specificity and affinity for substrates among KEase family enzymes. Exploration of the crystal structure of CDAE provides a better understanding of its structure-function relationship, which might provide a basis for molecular modification of CDAE and further provides a reference for other KEases.


Subject(s)
Carbohydrate Epimerases , Racemases and Epimerases , Carbohydrate Epimerases/chemistry , Fructose/chemistry , Substrate Specificity
13.
Appl Environ Microbiol ; 88(3): e0183621, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34878812

ABSTRACT

The structure and functional properties of alginates are dictated by the monomer composition and molecular weight distribution. Mannuronan C-5-epimerases determine the monomer composition by catalyzing the epimerization of ß-d-mannuronic acid (M) residues into α-l-guluronic acid (G) residues. The molecular weight is affected by alginate lyases, which catalyze a ß-elimination mechanism that cleaves alginate chains. The reaction mechanisms for the epimerization and lyase reactions are similar, and some enzymes can perform both reactions. These dualistic enzymes share high sequence identity with mannuronan C-5-epimerases without lyase activity. The mechanism behind their activity and the amino acid residues responsible for it are still unknown. We investigate mechanistic determinants involved in the bifunctional epimerase and lyase activity of AlgE7 from Azotobacter vinelandii. Based on sequence analyses, a range of AlgE7 variants were constructed and subjected to activity assays and product characterization by nuclear magnetic resonance (NMR) spectroscopy. Our results show that calcium promotes lyase activity, whereas NaCl reduces the lyase activity of AlgE7. By using defined polymannuronan (polyM) and polyalternating alginate (polyMG) substrates, the preferred cleavage sites of AlgE7 were found to be M|XM and G|XM, where X can be either M or G. From the study of AlgE7 mutants, R148 was identified as an important residue for the lyase activity, and the point mutant R148G resulted in an enzyme with only epimerase activity. Based on the results obtained in the present study, we suggest a unified catalytic reaction mechanism for both epimerase and lyase activities where H154 functions as the catalytic base and Y149 functions as the catalytic acid. IMPORTANCE Postharvest valorization and upgrading of algal constituents are promising strategies in the development of a sustainable bioeconomy based on algal biomass. In this respect, alginate epimerases and lyases are valuable enzymes for tailoring the functional properties of alginate, a polysaccharide extracted from brown seaweed with numerous applications in food, medicine, and material industries. By providing a better understanding of the catalytic mechanism and of how the two enzyme actions can be altered by changes in reaction conditions, this study opens further applications of bacterial epimerases and lyases in the enzymatic tailoring of alginate polymers.


Subject(s)
Azotobacter vinelandii , Alginates/metabolism , Azotobacter vinelandii/genetics , Carbohydrate Epimerases/chemistry , Hexuronic Acids/metabolism , Polysaccharide-Lyases/metabolism
14.
Int J Mol Sci ; 22(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34639151

ABSTRACT

Thermal stability is a limiting factor for effective application of D-psicose 3-epimerase (DPEase) enzyme. Recently, it was reported that the thermal stability of DPEase was improved by immobilizing enzymes on graphene oxide (GO) nanoparticles. However, the detailed mechanism is not known. In this study, we investigated interaction details between GO and DPEase by performing molecular dynamics (MD) simulations. The results indicated that the domain (K248 to D268) of DPEase was an important anchor for immobilizing DPEase on GO surface. Moreover, the strong interactions between DPEase and GO can prevent loop α1'-α1 and ß4-α4 of DPEase from the drastic fluctuation. Since these two loops contained active site residues, the geometry of the active pocket of the enzyme remained stable at high temperature after the DPEase was immobilized by GO, which facilitated efficient catalytic activity of the enzyme. Our research provided a detailed mechanism for the interaction between GO and DPEase at the nano-biology interface.


Subject(s)
Agrobacterium tumefaciens/enzymology , Carbohydrate Epimerases/chemistry , Enzymes, Immobilized/chemistry , Graphite/chemistry , Hot Temperature , Carbohydrate Epimerases/metabolism , Catalytic Domain , Enzyme Stability , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Protein Conformation
15.
Carbohydr Res ; 510: 108445, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34607125

ABSTRACT

The synthesis of analogues of natural enzyme substrates can be used to help deduce enzymatic mechanisms. N-Acetylmannosamine-6-phosphate 2-epimerase is an enzyme in the bacterial sialic acid catabolic pathway. To investigate whether the mechanism of this enzyme involves a re-protonation mechanism by the same neighbouring lysine that performed the deprotonation or a unique substrate-assisted proton displacement mechanism involving the substrate C5 hydroxyl, the syntheses of two analogues of the natural substrate, N-acetylmannosamine-6-phosphate, are described. In these novel analogues, the C5 hydroxyl has been replaced with a proton and a methyl ether respectively. As recently reported, Staphylococcus aureus N-acetylmannosamine-6-phosphate 2-epimerase was co-crystallized with these two compounds. The 5-deoxy variant bound to the enzyme active site in a different orientation to the natural substrate, while the 5-methoxy variant did not bind, adding to the evidence that this enzyme uses a substrate-assisted proton displacement mechanism. This mechanistic information may help in the design of potential antibacterial drug candidates.


Subject(s)
Bacterial Proteins/metabolism , Carbohydrate Epimerases/metabolism , Hexosamines/biosynthesis , Sugar Phosphates/biosynthesis , Bacterial Proteins/chemistry , Carbohydrate Conformation , Carbohydrate Epimerases/chemistry , Hexosamines/chemistry , Staphylococcus aureus/enzymology , Sugar Phosphates/chemistry
16.
ACS Appl Mater Interfaces ; 13(41): 49433-49444, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34612033

ABSTRACT

Multienzymatic cascade reactions are a powerful strategy for straightforward and highly specific synthesis of complex materials, such as active substances in drugs. Cross-inhibitions and incompatible reaction steps, however, often limit enzymatic activity and thus the conversion. Such limitations occur, e.g., in the enzymatic synthesis of the biologically active sialic acid cytidine monophosphate N-acetylneuraminic acid (CMP-Neu5Ac). We addressed this challenge by developing a confinement and compartmentalization concept of hydrogel-immobilized enzymes for improving the efficiency of the enzyme cascade reaction. The three enzymes required for the synthesis of CMP-Neu5Ac, namely, N-acyl-d-glucosamine 2-epimerase (AGE), N-acetylneuraminate lyase (NAL), and CMP-sialic acid synthetase (CSS), were immobilized into bulk hydrogels and microstructured hydrogel-enzyme-dot arrays, which were then integrated into microfluidic devices. To overcome the cytidine triphosphate (CTP) cross-inhibition of AGE and NAL, only a low CTP concentration was applied and continuously conveyed through the device. In a second approach, the enzymes were compartmentalized in separate reaction chambers of the microfluidic device to completely avoid cross-inhibitions and enable the use of higher substrate concentrations. Immobilization efficiencies of up to 25% and pronounced long-term activity of the immobilized enzymes for several weeks were realized. Moreover, immobilized enzymes were less sensitive to inhibition and the substrate-channeling effect between immobilized enzymes promoted the overall conversion in the trienzymatic cascade reaction. Based on this, CMP-Neu5Ac was successfully synthesized by immobilized enzymes in noncompartmentalized and compartmentalized microfluidic devices. This study demonstrates the high potential of immobilizing enzymes in (compartmentalized) microfluidic devices to perform multienzymatic cascade reactions despite cross-inhibitions under continuous flow conditions. Due to the ease of enzyme immobilization in hydrogels, this concept is likely applicable for many cascade reactions with or without cross-inhibition characteristics.


Subject(s)
Cytidine Monophosphate/analogs & derivatives , Enzymes, Immobilized/chemistry , Hydrogels/chemistry , Sialic Acids/chemical synthesis , Carbohydrate Epimerases/chemistry , Carrier Proteins/chemistry , Cytidine Monophosphate/chemical synthesis , Lab-On-A-Chip Devices , Microfluidics/instrumentation , Microfluidics/methods , N-Acylneuraminate Cytidylyltransferase/chemistry , Oxo-Acid-Lyases/chemistry , Polyethylene Glycols/chemistry
17.
J Biol Chem ; 297(4): 101113, 2021 10.
Article in English | MEDLINE | ID: mdl-34437902

ABSTRACT

There are five known general catalytic mechanisms used by enzymes to catalyze carbohydrate epimerization. The amino sugar epimerase N-acetylmannosamine-6-phosphate 2-epimerase (NanE) has been proposed to use a deprotonation-reprotonation mechanism, with an essential catalytic lysine required for both steps. However, the structural determinants of this mechanism are not clearly established. We characterized NanE from Staphylococcus aureus using a new coupled assay to monitor NanE catalysis in real time and found that it has kinetic constants comparable with other species. The crystal structure of NanE from Staphylococcus aureus, which comprises a triosephosphate isomerase barrel fold with an unusual dimeric architecture, was solved with both natural and modified substrates. Using these substrate-bound structures, we identified the following active-site residues lining the cleft at the C-terminal end of the ß-strands: Gln11, Arg40, Lys63, Asp124, Glu180, and Arg208, which were individually substituted and assessed in relation to the mechanism. From this, we re-evaluated the central role of Glu180 in this mechanism alongside the catalytic lysine. We observed that the substrate is bound in a conformation that ideally positions the C5 hydroxyl group to be activated by Glu180 and donate a proton to the C2 carbon. Taken together, we propose that NanE uses a novel substrate-assisted proton displacement mechanism to invert the C2 stereocenter of N-acetylmannosamine-6-phosphate. Our data and mechanistic interpretation may be useful in the development of inhibitors of this enzyme or in enzyme engineering to produce biocatalysts capable of changing the stereochemistry of molecules that are not amenable to synthetic methods.


Subject(s)
Bacterial Proteins/chemistry , Carbohydrate Epimerases/chemistry , Hexosamines/chemistry , Staphylococcus aureus/enzymology , Sugar Phosphates/chemistry , Amino Acid Substitution , Bacterial Proteins/genetics , Carbohydrate Epimerases/genetics , Catalysis , Hexosamines/genetics , Hexosamines/metabolism , Mutation, Missense , Protein Conformation, beta-Strand , Protein Domains , Staphylococcus aureus/genetics , Sugar Phosphates/genetics , Sugar Phosphates/metabolism
18.
Mol Biotechnol ; 63(6): 534-543, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33782841

ABSTRACT

In recent years, with the increasing public health awareness, low-calorie rare sugars have received more attention on a global scale. D-Allulose, the C-3 epimer of D-fructose, is a representative rare sugar. It displays high sweetness and excellent physiological functions, but only provides a caloric value of 0.4 kcal/g. D-Allulose 3-epimerase (DAEase) is indispensable in D-allulose production. In this study, a putative DAEase from Thermoclostridium caenicola was identified and characterized. The novel T. caenicola DAEase displayed maximum activity at pH 7.5 and 65 °C in the presence of 1 mM Co2+. The half-life (t1/2) at 50 °C was 13.6 h, and the melting temperature (Tm) was 62.4 °C. It was strictly metal-dependent, and the addition of Co2+ remarkably enhanced its thermostability, with a 5.4-fold increase in t1/2 value at 55 °C and 4.8 °C increase in Tm. Furthermore, DAEase displayed high relative activity (89.0%) at a weakly acidic pH 6.5 and produced 139.8 g/L D-allulose from 500 g/L D-fructose, achieving a conversion ratio of 28.0%. These findings suggest that T. caenicola DAEase is a promising biocatalyst for the production of D-allulose.


Subject(s)
Carbohydrate Epimerases/chemistry , Clostridiales/enzymology , Enzyme Stability/genetics , Fructose/chemistry , Carbohydrate Epimerases/genetics , Fructose/genetics , Kinetics , Substrate Specificity
19.
Microb Cell Fact ; 20(1): 60, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33663507

ABSTRACT

BACKGROUND: D-Allulose is an ultra-low calorie sugar of multifarious health benefits, including anti-diabetic and anti-obesity potential. D-Allulose 3-epimerase family enzymes catalyze biosynthesis of D-allulose via epimerization of D-fructose. RESULTS: A novel D-allulose 3-epimerase (DaeB) was cloned from a plant probiotic strain, Bacillus sp. KCTC 13219, and expressed in Bacillus subtilis cells. The purified protein exhibited substantial epimerization activity in a broad pH spectrum, 6.0-11.0. DaeB was able to catalyze D-fructose to D-allulose bioconversion at the temperature range of 35 °C to 70 °C, exhibiting at least 50 % activity. It displaced excessive heat stability, with the half-life of 25 days at 50 °C, and high turnover number (kcat 367 s- 1). The coupling of DaeB treatment and yeast fermentation of 700 g L- 1 D-fructose solution yielded approximately 200 g L- 1 D-allulose, and 214 g L- 1 ethanol. CONCLUSIONS: The novel D-allulose 3-epimerase of Bacillus sp. origin discerned a high magnitude of heat stability along with exorbitant epimerization ability. This biocatalyst has enormous potential for the large-scale production of D-allulose.


Subject(s)
Bacillus/enzymology , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Fructose/biosynthesis , Bacillus/genetics , Biocatalysis , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/isolation & purification , Enzyme Stability , Ethanol/metabolism , Fermentation , Hot Temperature , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Phylogeny , Protein Structure, Secondary , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Substrate Specificity
20.
Int J Biol Macromol ; 168: 663-675, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33220370

ABSTRACT

Given the excellent characteristics of alginate, it is an industrially important polysaccharide. Mannuronan C5-epimerase (MC5E) is an alginate-modifying enzyme that catalyzes the conversion of ß-D-mannuronate (M) to its C5 epimer α-L-guluronate (G) in alginate. Both the biological activities and physical properties of alginate are determined by M/G ratios and distribution patterns. Therefore, MC5E is regarded as a biotechnological tool for modifying and processing alginate. Various MC5Es derived from brown algae, Pseudomonas and Azotobacter have been isolated and characterized. With the rapid development of structural biology, the crystal structures and catalytic mechanisms of several MC5Es have been elucidated. It is necessary to comprehensively understand the research status of this alginate-modifying enzyme. In this review, the properties and potential applications of MC5Es isolated from different kinds of organisms are summarized and reviewed. Moreover, future research directions of MC5Es as well as strategies to enhance their properties are elucidated, highlighted, and prospected.


Subject(s)
Alginates/chemistry , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Azotobacter/enzymology , Bacterial Proteins/metabolism , Hexuronic Acids/chemistry , Phaeophyceae/enzymology , Protein Conformation , Protein Engineering , Pseudomonas/enzymology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...