Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.345
Filter
1.
Geobiology ; 22(4): e12608, 2024.
Article in English | MEDLINE | ID: mdl-38946067

ABSTRACT

Methane is a potent greenhouse gas that enters the marine system in large quantities at seafloor methane seeps. At a newly discovered seep site off the coast of Point Dume, CA, ~ meter-scale carbonate chimneys host microbial communities that exhibit the highest methane-oxidizing potential recorded to date. Here, we provide a detailed assessment of chimney geobiology through correlative mineralogical, geochemical, and microbiological studies of seven chimney samples in order to clarify the longevity and heterogeneity of these highly productive systems. U-Th dating indicated that a methane-driven carbonate precipitating system at Point Dume has existed for ~20 Kyr, while millimeter-scale variations in carbon and calcium isotopic values, elemental abundances, and carbonate polymorphs revealed changes in carbon source, precipitation rates, and diagenetic processes throughout the chimneys' lifespan. Microbial community analyses revealed diverse modern communities with prominent anaerobic methanotrophs, sulfate-reducing bacteria, and Anaerolineaceae; communities were more similar within a given chimney wall transect than in similar horizons of distinct structures. The chimneys represent long-lived repositories of methane-oxidizing communities and provide a window into how carbon can be transformed, sequestered, and altered over millennia at the Point Dume methane seep.


Subject(s)
Bacteria , Carbonates , Methane , Methane/metabolism , Carbonates/metabolism , Carbonates/chemistry , Bacteria/metabolism , Bacteria/classification , California , Seawater/microbiology , Seawater/chemistry , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Ecosystem , Archaea/metabolism
2.
Astrobiology ; 24(7): 669-683, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979620

ABSTRACT

Mars has been exposed to ionizing radiation for several billion years, and as part of the search for life on the Red Planet, it is crucial to understand the impact of radiation on biosignature preservation. Several NASA and ESA missions are looking for evidence of ancient life in samples collected at depths shallow enough that they have been impacted by galactic cosmic rays (GCRs). In this study, we exposed a diverse set of Mars analog samples to 0.9 Megagray (MGy) of gamma radiation to mimic 15 million years of exposure on the Martian surface. We measured no significant impact of GCRs on the total organic carbon (TOC) and bulk stable C isotopes in samples with initial TOC concentration > 0.1 wt. %; however, diagnostic molecular biosignatures presented a wide range of degradation that didn't correlate to factors like mineralogy, TOC, water content, and surface area. Exposure dating suggests that the surface of Gale crater has been irradiated at more than five times our dose, yet using this relatively low dose and "best-case scenario" geologically recalcitrant biomarkers, large and variable losses were nevertheless evident. Our results empasize the importance of selecting sampling sites at depth or recently exposed at the Martian surface.


Subject(s)
Biomarkers , Clay , Cosmic Radiation , Extraterrestrial Environment , Mars , Clay/chemistry , Biomarkers/analysis , Extraterrestrial Environment/chemistry , Carbonates/chemistry , Carbonates/analysis , Exobiology/methods , Aluminum Silicates/chemistry , Carbon Isotopes/analysis
3.
Astrobiology ; 24(7): 734-753, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38985714

ABSTRACT

Jotun springs in Svalbard, Norway, is a rare warm environment in the Arctic that actively forms travertine. In this study, we assessed the microbial ecology of Jotun's active (aquatic) spring and dry spring transects. We evaluated the microbial preservation potential and mode, as well as the astrobiological relevance of the travertines to marginal carbonates mapped at Jezero Crater on Mars (the Mars 2020 landing site). Our results revealed that microbial communities exhibited spatial dynamics controlled by temperature, fluid availability, and geochemistry. Amorphous carbonates and silica precipitated within biofilm and on the surface of filamentous microorganisms. The water discharged at the source is warm, with near neutral pH, and undersaturated in silica. Hence, silicification possibly occurred through cooling, dehydration, and partially by a microbial presence or activities that promote silica precipitation. CO2 degassing and possible microbial contributions induced calcite precipitation and travertine formation. Jotun revealed that warm systems that are not very productive in carbonate formation may still produce significant carbonate buildups and provide settings favorable for fossilization through silicification and calcification. Our findings suggest that the potential for amorphous silica precipitation may be essential for Jezero Crater's marginal carbonates because it significantly increases the preservation potential of putative martian organisms.


Subject(s)
Exobiology , Hot Springs , Arctic Regions , Hot Springs/microbiology , Hot Springs/chemistry , Mars , Silicon Dioxide/chemistry , Svalbard , Carbonates/chemistry , Carbonates/analysis , Microbiota , Temperature , Biofilms
4.
J Environ Manage ; 365: 121300, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955041

ABSTRACT

Chromium contamination from abandoned industrial sites and inadequately managed waste disposal areas poses substantial environmental threat. Microbially induced carbonate precipitation (MICP) has shown promising, eco-friendly solution to remediate Cr(VI) and divalent heavy metals. In this study, MICP was carried out for chromium immobilization by an ureolytic bacterium Arthrobacter creatinolyticus which is capable of reducing Cr(VI) to less toxic Cr(III) via extracellular polymeric substances (EPS) production. The efficacy of EPS driven reduction was confirmed by cellular fraction analysis. MICP carried out in aqueous solution with 100 ppm of Cr(VI) co-precipitated 82.21% of chromium with CaCO3 and the co-precipitation is positively correlated with reduction of Cr(VI). The organism was utilized to remediate chromium spiked sand and found that MICP treatment decreased the exchangeable fraction of chromium to 0.54 ±â€¯0.11% and increased the carbonate bound fraction to 26.1 ±â€¯1.15% compared to control. XRD and SEM analysis revealed that Cr(III) produced during reduction, influenced the polymorph selection of vaterite during precipitation. Evaluation of MICP to remediate Cr polluted soil sample collected from Ranipet, Tamil Nadu also showed effective immobilization of chromium. Thus, A. creatinolyticus proves to be viable option for encapsulating chromium contaminated soil via MICP process, and effectively mitigating the infiltration of Cr(VI) into groundwater and adjacent water bodies.


Subject(s)
Arthrobacter , Carbonates , Chromium , Arthrobacter/metabolism , Chromium/chemistry , Carbonates/chemistry , Soil Pollutants/metabolism , Soil Pollutants/chemistry , Calcium Carbonate/chemistry
5.
Geobiology ; 22(4): e12609, 2024 07.
Article in English | MEDLINE | ID: mdl-38958391

ABSTRACT

Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post-depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturation in situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δ18O, δ13C, and Δ47 values of lacustrine carbonate is not fully known. We studied the evolution of microbial community structure and the porewater and sediment geochemistry in the upper ~30 cm of sediment from two shoreline sites at Green Lake, Fayetteville, NY over 2 years of seasonal sampling. We linked seasonal and depth-based changes of porewater carbonate chemistry to microbial community composition, in situ carbon cycling (using δ13C values of carbonate, dissolved inorganic carbon (DIC), and organic matter), and dominant allochems and facies. We interpret that microbial processes are a dominant control on carbon cycling within the sediment, affecting porewater DIC, aqueous carbon chemistry, and carbonate carbon and clumped isotope geochemistry. Across all seasons and sites, microbial organic matter remineralization lowers the δ13C of the porewater DIC. Elevated carbonate saturation states in the sediment porewaters (Ω > 3) were attributed to microbes from groups capable of sulfate reduction, which were abundant in the sediment below 5 cm depth. The nearshore carbonate sediments at Green Lake are mainly composed of microbialite intraclasts/oncoids, charophytes, larger calcite crystals, and authigenic micrite-each with a different origin. Authigenic micrite is interpreted to have precipitated in situ from the supersaturated porewaters from microbial metabolism. The stable carbon isotope values (δ13Ccarb) and clumped isotope values (Δ47) of bulk carbonate sediments from the same depth horizons and site varied depending on both the sampling season and the specific location within a site, indicating localized (µm to mm) controls on carbon and clumped isotope values. Our results suggest that biological processes are a dominant control on carbon chemistry within the sedimentary subsurface of the shorelines of Green Lake, from actively forming microbialites to pore space organic matter remineralization and micrite authigenesis. A combination of biological activity, hydrologic balance, and allochem composition of the sediments set the stable carbon, oxygen, and clumped isotope signals preserved by the Green Lake carbonate sediments.


Subject(s)
Carbon Isotopes , Carbonates , Geologic Sediments , Lakes , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Lakes/microbiology , Lakes/chemistry , Carbon Isotopes/analysis , Carbonates/chemistry , Carbonates/analysis , New York , Microbiota , Carbon Cycle , Bacteria/metabolism , Seasons
6.
Chemosphere ; 361: 142516, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38850691

ABSTRACT

Activated siderite, endowed with excellent properties, was simply prepared by co-grinding with Fe sulfate to enhance its high reducing ability for Cr(VI). Batch experiments were conducted to investigate the main affecting parameters, such as material ratio, pH, temperature, etc. The removal of Cr(VI) by activated siderite was completed within 4 h of the reaction. The activated siderite maintained a high removal effect of Cr(VI) within a wide pH range (3-9). Various analytical methods, including XRD, SEM/EDS, XPS, etc., were employed to characterize the samples and discover variations before and after the reaction. The Fe (Ⅱ) in activated siderite becomes highly active, and it can even be released from the solid phase in the mildly acidic liquid phase to efficiently reduce Cr(VI) and mitigate its toxicity. These findings introduce an innovative approach for activating various minerals widely distributed in nature to promote the recovery of the ecological system.


Subject(s)
Chromium , Ferric Compounds , Oxidation-Reduction , Chromium/chemistry , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Iron/chemistry , Ferrous Compounds/chemistry , Minerals/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Carbonates
7.
Sci Rep ; 14(1): 14885, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937525

ABSTRACT

Past and present habitability of Mars have been intensely studied in the context of the search for signals of life. Despite the harsh conditions observed today on the planet, some ancient Mars environments could have harbored specific characteristics able to mitigate several challenges for the development of microbial life. In such environments, Fe2+ minerals like siderite (already identified on Mars), and vivianite (proposed, but not confirmed) could sustain a chemolithoautotrophic community. In this study, we investigate the ability of the acidophilic iron-oxidizing chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans to use these minerals as its sole energy source. A. ferrooxidans was grown in media containing siderite or vivianite under different conditions and compared to abiotic controls. Our experiments demonstrated that this microorganism was able to grow, obtaining its energy from the oxidation of Fe2+ that came from the solubilization of these minerals under low pH. Additionally, in sealed flasks without CO2, A. ferrooxidans was able to fix carbon directly from the carbonate ion released from siderite for biomass production, indicating that it could be able to colonize subsurface environments with little or no contact with an atmosphere. These previously unexplored abilities broaden our knowledge on the variety of minerals able to sustain life. In the context of astrobiology, this expands the list of geomicrobiological processes that should be taken into account when considering the habitability of environments beyond Earth, and opens for investigation the possible biological traces left on these substrates as biosignatures.


Subject(s)
Acidithiobacillus , Mars , Acidithiobacillus/metabolism , Acidithiobacillus/growth & development , Oxidation-Reduction , Iron/metabolism , Hydrogen-Ion Concentration , Ferrous Compounds/metabolism , Minerals/metabolism , Exobiology , Extraterrestrial Environment , Carbonates , Ferric Compounds
8.
Nature ; 630(8017): 654-659, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839965

ABSTRACT

Emissions reduction and greenhouse gas removal from the atmosphere are both necessary to achieve net-zero emissions and limit climate change1. There is thus a need for improved sorbents for the capture of carbon dioxide from the atmosphere, a process known as direct air capture. In particular, low-cost materials that can be regenerated at low temperatures would overcome the limitations of current technologies. In this work, we introduce a new class of designer sorbent materials known as 'charged-sorbents'. These materials are prepared through a battery-like charging process that accumulates ions in the pores of low-cost activated carbons, with the inserted ions then serving as sites for carbon dioxide adsorption. We use our charging process to accumulate reactive hydroxide ions in the pores of a carbon electrode, and find that the resulting sorbent material can rapidly capture carbon dioxide from ambient air by means of (bi)carbonate formation. Unlike traditional bulk carbonates, charged-sorbent regeneration can be achieved at low temperatures (90-100 °C) and the sorbent's conductive nature permits direct Joule heating regeneration2,3 using renewable electricity. Given their highly tailorable pore environments and low cost, we anticipate that charged-sorbents will find numerous potential applications in chemical separations, catalysis and beyond.


Subject(s)
Carbon Dioxide , Carbon Dioxide/analysis , Carbon Dioxide/chemistry , Carbon Dioxide/isolation & purification , Adsorption , Electrodes , Hydroxides/chemistry , Atmosphere/chemistry , Carbonates/chemistry , Air , Temperature , Charcoal/chemistry , Porosity , Carbon/chemistry
9.
Mar Drugs ; 22(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38921595

ABSTRACT

Porphyra sensu lato is one of the most economically significant and widely cultured and consumed algae in the world. Porphyra species present excellent nutraceutic properties due to their bioactive compounds (BACs). This research aimed to find the most efficient aqueous extraction method for BACs by examining alkaline and enzymatic hydrolysis. Alkaline hydrolysis with 2.5% sodium carbonate (SC) and at 80 °C proved optimal for extracting all BACs (phycobiliproteins, soluble proteins, polyphenols, and carbohydrates) except mycosporine-like amino acids (MAAs), which were best extracted with water only, and at 80 °C. Enzymatic hydrolysis, particularly with the 'Miura' enzymatic cocktail (cellulase, xylanase, glycoside hydrolase, and ß-glucanase), showed superior results in extracting phycoerythrin (PE), phycocyanin (PC), soluble proteins, and carbohydrates, with increases of approximately 195%, 510%, 890%, and 65%, respectively, compared to the best alkaline hydrolysis extraction (2.5% SC and 80 °C). Phenolic content analysis showed no significant difference between the 'Miura' cocktail and 2.5% SC treatments. Antioxidant activity was higher in samples from alkaline hydrolysis, while extraction of MAAs showed no significant difference between water-only and 'Miura' treatments. The study concludes that enzymatic hydrolysis improves the efficiency of BACs extraction in P. linearis, highlighting its potential for the nutraceutical industry, and especially with respect to MAAs for topical and oral UV-photoprotectors.


Subject(s)
Antioxidants , Dietary Supplements , Porphyra , Porphyra/chemistry , Hydrolysis , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Carbonates/chemistry , Phenols/isolation & purification , Phenols/chemistry , Carbohydrates/chemistry
10.
J Hazard Mater ; 475: 134923, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889469

ABSTRACT

This study investigates the co-precipitation of calcium and barium ions in hypersaline wastewater under the action of Bacillus licheniformis using microbially induced carbonate precipitation (MICP) technology, as well as the bactericidal properties of the biomineralized product vaterite. The changes in carbonic anhydrase activity, pH, carbonate and bicarbonate concentrations in different biomineralization systems were negatively correlated with variations in metal ion concentrations, while the changes in polysaccharides and protein contents in bacterial extracellular polymers were positively correlated with variations in barium concentrations. In the mixed calcium and barium systems, the harvested minerals were vaterite containing barium. The increasing concentrations of calcium promoted the incorporation and adsorption of barium onto vaterite. The presence of barium significantly increased the contents of O-CO, N-CO, and Ba-O in vaterite. Calcium promoted barium precipitation, but barium inhibited calcium precipitation. After being treated by immobilized bacteria, the concentrations of calcium and barium ions decreased from 400 and 274 to 1.72 and 0 mg/L (GB/T15454-2009 and GB8978-1996). Intracellular minerals were also vaterite containing barium. Extracellular vaterite exhibited bactericidal properties. This research presents a promising technique for simultaneously removing and recycling hazardous heavy metals and calcium in hypersaline wastewater.


Subject(s)
Barium , Calcium , Chemical Precipitation , Wastewater , Wastewater/chemistry , Barium/chemistry , Calcium/chemistry , Calcium/metabolism , Bacillus/metabolism , Calcium Carbonate/chemistry , Calcium Carbonate/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Recycling , Carbonates/chemistry , Carbonic Anhydrases/metabolism , Water Purification/methods
11.
Food Chem ; 455: 139961, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850983

ABSTRACT

Apple flesh tends to turn mealy and textural deterioration commonly occurs during storage. The comparative investigation of three sub-fractions separated from sodium carbonate-soluble pectin (SSP) of 'Hongjiangjun' apples between crisp and mealy stages was performed to unveil the textural alterations related to mealiness. In situ immunofluorescence labelling showed that galactans declined in parenchyma cell walls during the fruit mealiness. FTIR analysis, monosaccharide compositions and structural polymers configurated that loss of rhammogalacturonan-I (RG-I) from SSP sub-fragments (SC0.0-P and S-M0.0-P) might be closely involved in the mealiness. The NMR spectroscopy revealed that loss of the substituted galactans from α-Rhap residues repeat unit in SC0.0-P constituting RG-I in crisp stage that subsequently converted to S-M0.0-P in mealy stage might be closely associated with the modifications of pectin in cell walls during mealiness. These findings provided novel evidence for understanding the underlying modifications of SSP polymers during the mealiness of 'Hongjiangjun' apples.


Subject(s)
Cell Wall , Fruit , Malus , Pectins , Malus/chemistry , Pectins/chemistry , Fruit/chemistry , Cell Wall/chemistry , Carbonates/chemistry , Polysaccharides/chemistry
12.
Biomacromolecules ; 25(7): 4523-4534, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38916862

ABSTRACT

A backbone-substituted N-heterocyclic carbene (NHC) zinc complex, in combination with alcohol initiators, has been shown to be an effective catalyst for the ring-opening polymerization (ROP) of trimethylene carbonate (TMC) to poly(trimethylene carbonate) (PTMC) devoid of oxetane linkages. The ROP of TMC proceeded in solution to give PTMC, possessing controlled molecular mass (2500 < Mn < 10000) and low dispersity (D ∼ 1.2). Changing the alcohol initiators, PTMCs with different end-groups were obtained, included a telechelic polymer. The results of MALDI-ToF and NMR analysis confirmed the controlled/living nature of the present ROP catalytic system, where side reactions, such as inter- and intramolecular transesterifications, were minimized during the polymerization. Solution studies in different solvents demonstrated the polymerization reaction to proceed via a mechanism first order in monomer and in catalyst. The zinc complex was also able to convert substituted cyclic carbonates, which were purposely synthesized from renewable feedstocks such as CO2 and 1,3-diols. For the asymmetric 2-Me TMC monomer, good regioselectivity was observed (Xreg up to 0.92). The excellent control of the polymerization process was finally brought to light through the preparation of polycarbonate/polyether triblock copolymers by using polyethylene glycol (PEG) as a macroinitiator and of well-defined di- and triblock polycarbonate/polylactide copolymers by sequential ROP of TMC and L-LA.


Subject(s)
Polycarboxylate Cement , Polymerization , Zinc , Polycarboxylate Cement/chemistry , Zinc/chemistry , Catalysis , Carbon Dioxide/chemistry , Methane/chemistry , Methane/analogs & derivatives , Polymers/chemistry , Carbonates/chemistry , Coordination Complexes/chemistry , Heterocyclic Compounds/chemistry , Dioxanes/chemistry , Polyesters/chemistry , Polyesters/chemical synthesis
13.
Environ Sci Pollut Res Int ; 31(31): 43673-43686, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38904874

ABSTRACT

In this comprehensive investigation, we evaluate the efficacy of the Fenton process in degrading basic fuchsin (BF), a resistant dye. Our primary focus is on the utilization of readily available, environmentally benign, and cost-effective reagents for the degradation process. Furthermore, we delve into various operational parameters, including the quantity of sodium percarbonate (SPC), pH levels, and the dimensions of waste iron bars, to optimize the treatment efficiency. In the course of our research, we employed an initial SPC concentration of 0.5 mM, a pH level of 3, a waste iron bar measuring 3.5 cm in length and 0.4 cm in diameter, and a processing time of 10 min. Our findings reveal the successful elimination of the BF dye, even when subjected to treatment with diverse salts and surfactants under elevated temperatures and acidic conditions (pH below 3). This underscores the robustness of the Fenton process in purifying wastewater contaminated with dye compounds. The outcomes of our study not only demonstrate the efficiency of the Fenton process but highlight its adaptability to address dye contamination challenges across various industries. Critically, this research pioneers the application of waste iron bars as a source of iron in the Fenton reaction, introducing a novel, sustainable approach that enhances the environmental and economic viability of the process. This innovative use of recycled materials as catalysts represents a significant advancement in sustainable chemical engineering practices.


Subject(s)
Carbonates , Iron , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Carbonates/chemistry , Catalysis , Coloring Agents/chemistry , Waste Disposal, Fluid/methods , Hydrogen Peroxide/chemistry
14.
PLoS One ; 19(6): e0302944, 2024.
Article in English | MEDLINE | ID: mdl-38857272

ABSTRACT

The uniaxial compressive strength (UCS) and elasticity modulus (E) of intact rock are two fundamental requirements in engineering applications. These parameters can be measured either directly from the uniaxial compressive strength test or indirectly by using soft computing predictive models. In the present research, the UCS and E of intact carbonate rocks have been predicted by introducing two stacking ensemble learning models from non-destructive simple laboratory test results. For this purpose, dry unit weight, porosity, P-wave velocity, Brinell surface harnesses, UCS, and static E were measured for 70 carbonate rock samples. Then, two stacking ensemble learning models were developed for estimating the UCS and E of the rocks. The applied stacking ensemble learning method integrates the advantages of two base models in the first level, where base models are multi-layer perceptron (MLP) and random forest (RF) for predicting UCS, and support vector regressor (SVR) and extreme gradient boosting (XGBoost) for predicting E. Grid search integrating k-fold cross validation is applied to tune the parameters of both base models and meta-learner. The results demonstrate the generalization ability of the stacking ensemble method in the comparison of base models in the terms of common performance measures. The values of coefficient of determination (R2) obtained from the stacking ensemble are 0.909 and 0.831 for predicting UCS and E, respectively. Similarly, the stacking ensemble yielded Root Mean Squared Error (RMSE) values of 1.967 and 0.621 for the prediction of UCS and E, respectively. Accordingly, the proposed models have superiority in the comparison of SVR and MLP as single models and RF and XGBoost as two representative ensemble models. Furthermore, sensitivity analysis is carried out to investigate the impact of input parameters.


Subject(s)
Carbonates , Compressive Strength , Elastic Modulus , Carbonates/chemistry , Carbonates/analysis , Porosity , Models, Theoretical
15.
Glob Chang Biol ; 30(6): e17371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863267

ABSTRACT

As the balance between erosional and constructive processes on coral reefs tilts in favor of framework loss under human-induced local and global change, many reef habitats worldwide degrade and flatten. The resultant generation of coral rubble and the beds they form can have lasting effects on reef communities and structural complexity, threatening the continuity of reef ecological functions and the services they provide. To comprehensively capture changing framework processes and predict their evolution in the context of climate change, heavily colonized rubble fragments were exposed to ocean acidification (OA) conditions for 55 days. Controlled diurnal pH oscillations were incorporated in the treatments to account for the known impact of diel carbonate chemistry fluctuations on calcification and dissolution response to OA. Scenarios included contemporary pH (8.05 ± 0.025 diel fluctuation), elevated OA (7.90 ± 0.025), and high OA (7.70 ± 0.025). We used a multifaceted approach, combining chemical flux analyses, mass alteration measurements, and computed tomography scanning images to measure total and chemical bioerosion, as well as chemically driven secondary calcification. Rates of net carbonate loss measured in the contemporary conditions (1.36 kg m-2 year-1) were high compared to literature and increased in OA scenarios (elevated: 1.84 kg m-2 year-1 and high: 1.59 kg m-2 year-1). The acceleration of these rates was driven by enhanced chemical dissolution and reduced secondary calcification. Further analysis revealed that the extent of these changes was contingent on the density of the coral skeleton, in which the micro- and macroborer communities reside. Findings indicated that increased mechanical bioerosion rates occurred in rubble with lower skeletal density, which is of note considering that corals form lower-density skeletons under OA. These direct and indirect effects of OA on chemical and mechanical framework-altering processes will influence the permanence of this crucial habitat, carrying implications for biodiversity and reef ecosystem function.


Subject(s)
Anthozoa , Climate Change , Coral Reefs , Seawater , Anthozoa/physiology , Anthozoa/chemistry , Animals , Seawater/chemistry , Hydrogen-Ion Concentration , Calcification, Physiologic , Carbonates/chemistry , Carbonates/analysis , Oceans and Seas , Ocean Acidification
16.
Water Sci Technol ; 89(10): 2812-2822, 2024 May.
Article in English | MEDLINE | ID: mdl-38822616

ABSTRACT

The sequential extraction routes of biogenic materials from sewage sludge (SS) were investigated. Physical methods (ultrasound, heating) and chemical methods (sodium hydroxide, sodium carbonate) were used to extract extracellular polymeric substances (EPS) and alginate-like extracellular polymers (ALEs) from SS. The residues after extraction were further subjected to physical methods (heating) and chemical methods (sulfuric acid, sodium hydroxide) for protein extraction. A comparison was made between sequential extraction routes and direct extraction of biomaterials from sludge in terms of extraction quantity, material properties, and applicability. The results showed that sequential extraction of biomaterials is feasible. The highest extraction quantities were obtained when using sodium carbonate for EPS and ALE extraction and sodium hydroxide for protein, reaching 449.80 mg/gVSS, 109.78 mg/gVSS, and 5447.08 mg/L, respectively. Sequential extraction procedures facilitate the extraction of biomaterials. Finally, suitable extraction methods for different application scenarios were analyzed.


Subject(s)
Sewage , Sewage/chemistry , Sodium Hydroxide/chemistry , Chemical Fractionation/methods , Carbonates/chemistry , Feasibility Studies
17.
Water Res ; 259: 121842, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38820735

ABSTRACT

Percarbonate encompasses sodium percarbonate (SPC) and composite in-situ generated peroxymonocarbonate (PMC). SPC emerges as a promising alternative to hydrogen peroxide (H2O2), hailed for its superior transportation safety, stability, cost-effectiveness, and eco-friendliness, thereby becoming a staple in advanced oxidation processes for mitigating water pollution. Yet, scholarly literature scarcely explores the deployment of percarbonate-AOPs in eradicating organic contaminants from aquatic systems. Consequently, this review endeavors to demystify the formation mechanisms and challenges associated with reactive oxygen species (ROS) in percarbonate-AOPs, alongside highlighting directions for future inquiry and development. The genesis of ROS encompasses the in situ chemical oxidation of activated SPC (including iron-based activation, discharge plasma, ozone activation, photon activation, and metal-free materials activation) and composite in situ chemical oxidation via PMC (namely, H2O2/NaHCO3/Na2CO3, peroxymonosulfate/NaHCO3/Na2CO3 systems). Moreover, the ROS generated by percarbonate-AOPs, such as •OH, O2•-, CO3•-, HO2•-, 1O2, and HCO4-, can work individually or synergistically to disintegrate target pollutants. Concurrently, this review systematically addresses conceivable obstacles posing percarbonate-AOPs in real-world application from the angle of environmental conditions (pH, temperature, coexisting substances), and potential ecological toxicity. Considering the outlined challenges and advantages, we posit future research directions to amplify the applicability and efficacy of percarbonate-AOPs in tangible settings. It is anticipated that the insights provided in this review will catalyze the progression of percarbonate-AOPs in water purification endeavors and bridge the existing knowledge void.


Subject(s)
Carbonates , Oxidation-Reduction , Wastewater , Carbonates/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Hydrogen Peroxide/chemistry , Reactive Oxygen Species
18.
Environ Sci Technol ; 58(25): 11016-11026, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38743591

ABSTRACT

Dissimilatory iron-reducing bacteria (DIRB) oxidize organic matter or hydrogen and reduce ferric iron to form Fe(II)-bearing minerals, such as magnetite and siderite. However, compared with magnetite, which was extensively studied, the mineralization process and mechanisms of siderite remain unclear. Here, with the combination of advanced electron microscopy and synchrotron-based scanning transmission X-ray microscopy (STXM) approaches, we studied in detail the morphological, structural, and chemical features of biogenic siderite via a growth experiment with Shewanella oneidensis MR-4. Results showed that along with the growth of cells, Fe(II) ions were increasingly released into solution and reacted with CO32- to form micrometer-sized siderite minerals with spindle, rod, peanut, dumbbell, and sphere shapes. They are composed of many single-crystal siderite plates that are fanned out from the center of the particles. Additionally, STXM revealed Fh and organic molecules inside siderite. This suggests that the siderite crystals might assemble around a Fh-organic molecule core and then continue to grow radially. This study illustrates the biomineralization and assembly of siderite by a successive multistep growth process induced by DIRB, also provides evidences that the distinctive shapes and the presence of organic molecules inside might be morphological and chemical features for biogenic siderite.


Subject(s)
Iron , Iron/metabolism , Shewanella/metabolism , Minerals/metabolism , Minerals/chemistry , Oxidation-Reduction , Bacteria/metabolism , Carbonates , Ferric Compounds
19.
Environ Sci Pollut Res Int ; 31(25): 36551-36576, 2024 May.
Article in English | MEDLINE | ID: mdl-38755474

ABSTRACT

Among the many heavy metal pollution treatment agents, carbonate materials show strong flexibility and versatility by virtue of their high adsorption capacity for heavy metals and the characteristics of multiple and simple modification methods. It shows good potential for development. This review summarizes the application of carbonate materials in the treatment of heavy metal pollution according to the research of other scholars. It mainly relates to the application of surface-modified, activated, and nano-sized carbonate materials in the treatment of heavy metal pollution in water. Natural carbonate minerals and composite carbonate minerals solidify and stabilize heavy metals in soil. Solidification of heavy metals in hazardous waste solids is by MICP. There are four aspects of calcium carbonate oligomers curing heavy metals in fly ash from waste incineration. The mechanism of treating heavy metals by carbonate in different media was discussed. However, in the complex environment where multiple types of pollutants coexist, questions on how to maintain the efficient processing capacity of carbonate materials and how to use MICP to integrate heavy metal fixation and seepage prevention in solid waste base under complex and changeable natural environment deserve our further consideration. In addition, the use of carbonate materials for the purification of trace radioactive wastewater and the safe treatment of trace radioactive solid waste are also worthy of further exploration.


Subject(s)
Carbonates , Metals, Heavy , Carbonates/chemistry , Adsorption
20.
Int J Biol Macromol ; 271(Pt 1): 132618, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795880

ABSTRACT

High-temperature blanching (HTB) is the primary process that causes texture softening in frozen yellow peaches. The implementation of low-temperature blanching reduced pectin methyl esterification, increased pectin cross-linking, and mitigated pectin depolymerization during the subsequent HTB, leading to the superior texture of frozen yellow peaches with enhanced water holding capacity, higher fracture stress, and initial modulus. However, adding 2 % calcium lactate (w/v) during low-temperature blanching did not further improve the texture of frozen yellow peaches. Instead, it softened the texture by reducing Na2CO3-soluble pectin (NSP) and increasing water-soluble pectin (WSP) content. This study provided a theoretical basis for applying low-temperature blanching to improve the texture of frozen yellow peaches.


Subject(s)
Freezing , Pectins , Pectins/chemistry , Solubility , Water/chemistry , Cold Temperature , Lactates/chemistry , Calcium Compounds/chemistry , Prunus avium/chemistry , Carbonates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...