Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 576
1.
Cancer Immunol Immunother ; 73(8): 149, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38833018

Despite the successful application of programmed cell death ligand 1 (PD-L1)-blocking strategies in some types of cancers and well-established prognostic indicators in pancreatic ductal adenocarcinoma (PDAC), the biological and clinical implications of the methylation status of PD-L1/PD-L2 in PDAC remain largely unknown. Therefore, this study aimed to explore the biological role of PD-L1/PD-L2 methylation and its association with clinicopathological features, clinical outcomes, and the immune microenvironment by analyzing the data on PD-L1/PD-L2 methylation and mRNA expression in PDAC cohorts obtained from the Cancer Genome Atlas and International Cancer Genome Consortium. The correlation between PD-L1 promoter methylation and PD-L1 expression and survival was further validated in an independent validation cohort (Peking Union Medical College Hospital [PUMCH] cohort) using pyrosequencing and immunohistochemistry. These results demonstrated that hypomethylation of the PD-L1 promoter was strongly associated with upregulated PD-L1 expression and shorter overall survival in PDAC. Multivariate Cox regression analyses revealed that the PD-L1 promoter methylation was an independent prognostic factor. PD-L1 promoter hypomethylation and high expression were related to aggressive clinical phenotypes. Moreover, both PD-L1 and PD-L2 methylation correlated with immune cell infiltration and the expression of immune checkpoint genes. PD-L1 promoter methylation status was further validated as an independent prognostic biomarker in patients with PDAC using the PUMCH cohort. The prognostic significance of PD-L1 promoter methylation was more discriminative in tumors with perineural/lymphovascular invasion and distant metastasis than in those without perineural/lymphovascular invasion and distant metastasis. In summary, the methylation status of the PD-L1 promoter is a promising biomarker for survival outcomes, immune infiltration, and the potential immune benefits of immunotherapy in PDAC.


B7-H1 Antigen , Carcinoma, Pancreatic Ductal , DNA Methylation , Pancreatic Neoplasms , Promoter Regions, Genetic , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Promoter Regions, Genetic/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Female , Male , Prognosis , Middle Aged , Biomarkers, Tumor/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Aged , Gene Expression Regulation, Neoplastic
2.
Cell Metab ; 36(5): 886-888, 2024 May 07.
Article En | MEDLINE | ID: mdl-38718754

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive, malignant, and lethal cancers, displaying strong resistance to immunotherapy. In this issue of Cell Metabolism, a study by Liu et al. identifies tetrahydrobiopterin metabolic dysregulation as a key driver for the immunosuppressive PDAC environment in mouse and human.


Biopterins , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Humans , Animals , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Mice , Biopterins/analogs & derivatives , Biopterins/metabolism , Immunosuppression Therapy
3.
J Transl Med ; 22(1): 443, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730319

BACKGROUND: The immune microenvironment impacts tumor growth, invasion, metastasis, and patient survival and may provide opportunities for therapeutic intervention in pancreatic ductal adenocarcinoma (PDAC). Although never studied as a potential modulator of the immune response in most cancers, Keratin 17 (K17), a biomarker of the most aggressive (basal) molecular subtype of PDAC, is intimately involved in the histogenesis of the immune response in psoriasis, basal cell carcinoma, and cervical squamous cell carcinoma. Thus, we hypothesized that K17 expression could also impact the immune cell response in PDAC, and that uncovering this relationship could provide insight to guide the development of immunotherapeutic opportunities to extend patient survival. METHODS: Multiplex immunohistochemistry (mIHC) and automated image analysis based on novel computational imaging technology were used to decipher the abundance and spatial distribution of T cells, macrophages, and tumor cells, relative to K17 expression in 235 PDACs. RESULTS: K17 expression had profound effects on the exclusion of intratumoral CD8+ T cells and was also associated with decreased numbers of peritumoral CD8+ T cells, CD16+ macrophages, and CD163+ macrophages (p < 0.0001). The differences in the intratumor and peritumoral CD8+ T cell abundance were not impacted by neoadjuvant therapy, tumor stage, grade, lymph node status, histologic subtype, nor KRAS, p53, SMAD4, or CDKN2A mutations. CONCLUSIONS: Thus, K17 expression correlates with major differences in the immune microenvironment that are independent of any tested clinicopathologic or tumor intrinsic variables, suggesting that targeting K17-mediated immune effects on the immune system could restore the innate immunologic response to PDAC and might provide novel opportunities to restore immunotherapeutic approaches for this most deadly form of cancer.


Keratin-17 , Pancreatic Neoplasms , Humans , Keratin-17/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Tumor Microenvironment/immunology , Female , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Male , CD8-Positive T-Lymphocytes/immunology , Macrophages/metabolism , Macrophages/immunology , Middle Aged , Aged , Receptors, Cell Surface , Antigens, Differentiation, Myelomonocytic , Antigens, CD
4.
World J Gastroenterol ; 30(19): 2575-2602, 2024 May 21.
Article En | MEDLINE | ID: mdl-38817665

BACKGROUND: Lactate, previously considered a metabolic byproduct, is pivotal in cancer progression and maintaining the immunosuppressive tumor microenvironment. Further investigations confirmed that lactate is a primary regulator, introducing recently described post-translational modifications of histone and non-histone proteins, termed lysine lactylation. Pancreatic adenocarcinomas are characterized by increased glycolysis and lactate accumulation. However, our understanding of lactylation-related genes in pancreatic adenocarcinomas remains limited. AIM: To construct a novel lactylation-related gene signature to predict the survival of patients with pancreatic cancer. METHODS: RNA-seq and clinical data of pancreatic adenocarcinoma (PDAC) were obtained from the GTEx (Genotype-Tissue Expression) and TCGA (The Cancer Genome Atlas) databases via Xena Explorer, and GSE62452 datasets from GEO. Data on lactylation-related genes were obtained from publicly available sources. Differential expressed genes (DEGs) were acquired by using R package "DESeq2" in R. Univariate COX regression analysis, LASSO Cox and multivariate Cox regressions were produced to construct the lactylation-related prognostic model. Further analyses, including functional enrichment, ESTIMATE, and CIBERSORT, were performed to analyze immune status and treatment responses in patients with pancreatic cancer. PDAC and normal human cell lines were subjected to western blot analysis under lactic acid intervention; two PDAC cell lines with the most pronounced lactylation were selected. Subsequently, RT-PCR was employed to assess the expression of LRGs genes; SLC16A1, which showed the highest expression, was selected for further investigation. SLC16A1-mediated lactylation was analyzed by immunofluorescence, lactate production analysis, colony formation, transwell, and wound healing assays to investigate its role in promoting the proliferation and migration of PDAC cells. In vivo validation was performed using an established tumor model. RESULTS: In this study, we successfully identified 10 differentially expressed lactylation-related genes (LRGs) with prognostic value. Subsequently, a lactylation-related signature was developed based on five OS-related lactylation-related genes (SLC16A1, HLA-DRB1, KCNN4, KIF23, and HPDL) using Lasso Cox hazard regression analysis. Subsequently, we evaluated the clinical significance of the lactylation-related genes in pancreatic adenocarcinoma. A comprehensive examination of infiltrating immune cells and tumor mutation burden was conducted across different subgroups. Furthermore, we demonstrated that SLC16A1 modulates lactylation in pancreatic cancer cells through lactate transport. Both in vivo and in vitro experiments showed that decreasing SLC16A1 Level and its lactylation significantly inhibited tumor progression, indicating the potential of targeting the SLC16A1/Lactylation-associated signaling pathway as a therapeutic strategy against pancreatic adenocarcinoma. CONCLUSION: We constructed a novel lactylation-related prognostic signature to predict OS, immune status, and treatment response of patients with pancreatic adenocarcinoma, providing new strategic directions and antitumor immunotherapies.


Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Tumor Microenvironment , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Prognosis , Cell Line, Tumor , Tumor Microenvironment/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Protein Processing, Post-Translational , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/mortality , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Lactic Acid/metabolism , Symporters/genetics , Symporters/metabolism , Cell Proliferation/genetics , Gene Expression Profiling , Male , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/therapy , Female , Animals , Transcriptome
5.
Front Immunol ; 15: 1341079, 2024.
Article En | MEDLINE | ID: mdl-38817612

Despite the efforts, pancreatic ductal adenocarcinoma (PDAC) is still highly lethal. Therapeutic challenges reside in late diagnosis and establishment of peculiar tumor microenvironment (TME) supporting tumor outgrowth. This stromal landscape is highly heterogeneous between patients and even in the same patient. The organization of functional sub-TME with different cellular compositions provides evolutive advantages and sustains therapeutic resistance. Tumor progressively establishes a TME that can suit its own needs, including proliferation, stemness and invasion. Cancer-associated fibroblasts and immune cells, the main non-neoplastic cellular TME components, follow soluble factors-mediated neoplastic instructions and synergize to promote chemoresistance and immune surveillance destruction. Unveiling heterotypic stromal-neoplastic interactions is thus pivotal to breaking this synergism and promoting the reprogramming of the TME toward an anti-tumor milieu, improving thus the efficacy of conventional and immune-based therapies. We underscore recent advances in the characterization of immune and fibroblast stromal components supporting or dampening pancreatic cancer progression, as well as novel multi-omic technologies improving the current knowledge of PDAC biology. Finally, we put into context how the clinic will translate the acquired knowledge to design new-generation clinical trials with the final aim of improving the outcome of PDAC patients.


Carcinoma, Pancreatic Ductal , Drug Resistance, Neoplasm , Pancreatic Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Drug Resistance, Neoplasm/immunology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Animals , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/metabolism , Immune Tolerance
6.
Int Immunopharmacol ; 134: 112266, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38761784

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer, with limited treatment options. In this study, we investigated the role of immune cell infiltration in PDAC progression and constructed an immune-related predictive model for patients with PDAC based on the International Cancer Genome Consortium (ICGC) cohort. Related algorithms have been used to assess the immune microenvironment. Least Absolute Shrinkage and Selection Operator (LASSO) Cox analysis was used to construct the model, and receiver operating characteristic and decision curve analysis analyses were conducted to evaluate its diagnostic and prognostic efficacy. The results demonstrated a correlation between high immune infiltration and better prognosis in PDAC. The immune-related prognostic model (IPM) identified four genes through LASSO Cox analysis, with the high IPM group being associated with a worse prognosis. Cox regression analysis confirmed that IPM is an independent risk factor for PDAC. Validation through analysis of The Cancer Genome Atlas cohort and our own individual tumor samples revealed a similar trend to that observed in the ICGC cohort. Finally, a nomogram incorporating age and IPM demonstrated efficacy in the prognostic evaluation of patients with PDAC. In conclusion, we developed a novel immune-related prognosis prediction model for PDAC that offers new possibilities for the measurement of immunotherapy and prognostic assessment of patients.


Carcinoma, Pancreatic Ductal , Nomograms , Pancreatic Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/mortality , Prognosis , Female , Male , Tumor Microenvironment/immunology , Middle Aged , Aged , Models, Immunological , Biomarkers, Tumor/genetics
7.
Biomed Pharmacother ; 175: 116660, 2024 Jun.
Article En | MEDLINE | ID: mdl-38701563

Pancreatic ductal adenocarcinoma (PDAC) has an extremely devastating nature with poor prognosis and increasing incidence, making it a formidable challenge in the global fight against cancer-related mortality. In this innovative preclinical investigation, the VCP/p97 inhibitor CB-5083 (CB), miR-142, a PD-L1 inhibitor, and immunoadjuvant resiquimod (R848; R) were synergistically encapsulated in solid lipid nanoparticles (SLNs). These SLNs demonstrated features of peptides targeting PD-L1, EGFR, and the endoplasmic reticulum, enclosed in a pH-responsive polyglutamic (PGA)-polyethylene glycol (PEG) shell. The homogeneous size and zeta potential of the nanoparticles were stable for 28 days at 4°C. The study substantiated the concurrent modulation of key pathways by the CB, miR, and R-loaded nanoformulation, prominently affecting VCP/Bip/ATF6, PD-L1/TGF-ß/IL-4, -8, -10, and TNF-α/IFN-γ/IL-1, -12/GM-CSF/CCL4 pathways. This adaptable nanoformulation induced durable antitumor immune responses and inhibited Panc-02 tumor growth by enhancing T cell infiltration, dendritic cell maturation, and suppressing Tregs and TAMs in mice bearing Panc-02 tumors. Furthermore, tissue distribution studies, biochemical assays, and histological examinations highlighted enhanced safety with PGA and peptide-modified nanoformulations for CB, miR, and/or R in Panc-02-bearing mice. This versatile nanoformulation allows tailored adjustment of the tumor microenvironment, thereby optimizing the localized delivery of combined therapy. These compelling findings advocate the potential development of a pH-sensitive, three-in-one PGA-PEG nanoformulation that combines a VCP inhibitor, a PD-L1 inhibitor, and an immunoadjuvant for cancer treatment via combinatorial chemo-immunotherapy.


Immunotherapy , Nanoparticles , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Tumor Microenvironment/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Humans , Immunotherapy/methods , Mice , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , B7-H1 Antigen/antagonists & inhibitors , Nanoparticle Drug Delivery System/chemistry , Female , Polyethylene Glycols/chemistry , Immune Checkpoint Inhibitors/pharmacology , Liposomes
8.
Cell Commun Signal ; 22(1): 287, 2024 May 27.
Article En | MEDLINE | ID: mdl-38797819

BACKGROUND: Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal types of cancer, and KRAS oncogene occurs in over 90% of cases. P21-activated kinases (PAK), containing six members (PAK1 to 6), function downstream of KRAS. PAK1 and PAK4 play important roles in carcinogenesis, but their combinational effect remains unknown. In this study, we have determined the effect of dual inhibition of PAK1 and PAK4 in PDA progression using knockout (KO) cancer cell lines. METHODS: Murine wild-type (WT) and PAK1KO pancreatic cancer cell lines were isolated from PAK1+/+ and PAK1-/- KPC (LSL-KrasG12D/+; LSL-Trp53 R172H/+; Pdx-1-Cre) mice. KPC PAK4KO and KPC PAK1&4 KO cell lines were generated from KPC WT and KPC PAK1KO cell lines respectively using the CRISPR-CAS9 gene knockout technique. PAK WT and KO cell lines were used in mouse models of pancreatic tumours. Cells and tumour tissue were also used in flow cytometry and proteomic studies. A human PDA tissue microarray was stained by immunohistochemistry. RESULTS: Double knock out of PAK1 and PAK4 caused complete regression of tumour in a syngeneic mouse model. PAK4KO inhibited tumour growth by stimulating a rapid increase of cytotoxic CD8+ T cell infiltration. PAK1KO synergistically with PAK4KO increased cytotoxic CD8+ T cell infiltration and stimulated a sustained infiltration of CD8+ T cells at a later phase to overcome the immune evasion in the PAK4KO tumour. The human PDA tissue microarray study showed the important role of PAK1 and PAK4 in intra-tumoral T-cell function. CONCLUSION: Our results demonstrated that dual inhibition of PAK1 and PAK4 synergistically suppressed PDA progression by stimulating cytotoxic CD8 + T cell response.


Pancreatic Neoplasms , p21-Activated Kinases , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , p21-Activated Kinases/antagonists & inhibitors , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/genetics , Mice , Cell Line, Tumor , Humans , Cell Proliferation , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/genetics , Mice, Knockout
9.
Biochem Biophys Res Commun ; 718: 149931, 2024 Jul 23.
Article En | MEDLINE | ID: mdl-38723415

Oncolytic viruses (OVs) have shown potential in converting a "cold" tumor into a "hot" one and exhibit effectiveness in various cancer types. However, only a subset of patients respond to oncolytic virotherapy. It is important to understand the resistance mechanisms to OV treatment in pancreatic ductal adenocarcinoma (PDAC) to engineer oncolytic viruses. In this study, we used transcriptome RNA sequencing (RNA-seq) to identify Visfatin, which was highly expressed in the responsive tumors following OV treatment. To explore the antitumor efficacy, we modified OV-mVisfatin, which effectively inhibited tumor growth. For the first time, we revealed that Visfatin promoted the antitumor efficacy of OV by remodeling the tumor microenvironment, which involved enhancing CD8+ T cell and DC cell infiltration and activation, repolarizing macrophages towards the M1-like phenotype, and decreasing Treg cells using single-cell RNA sequencing (scRNA-seq) and flow cytometry. Furthermore, PD-1 blockade significantly enhanced OV-mVisfatin antitumor efficacy, offering a promising new therapeutic strategy for PDAC.


Herpesvirus 1, Human , Nicotinamide Phosphoribosyltransferase , Oncolytic Virotherapy , Oncolytic Viruses , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Mice , Oncolytic Virotherapy/methods , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Herpesvirus 1, Human/genetics , Cell Line, Tumor , Oncolytic Viruses/genetics , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Mice, Inbred C57BL , Humans , CD8-Positive T-Lymphocytes/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Female
10.
Cell Rep Med ; 5(5): 101557, 2024 May 21.
Article En | MEDLINE | ID: mdl-38733987

This study underscores GATA6's role in distinguishing classical and basal-like pancreatic ductal adenocarcinoma (PDAC) phenotypes. Retrospective studies associate GATA6 immunohistochemistry (IHC) expression with survival outcomes, warranting prospective validation. In a prospective treatment-naive cohort of patients with resected PDAC, GATA6 IHC proves a prognostic discriminator, associating high GATA6 expression with extended survival and the classical PDAC phenotype. However, GATA6's prognostic significance is numerically lower after gemcitabine-based neoadjuvant chemoradiotherapy compared to its significance in patients treated with upfront surgery. Furthermore, GATA6 is implicated in immunomodulation, although a comprehensive investigation of its immunological role is lacking. Treatment-naive PDAC tumors with varying GATA6 expression yield distinct immunological landscapes. Tumors highly expressing GATA6 show reduced infiltration of immunosuppressive regulatory T cells and M2 macrophages but increased infiltration of immune-stimulating, antigen-presenting, and activated T cells. Our findings caution against solely relying on GATA6 for molecular subtyping in clinical trials and open avenues for exploring immune-based combination therapies.


Carcinoma, Pancreatic Ductal , GATA6 Transcription Factor , Pancreatic Neoplasms , Phenotype , Humans , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Male , Female , Prognosis , Aged , Middle Aged , Macrophages/immunology , Macrophages/metabolism , Treatment Outcome , Neoadjuvant Therapy/methods , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
11.
Cytokine ; 179: 156628, 2024 07.
Article En | MEDLINE | ID: mdl-38704962

BACKGROUND: The expression level of apolipoprotein E (APOE) in pancreatic ductal adenocarcinoma (PDAC) and its effect on the prognosis of PDAC patients are not clear. The effect of APOE on the immune status of patients with PDAC has not been elucidated. METHODS: We obtained pancreatic cancer data from the TCGA and GETx databases. Patients with PDAC who underwent pancreatic surgery at the Second Affiliated Hospital of Jiaxing University between 2012 and 2021 were included. Clinical pathological data were recorded, plasma APOE levels were measured, and tissue samples were collected. A tissue microarray was generated using the collected tissue samples. APOE and CD4 staining was performed to determine immunoreactive scores (IRSs). The expression of APOE in the plasma and tumour tissues of pancreatic cancer patients was analysed and compared. The correlations between plasma APOE levels, tissue APOE levels and clinicopathological characteristics were analysed. Survival prognosis was analysed using Kaplan-Meier survival analysis and Cox multivariate regression analysis. The correlations between APOE expression levels and immune biomarkers and immune cells were further analysed. Single-cell analysis of APOE distribution in various cells was performed on the TISCH website. RESULTS: APOE was highly expressed in the tumour tissue of pancreatic cancer patients, and high plasma APOE levels were associated with poor prognosis. Females, patients with high-grade disease and patients with pancreatic head carcinoma had high plasma APOE levels. High APOE expression in tumour tissues was associated with good prognosis. Mononuclear macrophages in the pancreatic cancer microenvironment primarily expressed APOE. APOE levels positively correlated with immune biomarkers, such as CD8A, PDCD1, GZMA, CXCL10, and CXCL9, in the tumour microenvironment. APOE promoted CD4 + T cell or dendritic cell infiltration in the tumour microenvironment. CONCLUSIONS: APOE may affect the occurrence and development of pancreatic cancer by regulating the infiltration of immune cells in the tumour microenvironment.


Apolipoproteins E , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Aged , Female , Humans , Male , Middle Aged , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/blood , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/blood , Kaplan-Meier Estimate , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/blood , Prognosis , Tumor Microenvironment/immunology
12.
Sci Rep ; 14(1): 9377, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654067

Poor treatment responses of pancreatic ductal adenocarcinoma (PDAC) are in large part due to tumor heterogeneity and an immunosuppressive desmoplastic tumor stroma that impacts interactions with cells in the tumor microenvironment (TME). Thus, there is a pressing need for models to probe the contributions of cellular and noncellular crosstalk. Organoids are promising model systems with the potential to generate a plethora of data including phenotypic, transcriptomic and genomic characterization but still require improvements in culture conditions mimicking the TME. Here, we describe an INTERaction with Organoid-in-MatriX ("InterOMaX") model system, that presents a 3D co-culture-based platform for investigating matrix-dependent cellular crosstalk. We describe its potential to uncover new molecular mechanisms of T cell responses to murine KPC (LSL-KrasG12D/+27/Trp53tm1Tyj/J/p48Cre/+) PDAC cells as well as PDAC patient-derived organoids (PDOs). For this, a customizable matrix and homogenously sized organoid-in-matrix positioning of cancer cells were designed based on a standardized agarose microwell chip array system and established for co-culture with T cells and inclusion of stromal cells. We describe the detection and orthogonal analysis of murine and human PDAC cell populations with distinct sensitivity to T cell killing that is corroborated in vivo. By enabling both identification and validation of gene candidates for T cell resistance, this platform sets the stage for better mechanistic understanding of cancer cell-intrinsic resistance phenotypes in PDAC.


Carcinoma, Pancreatic Ductal , Organoids , Pancreatic Neoplasms , T-Lymphocytes , Tumor Microenvironment , Organoids/pathology , Organoids/metabolism , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/immunology , Mice , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Coculture Techniques/methods , Cell Line, Tumor
13.
Nat Commun ; 15(1): 3593, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678021

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease for which better therapies are urgently needed. Fibroblasts and macrophages are heterogeneous cell populations able to enhance metastasis, but the role of a macrophage-fibroblast crosstalk in regulating their pro-metastatic functions remains poorly understood. Here we deconvolve how macrophages regulate metastasis-associated fibroblast (MAF) heterogeneity in the liver. We identify three functionally distinct MAF populations, among which the generation of pro-metastatic and immunoregulatory myofibroblastic-MAFs (myMAFs) critically depends on macrophages. Mechanistically, myMAFs are induced through a STAT3-dependent mechanism driven by macrophage-derived progranulin and cancer cell-secreted leukaemia inhibitory factor (LIF). In a reciprocal manner, myMAF secreted osteopontin promotes an immunosuppressive macrophage phenotype resulting in the inhibition of cytotoxic T cell functions. Pharmacological blockade of STAT3 or myMAF-specific genetic depletion of STAT3 restores an anti-tumour immune response and reduces metastases. Our findings provide molecular insights into the complex macrophage-fibroblast interactions in tumours and reveal potential targets to inhibit PDAC liver metastasis.


Carcinoma, Pancreatic Ductal , Liver Neoplasms , Macrophages , Pancreatic Neoplasms , STAT3 Transcription Factor , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Animals , Liver Neoplasms/secondary , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/immunology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Macrophages/metabolism , Macrophages/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Humans , Mice , Cell Line, Tumor , Signal Transduction , Janus Kinases/metabolism , Mice, Inbred C57BL , Fibroblasts/metabolism , Fibroblasts/pathology , Male , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Female
14.
Cell Rep ; 43(4): 114088, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38602878

Pancreatic ductal adenocarcinoma (PDAC) features an immunosuppressive tumor microenvironment (TME) that resists immunotherapy. Tumor-associated macrophages, abundant in the TME, modulate T cell responses. Bone marrow stromal antigen 2-positive (BST2+) macrophages increase in KrasG12D/+; Trp53R172H/+; Pdx1-Cre mouse models during PDAC progression. However, their role in PDAC remains elusive. Our findings reveal a negative correlation between BST2+ macrophage levels and PDAC patient prognosis. Moreover, an increased ratio of exhausted CD8+ T cells is observed in tumors with up-regulated BST2+ macrophages. Mechanistically, BST2+ macrophages secrete CXCL7 through the ERK pathway and bind with CXCR2 to activate the AKT/mTOR pathway, promoting CD8+ T cell exhaustion. The combined blockade of CXCL7 and programmed death-ligand 1 successfully decelerates tumor growth. Additionally, cGAS-STING pathway activation in macrophages induces interferon (IFN)α synthesis leading to BST2 overexpression in the PDAC TME. This study provides insights into IFNα-induced BST2+ macrophages driving an immune-suppressive TME through ERK-CXCL7 signaling to regulate CD8+ T cell exhaustion in PDAC.


Bone Marrow Stromal Antigen 2 , GPI-Linked Proteins , Interferon-alpha , Pancreatic Neoplasms , Tumor-Associated Macrophages , Animals , Female , Humans , Mice , Antigens, CD/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , GPI-Linked Proteins/metabolism , Immune Tolerance , Interferon-alpha/metabolism , Mice, Inbred C57BL , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Signal Transduction , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology
15.
J Hematol Oncol ; 17(1): 20, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38650005

BACKGROUND: EGFR and/or HER2 expression in pancreatic cancers is correlated with poor prognoses. We generated homodimeric (EGFRxEGFR or HER2xHER2) and heterodimeric (EGFRxHER2) T cell-engaging bispecific antibodies (T-BsAbs) to direct polyclonal T cells to these antigens on pancreatic tumors. METHODS: EGFR and HER2 T-BsAbs were constructed using the 2 + 2 IgG-[L]-scFv T-BsAbs format bearing two anti-CD3 scFvs attached to the light chains of an IgG to engage T cells while retaining bivalent binding to tumor antigens with both Fab arms. A Fab arm exchange strategy was used to generate EGFRxHER2 heterodimeric T-BsAb carrying one Fab specific for EGFR and one for HER2. EGFR and HER2 T-BsAbs were also heterodimerized with a CD33 control T-BsAb to generate 'tumor-monovalent' EGFRxCD33 and HER2xCD33 T-BsAbs. T-BsAb avidity for tumor cells was studied by flow cytometry, cytotoxicity by T-cell mediated 51Chromium release, and in vivo efficacy against cell line-derived xenografts (CDX) or patient-derived xenografts (PDX). Tumor infiltration by T cells transduced with luciferase reporter was quantified by bioluminescence. RESULTS: The EGFRxEGFR, HER2xHER2, and EGFRxHER2 T-BsAbs demonstrated high avidity and T cell-mediated cytotoxicity against human pancreatic ductal adenocarcinoma (PDAC) cell lines in vitro with EC50s in the picomolar range (0.17pM to 18pM). They were highly efficient in driving human polyclonal T cells into subcutaneous PDAC xenografts and mediated potent T cell-mediated anti-tumor effects. Both EGFRxCD33 and HER2xCD33 tumor-monovalent T-BsAbs displayed substantially reduced avidity by SPR when compared to homodimeric EGFRxEGFR or HER2xHER2 T-BsAbs (∼150-fold and ∼6000-fold respectively), tumor binding by FACS (8.0-fold and 63.6-fold), and T-cell mediated cytotoxicity (7.7-fold and 47.2-fold), while showing no efficacy against CDX or PDX. However, if either EGFR or HER2 was removed from SW1990 by CRISPR-mediated knockout, the in vivo efficacy of heterodimeric EGFRxHER2 T-BsAb was lost. CONCLUSION: EGFR and HER2 were useful targets for driving T cell infiltration and tumor ablation. Two arm Fab binding to either one or both targets was critical for robust anti-tumor effect in vivo. By engaging both targets, EGFRxHER2 heterodimeric T-BsAb exhibited potent anti-tumor effects if CDX or PDX were EGFR+HER2+ double-positive with the potential to spare single-positive normal tissue.


Antibodies, Bispecific , Carcinoma, Pancreatic Ductal , ErbB Receptors , Pancreatic Neoplasms , Receptor, ErbB-2 , T-Lymphocytes , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Humans , Animals , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , T-Lymphocytes/immunology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/therapy , Mice , ErbB Receptors/immunology , Receptor, ErbB-2/immunology , Cell Line, Tumor , Dimerization , Xenograft Model Antitumor Assays , Mice, SCID
16.
Cancer Res Commun ; 4(4): 1135-1149, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38598844

Preclinical studies imply that surgery triggers inflammation that may entail tumor outgrowth and metastasis. The potential impact of surgery-induced inflammation in human pancreatic cancer is insufficiently explored. This study included 17 patients with periampullary cancer [pancreatic ductal adenocarcinoma (PDAC) n = 14, ampullary carcinoma n = 2, cholangiocarcinoma n = 1] undergoing major pancreatic cancer surgery with curative intent. We analyzed the potential impact of preoperative and postoperative immune phenotypes and function on postoperative survival with >30 months follow-up. The surgery entailed prompt expansion of monocytic myeloid-derived suppressor cells (M-MDSC) that generated NOX2-derived reactive oxygen species (ROS). Strong induction of immunosuppressive M-MDSC after surgery predicted poor postoperative survival and coincided with reduced functionality of circulating natural killer (NK) cells. The negative impact of surgery-induced M-MDSC on survival remained significant in separate analysis of patients with PDAC. M-MDSC-like cells isolated from patients after surgery significantly suppressed NK cell function ex vivo, which was reversed by inhibition of NOX2-derived ROS. High NOX2 subunit expression within resected tumors from patients with PDAC correlated with poor survival whereas high expression of markers of cytotoxic cells associated with longer survival. The surgery-induced myeloid inflammation was recapitulated in vivo in a murine model of NK cell-dependent metastasis. Surgical stress thus induced systemic accumulation of M-MDSC-like cells and promoted metastasis of NK cell-sensitive tumor cells. Genetic or pharmacologic suppression of NOX2 reduced surgery-induced inflammation and distant metastasis in this model. We propose that NOX2-derived ROS generated by surgery-induced M-MDSC may be targeted for improved outcome after pancreatic cancer surgery. SIGNIFICANCE: Pancreatic cancer surgery triggered pronounced accumulation of NOX2+ myeloid-derived suppressor cells that inhibited NK cell function and negatively prognosticated postoperative patient survival. We propose the targeting of M-MDSC as a conceivable strategy to reduce postoperative immunosuppression in pancreatic cancer.


Myeloid-Derived Suppressor Cells , NADPH Oxidase 2 , Pancreatic Neoplasms , Reactive Oxygen Species , Female , Humans , Male , Carcinoma, Pancreatic Ductal/surgery , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/mortality , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , Pancreatic Neoplasms/surgery , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Postoperative Period , Reactive Oxygen Species/metabolism
17.
Int Immunopharmacol ; 132: 111944, 2024 May 10.
Article En | MEDLINE | ID: mdl-38581990

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignancy worldwide owing to its complex tumour microenvironment and dense physical barriers. Stromal-derived factor-1 (SDF-1), which is abundantly secreted by tumour stromal cells, plays a pivotal role in promoting PDAC growth and metastasis. In this study, we investigated the impact and molecular mechanisms of the anti-PD-L1&CXCR4 bispecific nanobody on the TME and their consequent interference with PDAC progression. We found that blocking the SDF-1/CXCR4 signalling pathway delayed the epithelial-mesenchymal transition in pancreatic cancer cells. Anti-PD-L1&CXCR4 bispecific nanobody effectively suppress the secretion of SDF-1 by pancreatic stellate cells and downregulate the expression of smooth muscle actin alpha(α-SMA), thereby preventing the activation of cancer-associated fibroblasts by downregulating the PI3K/AKT signaling pathway. This improves the pancreatic tumour microenvironment, favouring the infiltration of T cells into the tumour tissue. In conclusion, our results suggest that the anti-PD-L1&CXCR4 bispecific nanobody exerts an antitumor immune response by changing the pancreatic tumour microenvironment. Hence, the anti-PD-L1&CXCR4 bispecific nanobody is a potential candidate for pancreatic cancer treatment.


B7-H1 Antigen , Carcinoma, Pancreatic Ductal , Chemokine CXCL12 , Pancreatic Neoplasms , Pancreatic Stellate Cells , Receptors, CXCR4 , Single-Domain Antibodies , Tumor Microenvironment , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/drug effects , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/immunology , Humans , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Cell Line, Tumor , Animals , Chemokine CXCL12/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/immunology , Signal Transduction , Mice , Epithelial-Mesenchymal Transition/drug effects , Disease Progression
18.
EBioMedicine ; 103: 105098, 2024 May.
Article En | MEDLINE | ID: mdl-38608514

BACKGROUND: The widespread involvement of tumor-infiltrating B cells highlights their potential role in tumor behavior. However, B cell heterogeneity in PDAC remains unexplored. Studying TIL-Bs in PDAC aims to identify new treatment strategies. METHODS: We performed single-cell RNA sequencing to study the heterogeneity of B cells in PDAC. The prognostic and immunologic value of the identified CD38+ B cells was explored in FUSCC (n = 147) and TCGA (n = 176) cohorts. Flow cytometry was conducted to characterize the relationship between CD38+ B cells and other immune cells, as well as their phenotypic features. In vitro and in vivo experiments were performed to assess the putative effect of CD38+ B cells on antitumor immunity. FINDINGS: The presence of CD38+ B cells in PDAC was associated with unfavorable clinicopathological features and poorer overall survival (p < 0.001). Increased infiltration of CD38+ B cells was accompanied by reduced natural killer (NK) cells (p = 0.021) and increased regulatory T cells (p = 0.016). Molecular profiling revealed high expression of IL-10, IL-35, TGF-ß, GZMB, TIM-1, CD5 and CD21, confirming their putative regulatory B cell-like features. Co-culture experiments demonstrated suppression of NK cell cytotoxicity by CD38+ B cell-derived IL-10 (p < 0.001). Finally, in vivo experiments suggested adoptive transfer of CD38+ B cells reduced antitumor immunity and administration of a CD38 inhibitor hampered tumor growth (p < 0.001). INTERPRETATION: We discovered regulatory B cell-like CD38+ B cell infiltration as an independent prognostic factor in PDAC. The use of CD38 inhibitor may provide new possibilities for PDAC immunotherapy. FUNDING: This study was supported by the National Natural Science Foundation of China (U21A20374), Shanghai Municipal Science and Technology Major Project (21JC1401500), Scientific Innovation Project of Shanghai Education Committee (2019-01-07-00-07-E00057), Special Project for Clinical Research in the Health Industry of the Shanghai Health Commission (No. 20204Y0265) and Natural Science Foundation of Shanghai (23ZR1479300).


ADP-ribosyl Cyclase 1 , Carcinoma, Pancreatic Ductal , Humans , ADP-ribosyl Cyclase 1/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/therapy , Animals , Mice , Prognosis , Antigens, CD19/metabolism , Antigens, CD19/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Female , Male , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Cell Line, Tumor , Tumor Microenvironment/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Middle Aged , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Immunosuppression Therapy
19.
Front Biosci (Landmark Ed) ; 29(4): 137, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38682209

Most pancreatic cancers are pancreatic ductal adenocarcinomas. This is an extremely lethal disease with poor prognosis and almost no treatment choices. Considering the profound role of the pancreas in the human body, malfunction of this organ can significantly affect quality of life. Although multiple metabolic pathways are altered in cancer cells, certain metabolic gene signatures may be critical for immunotherapy. The reprogrammed metabolism of glucose, amino acids, and lipids can nourish the tumor microenvironment (TME). Previous studies have also shown that reprogrammed metabolism influences immune responses. Tumor-infiltrating immune cells in the TME can adapt their metabolism to blunt the immune system, leading to immunosuppression and tumor progression. The identification of metabolism-related genes (MRGs) associated with immune reactions in pancreatic cancer may lead to improved treatments. This review highlights the characteristics of MRGs in pancreatic cancer and suggests that enhanced anti-cancer therapies could be used to overcome resistance to immunotherapy.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Immunotherapy/methods , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics
20.
Cancer Immunol Immunother ; 73(6): 109, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38662232

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a highly immunosuppressive microenvironment. This single-blind, randomized study aimed to evaluate the synergistic immunomodulatory effects of synbiotics (probiotics and inulin prebiotics), as well as their impact on postoperative complications and outcomes, compared to the use of probiotics alone. Ninety patients diagnosed with PDAC were enrolled and randomly assigned into three groups: the placebo group, the probiotics group (receiving a mixture of ten strains of Lactobacillus, Bifidobacterium, and Streptococcus bacteria at a dose of 25 billion CFUs), and the synbiotics group (the same probiotics along with inulin prebiotics). The interventions were administered for 14 days before the surgery and continued for one month postoperatively. Tumor tissue infiltration of CD8 + T cells and the expression of IFN γ were assessed by immunohistochemistry (IHC). Inflammatory cytokines concentrations, including Il 1 B, IL 6, and IL 10, were evaluated as well by ELISA at various time points pre- and postoperative. Furthermore, patients were followed up after the surgery to assess postoperative short-term outcomes. Our results showed a significant elevation of CD8 + T cell proportion and IFN γ expression in the synbiotics group compared to the probiotics group (p = 0.049, p = 0.013, respectively). Inflammatory cytokines showed a significant gradual decrease in the synbiotics group compared to placebo and probiotics-treated groups (p = 0.000 for both). Administration of synbiotics and probiotics significantly decreased the rate of postoperative complications including anastomotic leakage, diarrhea, and abdominal distension (p = 0.032, p = 0.044, p = 0.042, respectively), with a remarkable reduction in bacteremia in the synbiotics group. These results revealed that this synbiotics formulation potentially enhances the immune response and reduces complications associated with surgery.Clinical trial identification: NCT06199752 (27-12-2023).


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Synbiotics , Humans , Synbiotics/administration & dosage , Male , Female , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/surgery , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/pathology , Middle Aged , Aged , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/surgery , Probiotics/therapeutic use , Probiotics/administration & dosage , Single-Blind Method , Cytokines/metabolism , Postoperative Complications/prevention & control , CD8-Positive T-Lymphocytes/immunology
...