Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.273
1.
Biol Pharm Bull ; 47(6): 1087-1105, 2024.
Article En | MEDLINE | ID: mdl-38825462

Analysis of endogenous metabolites in various diseases is useful for searching diagnostic biomarkers and elucidating the molecular mechanisms of pathophysiology. The author and collaborators have developed some LC/tandem mass spectrometry (LC/MS/MS) methods for metabolites and applied them to disease-related samples. First, we identified urinary conjugated cholesterol metabolites and serum N-palmitoyl-O-phosphocholine serine as useful biomarkers for Niemann-Pick disease type C (NPC). For the purpose of intraoperative diagnosis of glioma patients, we developed the LC/MS/MS analysis methods for 2-hydroxyglutaric acid or cystine and found that they could be good differential biomarkers. For renal cell carcinoma, we searched for various biomarkers for early diagnosis, malignancy evaluation and recurrence prediction by global metabolome analysis and targeted LC/MS/MS analysis. In pathological analysis, we developed a simultaneous LC/MS/MS analysis method for 13 steroid hormones and applied it to NPC cells, we found 6 types of reductions in NPC model cells. For non-alcoholic steatohepatitis (NASH), model mice were prepared with special diet and plasma bile acids were measured, and as a result, hydrophilic bile acids were significantly increased. In addition, we developed an LC/MS/MS method for 17 sterols and analyzed liver cholesterol metabolites and found a decrease in phytosterols and cholesterol synthetic markers and an increase in non-enzymatic oxidative sterols in the pre-onset stage of NASH. We will continue to challenge themselves to add value to clinical practice based on cutting-edge analytical chemistry methodology.


Biomarkers , Chromatography, Liquid/methods , Animals , Humans , Biomarkers/blood , Biomarkers/metabolism , Tandem Mass Spectrometry/methods , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/blood , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/diagnosis , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/blood , Glioma/metabolism , Glioma/diagnosis , Mice
2.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 129-134, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38836670

Clear cell renal cell carcinoma (ccRCC) is a lethal malignancy with high metastatic probability. Paired box 2 gene product (PAX2) carbonic anhydrase IX were biomolecules closely linked with ccRCC development and outcomes of multiple malignancies. We aim to explore the role of immunohistochemical staining of PAX2 and CAIX to predict ccRCC prognosis after nephrectomy. Surgical specimens of patients who were pathologically diagnosed as ccRCC were reviewed. Expression levels of PAX2 and CAIX were assessed via immunohistochemical staining. Recurrence-free survival (RFS) and overall survival were compared among different phenotypes. Inverse probability of treatment weighting (IPTW) was used for adjustment of confounding factors. 56 patients were included. Patients with PAX2 and CAIX high-expression (the two-high group, n=8) had significantly longer RFS and OS than those of simultaneously down-expression (the two-low group, n=31). Median RFS was 38.4 (95% CI: 32.3-NA) for the two-high group and 14.8 (95% CI: 13.4-39.0) months for the two-low group (P=0.043). IPTW confirmed PAX2 and CAIX co-expression is associated with less recurrence risk HR: 0.39, 95% CI: 0.17-0.92, P=0.031). Co-expression of PAX2 and CAIX is associated better prognosis of ccRCC. We are looking for validation by large cohort studies.


Carbonic Anhydrase IX , Carcinoma, Renal Cell , Immunohistochemistry , Kidney Neoplasms , Nephrectomy , PAX2 Transcription Factor , Humans , PAX2 Transcription Factor/metabolism , PAX2 Transcription Factor/genetics , Carcinoma, Renal Cell/surgery , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/genetics , Male , Female , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/genetics , Nephrectomy/methods , Middle Aged , Retrospective Studies , Kidney Neoplasms/surgery , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/mortality , Kidney Neoplasms/genetics , Prognosis , Aged , Disease-Free Survival , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Adult , Antigens, Neoplasm
3.
Front Endocrinol (Lausanne) ; 15: 1344891, 2024.
Article En | MEDLINE | ID: mdl-38846490

Introduction: Clear cell renal cell carcinoma (ccRCC) is characterized by a predominant metabolic reprogramming triggering energy production by anaerobic glycolysis at the expense of oxydative phosphorylation. Ketogenic diet (KD), which consists of high fat and low carbohydrate intake, could bring required energy substrates to healthy cells while depriving tumor cells of glucose. Our objective was to evaluate the effect of KD on renal cancer cell tumor metabolism and growth proliferation. Methods: Growth cell proliferation and mitochondrial metabolism of ACHN and Renca renal carcinoma cells were evaluated under ketone bodies (KB) exposure. In vivo studies were performed with mice (nude or Balb/c) receiving a xenograft of ACHN cells or Renca cells, respectively, and were then split into 2 feeding groups, fed either with standard diet or a 2:1 KD ad libitum. To test the effect of KD associated to immunotherapy, Balb/c mice were treated with anti-PDL1 mAb. Tumor growth was monitored. Results: In vitro, KB exposure was associated with a significant reduction of ACHN and Renca cell proliferation and viability, while increasing mitochondrial metabolism. In mice, KD was associated with tumor growth reduction and PDL-1 gene expression up-regulation. In Balb/c mice adjuvant KD was associated to a better response to anti-PDL-1 mAb treatment. Conclusion: KB reduced the renal tumor cell growth proliferation and improved mitochondrial respiration and biogenesis. KD also slowed down tumor growth of ACHN and Renca in vivo. We observed that PDL-1 was significantly overexpressed in tumor in mice under KD. Response to anti-PDL-1 mAb was improved in mice under KD. Further studies are needed to confirm the therapeutic benefit of adjuvant KD combined with immunotherapy in patients with kidney cancer.


B7-H1 Antigen , Carcinoma, Renal Cell , Cell Proliferation , Diet, Ketogenic , Kidney Neoplasms , Mice, Inbred BALB C , Animals , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/diet therapy , Mice , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Humans , Mice, Nude , Xenograft Model Antitumor Assays , Cell Line, Tumor , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Female
4.
J Exp Clin Cancer Res ; 43(1): 159, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38840237

BACKGROUND: Renal cell carcinoma (RCC) was historically considered to be less responsive to radiation therapy (RT) compared to other cancer indications. However, advancements in precision high-dose radiation delivery through single-fraction and multi-fraction stereotactic ablative radiotherapy (SABR) have led to better outcomes and reduced treatment-related toxicities, sparking renewed interest in using RT to treat RCC. Moreover, numerous studies have revealed that certain therapeutic agents including chemotherapies can increase the sensitivity of tumors to RT, leading to a growing interest in combining these treatments. Here, we developed a rational combination of two radiosensitizers in a tumor-targeted liposomal formulation for augmenting RT in RCC. The objective of this study is to assess the efficacy of a tumor-targeted liposomal formulation combining the mTOR inhibitor everolimus (E) with the survivin inhibitor YM155 (Y) in enhancing the sensitivity of RCC tumors to radiation. EXPERIMENTAL DESIGN: We slightly modified our previously published tumor-targeted liposomal formulation to develop a rational combination of E and Y in a single liposomal formulation (EY-L) and assessed its efficacy in RCC cell lines in vitro and in RCC tumors in vivo. We further investigated how well EY-L sensitizes RCC cell lines and tumors toward radiation and explored the underlying mechanism of radiosensitization. RESULTS: EY-L outperformed the corresponding single drug-loaded formulations E-L and Y-L in terms of containing primary tumor growth and improving survival in an immunocompetent syngeneic mouse model of RCC. EY-L also exhibited significantly higher sensitization of RCC cells towards radiation in vitro than E-L and Y-L. Additionally, EY-L sensitized RCC tumors towards radiation therapy in xenograft and murine RCC models. EY-L mediated induction of mitotic catastrophe via downregulation of multiple cell cycle checkpoints and DNA damage repair pathways could be responsible for the augmentation of radiation therapy. CONCLUSION: Taken together, our study demonstrated the efficacy of a strategic combination therapy in sensitizing RCC to radiation therapy via inhibition of DNA damage repair and a substantial increase in mitotic catastrophe. This combination therapy may find its use in the augmentation of radiation therapy during the treatment of RCC patients.


Carcinoma, Renal Cell , DNA Repair , Kidney Neoplasms , Survivin , TOR Serine-Threonine Kinases , Xenograft Model Antitumor Assays , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/radiotherapy , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Animals , Survivin/metabolism , Humans , Mice , Cell Line, Tumor , Kidney Neoplasms/pathology , Kidney Neoplasms/radiotherapy , Kidney Neoplasms/drug therapy , DNA Repair/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Mitosis/drug effects , Mitosis/radiation effects , Imidazoles/pharmacology , DNA Damage , Everolimus/pharmacology , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Liposomes/pharmacology , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use
5.
J Transl Med ; 22(1): 533, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831470

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a common disease in the urinary system, with a high incidence and poor prognosis in advanced stages. Although γ-interferon-inducible protein 16 (IFI16) has been reported to play a role in various tumors, its involvement in ccRCC remains poorly documented, and the molecular mechanisms are not yet clear. METHODS: We conducted bioinformatics analysis to study the expression of IFI16 in ccRCC using public databases. Additionally, we analyzed and validated clinical specimens that we collected. Subsequently, we explored the impact of IFI16 on ccRCC cell proliferation, migration, and invasion through in vitro and in vivo experiments. Furthermore, we predicted downstream molecules and pathways using transcriptome analysis and confirmed them through follow-up experimental validation. RESULTS: IFI16 was significantly upregulated in ccRCC tissue and correlated with poor patient prognosis. In vitro, IFI16 promoted ccRCC cell proliferation, migration, and invasion, while in vivo, it facilitated subcutaneous tumor growth and the formation of lung metastatic foci. Knocking down IFI16 suppressed its oncogenic function. At the molecular level, IFI16 promoted the transcription and translation of IL6, subsequently activating the PI3K/AKT signaling pathway and inducing epithelial-mesenchymal transition (EMT). CONCLUSION: IFI16 induced EMT through the IL6/PI3K/AKT axis, promoting the progression of ccRCC.


Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Interleukin-6 , Kidney Neoplasms , Nuclear Proteins , Phosphatidylinositol 3-Kinases , Phosphoproteins , Proto-Oncogene Proteins c-akt , Signal Transduction , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Cell Line, Tumor , Interleukin-6/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Animals , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Neoplasm Invasiveness , Male , Female , Prognosis
6.
Cell Adh Migr ; 18(1): 1-12, 2024 Dec.
Article En | MEDLINE | ID: mdl-38831518

In this research, we investigated the role of PIK3R6, a regulatory subunit of PI3Kγ, known for its tumor-promoting properties, in clear cell renal cell carcinoma (CCRCC). Utilizing the UALCAN website, we found PIK3R6 upregulated in CCRCC, correlating with lower survival rates. We compared PIK3R6 expression in CCRCC tumor tissues and adjacent normal tissues using immunohistochemistry. Post RNA interference-induced knockdown of PIK3R6 in 786-O and ACHN cell lines, we performed CCK-8, colony formation, Edu staining, flow cytometry, wound healing, and transwell assays. Results showed that PIK3R6 silencing reduced cell proliferation, migration, and invasion, and induced G0/G1 phase arrest and apoptosis. Molecular analysis revealed decreased CDK4, Cyclin D1, N-cadherin, Vimentin, Bcl-2, p-PI3K and p-AKT, with increased cleaved caspase-3, Bax, and E-cadherin levels in CCRCC cells. Moreover, inhibiting PIK3R6 hindered tumor growth. These findings suggest a significant role for PIK3R6 in CCRCC cell proliferation and metastasis, presenting it as a potential therapeutic target.


Apoptosis , Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Kidney Neoplasms , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Apoptosis/genetics , Cell Movement/genetics , Animals , Gene Expression Regulation, Neoplastic , Mice , Mice, Nude , Gene Knockdown Techniques , Female , Male
7.
Sci Rep ; 14(1): 10626, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724670

Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.


Carcinoma, Renal Cell , Extracellular Matrix , Gene Expression Regulation, Neoplastic , Hyaluronic Acid , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/mortality , Hyaluronic Acid/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/mortality , Prognosis , Extracellular Matrix/metabolism , Extracellular Matrix/genetics , Gene Expression Profiling , Protein Interaction Maps/genetics , Transcriptome , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Regulatory Networks
8.
Arch Esp Urol ; 77(3): 292-302, 2024 Apr.
Article En | MEDLINE | ID: mdl-38715171

BACKGROUND: Renal cell carcinoma (RCC), a common and highly invasive malignant tumour, presents clinical challenges due to its propensity for easy metastasis. Inferior vena cava tumour thrombus is a common RCC complication significantly impacting patient prognosis. This study investigates C-X-C chemokine receptor type 2 (CXCR2)/Snail-1-induced epithelial-mesenchymal transition (EMT) in RCC with inferior vena cava tumour thrombus. METHODS: Tissues from 51 RCC patients were analysed for CXCR2 and Snail-1 Messenger Ribonucleic Acid (mRNA) levels using Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Elevated levels of both were observed in tumour and inferior vena cava tumour thrombus tissues. Using Short Hairpin RNA (shRNA) technology, we inhibited CXCR2 and Snail-1 expression to investigate their impact on EMT, invasiveness, and metastatic potential in RCC cells. RESULTS: Compared with that in the Short Hairpin RNA-Negative Control (ShNC) group, inhibition of CXCR2 and Snail-1 suppressed the degree of EMT, invasiveness, and metastatic ability of RCC cells (p < 0.01). Further mechanistic studies showed that CXCR2/Snail-1 participated in the formation and progression of RCC by regulating the extracellular signal-regulated kinase 1/2 (ERK1/2) signalling pathways. Additionally, compared with that in the ShNC group, knockdown of CXCR2 and Snail-1 significantly inhibited the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9; p < 0.01), thereby regulating the metastasis of RCC. CONCLUSIONS: Our findings suggest that CXCR2/Snail-1-induced EMT plays an important role in the formation and progression of RCC with inferior vena cava tumour thrombus. CXCR2/Snail-1 participates in the invasion and metastasis of RCC by regulating the expression of multiple signalling pathways and related genes. These results provide new insights and directions for the treatment of RCC.


Carcinoma, Renal Cell , Disease Progression , Epithelial-Mesenchymal Transition , Kidney Neoplasms , Snail Family Transcription Factors , Vena Cava, Inferior , Aged , Female , Humans , Male , Middle Aged , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/secondary , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Neoplasm Invasiveness , Snail Family Transcription Factors/metabolism , Tumor Cells, Cultured , Vena Cava, Inferior/pathology
9.
J Cell Mol Med ; 28(9): e18329, 2024 May.
Article En | MEDLINE | ID: mdl-38693863

Therapy failure with the tyrosine kinase inhibitor (TKI) sunitinib remains a great challenge in metastatic renal cell carcinoma (mRCC). Growing evidence indicates that the tumour subpopulation can enter a transient, non-mutagenic drug-tolerant state to endure the treatment underlying the minimal residual disease and tumour relapse. Drug tolerance to sunitinib remains largely unexplored in RCC. Here, we show that sunitinib-tolerant 786-O/S and Caki-2/S cells are induced by prolonged drug treatment showing reduced drug sensitivity, enhanced clonogenicity, and DNA synthesis. Sunitinib-tolerance developed via dynamic processes, including (i) engagement of c-MET and AXL pathways, (ii) alteration of stress-induced p38 kinase and pro-survival BCL-2 signalling, (iii) extensive actin remodelling, which was correlated with activation of focal adhesion proteins. Remarkably, the acute drug response in both sensitive and sunitinib-tolerant cell lines led to dramatic fine-tuning of the actin-cytoskeleton and boosted cellular migration and invasion, indicating that the drug-response might depend on cell state transition rather than pre-existing mutations. The drug-tolerant state was transiently acquired, as the cells resumed initial drug sensitivity after >10 passages under drug withdrawal, reinforcing the concept of dynamic regulation and phenotypic heterogeneity. Our study described molecular events contributing to the reversible switch into sunitinib-tolerance, providing possible novel therapeutic opportunities in RCC.


Carcinoma, Renal Cell , Cell Movement , Drug Resistance, Neoplasm , Kidney Neoplasms , Sunitinib , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Sunitinib/pharmacology , Sunitinib/therapeutic use , Cell Line, Tumor , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Cell Movement/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/drug effects , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/genetics , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Axl Receptor Tyrosine Kinase , Pyrroles/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Cell Proliferation/drug effects , Indoles/pharmacology
10.
BMC Cancer ; 24(1): 650, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802739

OBJECTIVE: This study aimed to explore the effect of CD276 expression on the sunitinib sensitivity of clear cell renal cell carcinoma (ccRCC) cell and animal models and the potential mechanisms involved. METHODS: CD276 expression levels of ccRCC and normal samples were analyzed via online databases and real-time quantitative PCR (RT-qPCR). CD276 was knocked down in ccRCC cell models (sunitinib-resistant 786-O/R cells and sunitinib-sensitive 786-O cells) using shRNA transfection, and the cells were exposed to a sunitinib (2 µM) environment. Cells proliferation was then analyzed using MTT assay and colony formation experiment. Alkaline comet assay, immunofluorescent staining, and western blot experiments were conducted to assess the DNA damage repair ability of the cells. Western blot was also used to observe the activation of FAK-MAPK pathway within the cells. Finally, a nude mouse xenograft model was established and the nude mice were orally administered sunitinib (40 mg/kg/d) to evaluate the in vivo effects of CD276 knockdown on the therapeutic efficacy of sunitinib against ccRCC. RESULTS: CD276 was significantly upregulated in both ccRCC clinical tissue samples and cell models. In vitro experiments showed that knocking down CD276 reduced the survival rate, IC50 value, and colony-forming ability of ccRCC cells. Knocking down CD276 increased the comet tail moment (TM) values and γH2AX foci number, and reduced BRCA1 and RAD51 protein levels. Knocking down CD276 also decreased the levels of p-FAK, p-MEK, and p-ERK proteins. CONCLUSION: Knocking down CD276 effectively improved the sensitivity of ccRCC cell and animal models to sunitinib treatment.


Carcinoma, Renal Cell , DNA Damage , DNA Repair , Drug Resistance, Neoplasm , Kidney Neoplasms , Mice, Nude , Sunitinib , Xenograft Model Antitumor Assays , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Humans , Sunitinib/pharmacology , Sunitinib/therapeutic use , Animals , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Mice , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , DNA Damage/drug effects , MAP Kinase Signaling System/drug effects , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female , Gene Knockdown Techniques , Male , B7 Antigens
11.
Biol Direct ; 19(1): 37, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734627

BACKGROUND: Clear cell renal cell carcinoma (RCC) is the most common kidney tumor. The analysis from medical database showed that Scm-like with four MBT domains protein 2 (SFMBT2) was decreased in advanced clear cell RCC cases, and its downregulation was associated with the poor prognosis. This study aims to investigate the role of SFMBT2 in clear cell RCC. METHODS: The expression of SFMBT2 in clear cell RCC specimens were determined by immunohistochemistry staining and western blot. The overexpression and knockdown of SFMBT2 was realized by infection of lentivirus loaded with SFMBT2 coding sequence or silencing fragment in 786-O and 769-P cells, and its effects on proliferation and metastasis were assessed by MTT, colony formation, flow cytometry, wound healing, transwell assay, xenograft and metastasis experiments in nude mice. The interaction of SFMBT2 with histone deacetylase 3 (HDAC3) and seven in absentia homolog 1 (SIAH1) was confirmed by co-immunoprecipitation. RESULTS: In our study, SFMBT2 exhibited lower expression in clear cell RCC specimens with advanced stages than those with early stages. Overexpression of SFMBT2 inhibited the growth and metastasis of clear cell RCC cells, 786-O and 769-P, in vitro and in vivo, and its silencing displayed opposites effects. HDAC3 led to deacetylation of SFMBT2, and the HDAC3 inhibitor-induced acetylation prevented SFMBT2 from SIAH1-mediated ubiquitination modification and proteasome degradation. K687 in SFMBT2 protein molecule may be the key site for acetylation and ubiquitination. CONCLUSIONS: SFMBT2 exerted an anti-tumor role in clear cell RCC cells, and HDAC3-mediated deacetylation promoted SIAH1-controlled ubiquitination of SFMBT2. SFMBT2 may be considered as a novel clinical diagnostic marker and/or therapeutic target of clear cell RCC, and crosstalk between its post-translational modifications may provide novel insights for agent development.


Carcinoma, Renal Cell , Kidney Neoplasms , Mice, Nude , Ubiquitination , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Humans , Acetylation , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Animals , Mice , Cell Line, Tumor , Cell Proliferation , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Gene Expression Regulation, Neoplastic
12.
Eur J Med Res ; 29(1): 291, 2024 May 19.
Article En | MEDLINE | ID: mdl-38764054

BACKGROUND: Renal cell carcinoma (RCC) is a malignant tumor. Radix Actinidiae chinensis (RAC) is the root of Actinidia arguta (Sieb. et Zucc) Planch. ex Miq. In clinical research, RAC was confirmed to have a certain anti-tumor effect, including liver cancer and cholangiocarcinoma. This study investigated the anticancer effect and mechanism of RAC in RCC cells. METHODS: The 786-O and A498 cells were intervened with varying concentrations of RAC (0-100 mg/mL) to detect the half maximal inhibitory concentration (IC50) of RAC. The cells were then co-cultured with 0-50 mg/mL RAC for 0-72 h to assess the effect of RAC on cell viability using the cell counting kit-8. The effects on cell proliferation, cell cycle or apoptosis, migration or invasion, and autophagy were detected using cloning, flow cytometry, Transwell, AOPI assay and Western blot. The number of autophagolysosomes was quantified using a transmission electron microscope. PI3K/AKT/mTOR pathway-related proteins were detected by Western blot. Additionally, an autophagy inhibitor 3-MA was used to explore the underlying mechanism of RAC. RESULTS: IC50 values of RAC in 786-O and A498 were 14.76 mg/mL and 13.09 mg/mL, respectively. RAC demonstrated the ability to reduce the cell malignant phenotype of RCC cells, blocked the S phase of cells, promoted apoptosis and autophagy in cells. Furthermore, RAC was observed to increase autophagy-related proteins LC3II/I and Beclin-1, while decreasing the level of P62. The expression of apoptosis-related proteins was increased, while the ratios of p-PI3K/PI3K, p-AKT/AKT, p-mTOR/mTOR, p-P38/P38 and p-ERK/ERK were reduced by RAC. However, the addition of 3-MA reduced the apoptosis and autophagy- promotion effects of RAC on RCC cells. CONCLUSION: RAC induced the apoptosis and autophagy, to inhibit the progression of RCC cells. This study may provide a theoretical and experimental basis for clinical anti-cancer application of RAC for RCC.


Apoptosis , Autophagy , Carcinoma, Renal Cell , Cell Proliferation , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Autophagy/drug effects , Apoptosis/drug effects , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Cell Proliferation/drug effects , Actinidia/chemistry , Cell Line, Tumor , Cell Movement/drug effects , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Survival/drug effects
13.
J Transl Med ; 22(1): 481, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773612

BACKGROUND: Tripartite motif-containing 26 (TRIM26), a member of the TRIM protein family, exerts dual function in several types of cancer. Nevertheless, the precise role of TRIM26 in clear cell renal cell carcinoma (ccRCC) has not been investigated. METHODS: The expression of TRIM26 in ccRCC tissues and cell lines were examined through the use of public resources and experimental validation. The impacts of TRIM26 on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process were determined via CCK-8, colony formation, EdU incorporation, wound healing, Transwell invasion, Western blot, and Immunofluorescence assays. RNA-seq followed by bioinformatic analyses were used to identify the downstream pathway of TRIM26. The interaction between TRIM26 and ETK was assessed by co-immunoprecipitation, qRT-PCR, Western blot, cycloheximide (CHX) chase, and in vivo ubiquitination assays. RESULTS: We have shown that TRIM26 exhibits a downregulation in both ccRCC tissues and cell lines. Furthermore, this decreased expression of TRIM26 is closely linked to unfavorable overall survival and diseases-free survival outcomes among ccRCC patients. Gain- and loss-of-function experiments demonstrated that increasing the expression of TRIM26 suppressed the proliferation, migration, invasion, and EMT process of ccRCC cells. Conversely, reducing the expression of TRIM26 had the opposite effects. RNA sequencing, coupled with bioinformatic analysis, revealed a significant enrichment of the mTOR signaling pathway in the control group compared to the group with TRIM26 overexpression. This finding was then confirmed by a western blot assay. Subsequent examination revealed that TRMI26 had a direct interaction with ETK, a non-receptor tyrosine kinase. This interaction facilitated the ubiquitination and degradation of ETK, resulting in the deactivation of the AKT/mTOR signaling pathway in ccRCC. ETK overexpression counteracted the inhibitory effects of TRIM26 overexpression on cell proliferation, migration, and invasion. CONCLUSION: Our results have shown a novel mechanism by which TRIM26 hinders the advancement of ccRCC by binding to and destabilizing ETK, thus leading to the deactivation of AKT/mTOR signaling. TRIM26 shows promise as both a therapeutic target and prognostic biomarker for ccRCC patients.


Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Kidney Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Gene Expression Regulation, Neoplastic , Male , Ubiquitination , Protein Stability , Neoplasm Invasiveness , Female , Down-Regulation/genetics , Middle Aged , Animals
14.
Int J Oncol ; 65(1)2024 Jul.
Article En | MEDLINE | ID: mdl-38818827

Clear cell renal cell carcinoma (ccRCC), the most common type of renal cell carcinoma (RCC), is not sensitive to traditional radiotherapy and chemotherapy. The polyphenolic compound Gallic acid (GA) can be naturally found in a variety of fruits, vegetables and plants. Autophagy, an intracellular catabolic process, regulates the lysosomal degradation of organelles and portions in cytoplasm. It was reported that autophagy and GA could affect the development of several cancers. Therefore, the aim of the present study was to evaluate the effects of GA on ccRCC development and clarify the role of autophagy in this process. In the present study, the effects of GA on the proliferation, migration and invasion of ccRCC cells were investigated in vitro by Cell Counting Kit­8, colony formation, flow cytometry, wound healing and Transwell migration assays, respectively. Additionally, the effects of GA on ccRCC growth and metastasis were evaluated using hematoxylin­eosin and immunohistochemical staining in vivo. Moreover, it was sought to explore the underlying molecular mechanisms using transmission electron microscopy, western blotting and reverse transcription­quantitative PCR analyses. In the present study, it was revealed that GA had a more potent viability inhibitory effect on ccRCC cells (786­O and ACHN) than the effect on normal renal tubular epithelial cell (HK­2), which demonstrated that GA selectively inhibits the viability of cancer cells. Furthermore, it was identified that GA dose­dependently inhibited the proliferation, migration and invasion of ccRCC cells in vitro and in vivo. It was demonstrated that GA promoted the release of autophagy markers, which played a role in regulating the PI3K/Akt/Atg16L1 signaling pathway. All the aforementioned data provided evidence for the great potential of GA in the treatment of ccRCC.


Autophagy-Related Proteins , Autophagy , Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Gallic Acid , Kidney Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Humans , Gallic Acid/pharmacology , Autophagy/drug effects , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Mice , Phosphatidylinositol 3-Kinases/metabolism , Cell Movement/drug effects , Animals , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Xenograft Model Antitumor Assays , Disease Progression , Male , Female , Gene Expression Regulation, Neoplastic/drug effects , Carrier Proteins/metabolism
15.
Elife ; 132024 May 24.
Article En | MEDLINE | ID: mdl-38787918

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer-driven tissue factors in shaping nutrient availability in these tumors.


Cancer cells convert nutrients into energy differently compared to healthy cells. This difference in metabolism allows them to grow and divide more quickly and sometimes to migrate to different areas of the body. The environment around cancer cells ­ known as the tumor microenvironment ­ contains a variety of different cells and blood vessels, which are bathed in interstitial fluid. This microenvironment provides nutrients for the cancer cells to metabolize, and therefore influences how well a tumor grows and how it might respond to treatment. Recent advances with techniques such as mass spectrometry, which can measure the chemical composition of a substance, have allowed scientists to measure nutrient levels in the tumor microenvironments of mice. However, it has been more difficult to conduct such studies in humans, as well as to compare the tumor microenvironment to the healthy tissue the tumors arose from. Abbott, Ali, Reinfeld et al. aimed to fill this gap in knowledge by using mass spectrometry to measure the nutrient levels in the tumor microenvironment of 55 patients undergoing surgery to remove kidney tumors. Comparing the type and levels of nutrients in the tumor interstitial fluid, the neighboring healthy kidney and the blood showed that nutrients in the tumor and healthy kidney were more similar to each other than those in the blood. For example, both the tumor and healthy kidney interstitial fluids contained less glucose than the blood. However, the difference between nutrient composition in the tumor and healthy kidney interstitial fluids was insignificant, suggesting that the healthy kidney and its tumor share a similar environment. Taken together, the findings indicate that kidney cancer cells must adapt to the nutrients available in the kidney, rather than changing what nutrients are available in the tissue. Future studies will be required to investigate whether this finding also applies to other types of cancer. A better understanding of how cancer cells adapt to their environments may aid the development of drugs that aim to disrupt the metabolism of tumors.


Carcinoma, Renal Cell , Kidney Neoplasms , Metabolome , Nutrients , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Humans , Kidney Neoplasms/metabolism , Nutrients/metabolism , Metabolomics/methods , Tumor Microenvironment , Extracellular Fluid/metabolism , Female , Male , Lipidomics
16.
Med Oncol ; 41(6): 150, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740647

The impact of tumor microenvironment (TME) in influencing clinical response to first-line immune checkpoint inhibitor (ICI)-based treatment in advanced renal cell carcinoma (RCC) is unclear. Immunohistochemistry (IHC) could identify biomarkers related to immune checkpoints and immune cell population. This study retrospectively characterized TME from 28 RCC patients who received first line ICI-based therapy through IHC assessment of selected markers and explored preliminary evidence about their possible correlation with treatment efficacy. We found a significantly higher count of CD80+, CD163+ cells and their ratio in RCC with clear cell component compared to those without clear cell features; additionally, patients with metastatic disease at diagnosis were associated with higher expression of CD163+ cells, while higher count of CD4+ cells and CD4+/CD8+ ratio were found in RCC with sarcomatoid features. Patients achieving partial or complete response were associated with lower expression of CD163+ cells (median 28 vs 47; p = 0.049). Furthermore, lower expression of CD163+ was associated with better PFS (median PFS 20.0 vs 4.7 months; HR 0.22 p = 0.011) and OS (median OS NR vs 14.4 months; HR 0.28 p = 0.036). A longer OS was reported in PD-L1 CPS negative patients (median OS NR vs 11.8 months; HR 0.20 p = 0.024). High infiltration of CD163+ macrophages, who typically present "anti-inflammatory" M2-like phenotype, could identify a subgroup of patients with poor survival after receiving first-line ICI.


Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/metabolism , Tumor Microenvironment/immunology , Kidney Neoplasms/pathology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/immunology , Kidney Neoplasms/metabolism , Male , Female , Middle Aged , Aged , Retrospective Studies , Immune Checkpoint Inhibitors/therapeutic use , Adult , Immunotherapy/methods , Receptors, Cell Surface/metabolism , Antigens, CD/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Aged, 80 and over , Treatment Outcome , Antigens, Differentiation, Myelomonocytic/metabolism
17.
Cell Death Dis ; 15(5): 355, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777825

As a typical E3 ligase, TRIM65 (tripartite motif containing 65) is involved in the regulation of antiviral innate immunity and the pathogenesis of certain tumors. However, the role of TRIM65 in renal cell carcinoma (RCC) and the underlying mechanism has not been determined yet. In this study, we identified TRIM65 as a novel oncogene in RCC, which enhanced the tumor cell proliferation and anchorage-independent growth abilities both in vitro and in vivo. Moreover, we found that TRIM65-regulated RCC proliferation mainly via direct interaction with BTG3 (BTG anti-proliferation factor 3), which in turn induced the K48-linked ubiquitination and subsequent degradation through K41 amino acid. Furthermore, TRIM65 relieved G2/M phase cell cycle arrest via degradation of BTG3 and regulated downstream factors. Further studies revealed that TRIM65 acts through TRIM65-BTG3-CyclinD1 axis and clinical sample IHC chip data indicated a negative correction between TRIM65 and BTG3. Taken together, our findings demonstrated that TRIM65 promotes RCC cell proliferation via regulation of the cell cycle through degradation of BTG3, suggesting that TRIM65 may be a promising target for RCC therapy.


Carcinoma, Renal Cell , Cell Proliferation , Kidney Neoplasms , Proteolysis , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Cell Line, Tumor , Animals , Mice, Nude , Mice , Mice, Inbred BALB C , HEK293 Cells , Gene Expression Regulation, Neoplastic , Cell Cycle Proteins
18.
Sci Rep ; 14(1): 11985, 2024 05 25.
Article En | MEDLINE | ID: mdl-38796629

Clear cell renal cell carcinoma (ccRCC) is a malignant tumor of the urinary system. To explore the potential mechanisms of DHODH in ccRCC, we analyzed its molecular characteristics using public databases. TCGA pan-cancer dataset was used to analyze DHODH expression in different cancer types and TCGA ccRCC dataset was used to assess differential expression, prognosis correlation, immune infiltration, single-gene, and functional enrichment due to DHODH. The GSCALite and CellMiner databases were employed to explore drugs and perform molecular docking analysis with DHODH. Protein-protein interaction networks and ceRNA regulatory networks of DHODH were constructed using multiple databases. The effect of DHODH on ccRCC was confirmed in vitro. DHODH was highly expressed in ccRCC. Immune infiltration analysis revealed that DHODH may be involved in regulating the infiltration of immunosuppressive cells such as Tregs. Notably, DHODH influenced ccRCC progression by forming regulatory networks with molecules, such as hsa-miR-26b-5p and UMPS and significantly enhanced the malignant characteristics of ccRCC cells. Several drugs, such as lapatinib, silmitasertib, itraconazole, and dasatinib, were sensitive to DHODH expression and exhibited strong molecular binding with it. Thus, DHODH may promote ccRCC progression and is a candidate effective therapeutic target for ccRCC.


Carcinoma, Renal Cell , Computational Biology , Dihydroorotate Dehydrogenase , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , Oxidoreductases Acting on CH-CH Group Donors , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Computational Biology/methods , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Cell Line, Tumor , Protein Interaction Maps , Molecular Docking Simulation , Prognosis , Gene Regulatory Networks , MicroRNAs/genetics , MicroRNAs/metabolism
19.
Sci Rep ; 14(1): 12044, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802480

This study tackles the persistent prognostic and management challenges of clear cell renal cell carcinoma (ccRCC), despite advancements in multimodal therapies. Focusing on anoikis, a critical form of programmed cell death in tumor progression and metastasis, we investigated its resistance in cancer evolution. Using single-cell RNA sequencing from seven ccRCC patients, we assessed the impact of anoikis-related genes (ARGs) and identified differentially expressed genes (DEGs) in Anoikis-related epithelial subclusters (ARESs). Additionally, six ccRCC RNA microarray datasets from the GEO database were analyzed for robust DEGs. A novel risk prognostic model was developed through LASSO and multivariate Cox regression, validated using BEST, ULCAN, and RT-PCR. The study included functional enrichment, immune infiltration analysis in the tumor microenvironment (TME), and drug sensitivity assessments, leading to a predictive nomogram integrating clinical parameters. Results highlighted dynamic ARG expression patterns and enhanced intercellular interactions in ARESs, with significant KEGG pathway enrichment in MYC + Epithelial subclusters indicating enhanced anoikis resistance. Additionally, all ARESs were identified in the spatial context, and their locational relationships were explored. Three key prognostic genes-TIMP1, PECAM1, and CDKN1A-were identified, with the high-risk group showing greater immune infiltration and anoikis resistance, linked to poorer prognosis. This study offers a novel ccRCC risk signature, providing innovative approaches for patient management, prognosis, and personalized treatment.


Anoikis , Biomarkers, Tumor , Carcinoma, Renal Cell , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Anoikis/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Tumor Microenvironment/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Male , Female , Gene Expression Profiling , Nomograms
20.
Biochem Pharmacol ; 224: 116247, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697311

Current therapeutic options for renal cell carcinoma (RCC) are very limited, which is largely due to inadequate comprehension of molecular pathological mechanisms as well as RCC's resistance to chemotherapy. Dual-specificity phosphatase 6 (DUSP6) has been associated with numerous human diseases. However, its role in RCC is not well understood. Here, we show that diminished DUSP6 expression is linked to RCC progression and unfavorable prognosis. Mechanistically, DUSP6 serves as a tumor suppressor in RCC by intervening the TAF10 and BSCL2 via the ERK-AKT pathway. Further, DUSP6 is also transcriptionally regulated by HNF-4a. Moreover, docking experiments have indicated that DUSP6 expression is enhanced when bound by Calcium saccharate, which also inhibits RCC cell proliferation, metabolic rewiring, and sunitinib resistance. In conclusion, our study identifies Calcium saccharate as a prospective pharmacological therapeutic approach for RCC.


Antineoplastic Agents , Carcinoma, Renal Cell , Dual Specificity Phosphatase 6 , Glycolysis , Kidney Neoplasms , Proto-Oncogene Proteins c-akt , Sunitinib , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Sunitinib/pharmacology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Glycolysis/drug effects , Glycolysis/physiology , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/metabolism , Animals , Dual Specificity Phosphatase 6/metabolism , Dual Specificity Phosphatase 6/genetics , Antineoplastic Agents/pharmacology , Mice , Mice, Nude , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Male
...