Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 63.139
3.
Exp Dermatol ; 33(6): e15112, 2024 Jun.
Article En | MEDLINE | ID: mdl-38840385

Cutaneous squamous cell carcinoma (cSCC) ranks as the second most prevalent skin tumour (excluding melanoma). However, the molecular mechanisms driving cSCC progression remain elusive. This study aimed to investigate GBP1 expression in cSCC and elucidate its potential molecular mechanisms underlying cSCC development. GBP1 expression was assessed across public databases, cell lines and tissue samples. Various assays, including clone formation, CCK8 and EdU were employed to evaluate cell proliferation, while wound healing and transwell assays determined cell migration and invasion. Subcutaneous tumour assays were conducted to assess in vivo tumour proliferation, and molecular mechanisms were explored through western blotting, immunofluorescence and immunoprecipitation. Results identified GBP1 as an oncogene in cSCC, with elevated expression in both tumour tissues and cells, strongly correlating with tumour stage and grade. In vitro and in vivo investigations revealed that increased GBP1 expression significantly enhanced cSCC cell proliferation, migration and invasion. Mechanistically, GBP1 interaction with SP1 promoted STAT3 activation, contributing to malignant behaviours. In conclusion, the study highlights the crucial role of the GBP1/SP1/STAT3 signalling axis in regulating tumour progression in cSCC. These findings provide valuable insights into the molecular mechanisms of cSCC development and offer potential therapeutic targets for interventions against cSCC.


Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , GTP-Binding Proteins , Neoplasm Invasiveness , STAT3 Transcription Factor , Skin Neoplasms , Sp1 Transcription Factor , STAT3 Transcription Factor/metabolism , Humans , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Sp1 Transcription Factor/metabolism , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Cell Line, Tumor , Animals , Mice , Signal Transduction , Female , Mice, Nude
4.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 78-84, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38836678

Macrophages in the tumor microenvironment can polarize into M1 or M2 forms, with M2 macrophages (M2φ) promoting tumor growth and metastasis in cervical squamous cell carcinoma (CESC). This study explored the effects of M2φ on CESC metabolic reprogramming both in vitro and in vivo. Results showed that M2φ secreted CXCL1, which significantly increased CESC migration and metabolic regulation. Further experiments revealed that CXCL1 upregulated KDM6B to enhance PFKFB2 transcriptional activity, thus regulating CESC glucose metabolism. Transcriptome sequencing screened 5 upregulated genes related to glycolysis, with PFKFB2 showing the most significant increase in cells treated with rCXCL1. Dual-luciferase reporter assay confirmed that rCXCL1 enhances PFKFB2 transcriptional activity. Bioinformatics analysis revealed a high correlation between expressions of KDM6B and PFKFB2 in CESC. Mechanistic experiments demonstrated that KDM6B inhibited H3K27me3 modification to activate PFKFB2 transcriptional expression. In conclusion, M2φ secreted CXCL1 to promote CESC cell migration and invasion, and CXCL1 activated KDM6B expression in CESC cells, inhibiting H3K27 protein methylation modification, and enhanced PFKFB2 transcriptional activity to regulate CESC glucose metabolism. These results provided new insights into the complex interplay between the immune system and cancer metabolism, which may have broader implications for understanding and treating other types of cancer.


Carcinoma, Squamous Cell , Cell Movement , Chemokine CXCL1 , Gene Expression Regulation, Neoplastic , Jumonji Domain-Containing Histone Demethylases , Macrophages , Phosphofructokinase-2 , Uterine Cervical Neoplasms , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Humans , Female , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Macrophages/metabolism , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Cell Movement/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Animals , Cell Line, Tumor , Mice , Tumor Microenvironment/genetics , Glucose/metabolism , Mice, Nude , Glycolysis/genetics , Metabolic Reprogramming
5.
J Cancer Res Clin Oncol ; 150(6): 295, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38844723

BACKGROUND: The DIAPH2 gene is one of the genes commonly associated with laryngeal squamous cell carcinoma (LSCC). In our study, we considered the four polymorphisms of this gene, i.e. rs5920828, rs4322175, rs12851931 and rs5921830 as potential genetic risk factors for LSCC. METHODS: We determined the genotyping of the genetic variants of DIAPH2 in 230 male patients with histologically confirmed LSCC compared to the European population. Demographic and environmental exposure data of each subject were examined. To conduct the genetic tests, extraction of total DNA was performed. We genotyped all four variants in each patient and determined their frequencies. RESULTS: In the case of the rs12851931 polymorphism in the DIAPH2 gene, a significant difference was observed in the distribution of the T stage depending on the polymorphism. Heterozygotes were more often associated with T2 stage, while homozygotes were more likely to have higher tumor stages. The rs12851931 homozygotes of DIAPH2 were statistically significantly more prevalent in smokers. The results suggested that rs12851931 polymorphism in DIAPH2 could increase the onset risk of LSCC. CONCLUSIONS: Our results provide further information on the role of the DIAPH2 gene in the pathogenesis of LSCC.


Formins , Genetic Predisposition to Disease , Laryngeal Neoplasms , Polymorphism, Single Nucleotide , Humans , Male , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/epidemiology , Laryngeal Neoplasms/pathology , Middle Aged , Formins/genetics , Aged , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Risk Factors , Genotype , Adult
6.
Sci Rep ; 14(1): 13058, 2024 06 06.
Article En | MEDLINE | ID: mdl-38844774

The incidence of vulvar carcinoma varies by race; however, it is a rare disease, and its genomic profiles remain largely unknown. This study examined the characteristics of vulvar squamous cell carcinoma (VSCC) in Japanese patients, focusing on genomic profiles and potential racial disparities. The study included two Japanese groups: the National Cancer Center Hospital (NCCH) group comprised 19 patients diagnosed between 2015 and 2023, and the Center for Cancer Genomics and Advanced Therapeutics group comprised 29 patients diagnosed between 2019 and 2022. Somatic mutations were identified by targeted or panel sequencing, and TP53 was identified as the most common mutation (52-81%), followed by HRAS (7-26%), CDKN2A (21-24%), and PIK3CA (5-10%). The mutation frequencies, except for TP53, were similar to those of Caucasian cohorts. In the NCCH group, 16 patients of HPV-independent tumors were identified by immunohistochemistry and genotyping. Univariate analysis revealed that TP53-mutated patients were associated with a poor prognosis (log-rank test, P = 0.089). Japanese VSCC mutations resembled those of Caucasian vulvar carcinomas, and TP53 mutations predicted prognosis regardless of ethnicity. The present findings suggest potential molecular-targeted therapies for select VSCC patients.


Carcinoma, Squamous Cell , Mutation , Tumor Suppressor Protein p53 , Vulvar Neoplasms , Humans , Female , Vulvar Neoplasms/genetics , Vulvar Neoplasms/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Middle Aged , Aged , Tumor Suppressor Protein p53/genetics , Japan/epidemiology , Aged, 80 and over , Cyclin-Dependent Kinase Inhibitor p16/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Prognosis , Adult , Asian People/genetics , Genomics/methods , Proto-Oncogene Proteins p21(ras)/genetics , East Asian People
7.
BMC Cancer ; 24(1): 689, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844907

We examined the expression of programmed death-ligand 1 (PD-L1) in carcinoma of unknown primary (CUP) and its potential implications. Tissue microarrays were constructed for 72 CUP cases (histologic subtypes: 22 adenocarcinoma, 15 poorly differentiated carcinoma, 19 squamous cell carcinoma, and 14 undifferentiated carcinoma; clinical subtype: favorable type 17 [23.6%], unfavorable type 55 [76.4%]), with immunohistochemical staining performed for PD-L1 (22C3, SP142, SP263, and 28 - 8), CK7, and CK20 to determine the association between staining results and clinicopathological parameters. In CUP, the PD-L1 positivity rate was 5.6-48.6% (tumor cells [TC] or tumor proportion score [TPS]: 5.6-36.1%, immune cell score [IC]: 8.3-48.6%, combined positive score [CPS]: 16.7%) using different cutoff values for 22C3 (TPS ≥ 1%, CPS ≥ 10), SP142 (TC ≥ 50%, IC ≥ 10%), SP263, and 28 - 8 (TC and IC ≥ 1%). PD-L1 SP142 TC and PD-L1 SP263 IC showed the lowest (5.6%) and highest (48.6%) positivity rates, respectively. The PD-L1 positivity rate did not significantly differ based on the histologic subtype, clinical subtype, or CK7/CK20 across clones. Considering TC κ ≥ 1%, TC κ ≥ 50%, IC κ ≥ 1%, and IC κ ≥ 10%, the PD-L1 positivity rate was TC = 4.2-36.1% and IC = 9.7-48.6%; the overall agreement between antibodies ranged from 69.4 to 93.1%, showing fair or better agreement (κ ≥ 0.21). In CUP, PD-L1 positivity varied depending on antibodies and scoring systems, with no difference observed according to histologic or clinical subtypes.


B7-H1 Antigen , Biomarkers, Tumor , Neoplasms, Unknown Primary , Humans , B7-H1 Antigen/metabolism , Neoplasms, Unknown Primary/pathology , Neoplasms, Unknown Primary/metabolism , Male , Aged , Female , Middle Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Adult , Immunohistochemistry , Tissue Array Analysis , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology
8.
Sci Rep ; 14(1): 12921, 2024 06 05.
Article En | MEDLINE | ID: mdl-38839809

We probed the associations of preoperative modified geriatric nutritional risk index (mGNRI) values with prognosis in patients receiving surgery for oral cavity squamous cell carcinoma (OCSCC). This retrospective study analyzed the clinical data of 333 patients with OCSCC and undergoing surgery between 2008 and 2017. The preoperative mGNRI was calculated using the following formula: (14.89/C-reactive protein level) + 41.7 × (actual body weight/ideal body weight). We executed receiver operating characteristic curve analyses to derive the optimal mGNRI cutoff and employed Kaplan-Meier survival curves and Cox proportional hazard model to probe the associations of the mGNRI with overall survival (OS) and disease-free survival (DFS). The optimal mGNRI cutoff was derived to be 73.3. We noted the 5-year OS and DFS rates to be significantly higher in the high-mGNRI group than in the low-mGNRI group (both p < 0.001). A preoperative mGNRI below 73.3 was independently associated with unfavorable DFS and OS. A mGNRI-based nomogram was constructed to provide accurate OS predictions (concordance index, 0.781). Hence, preoperative mGNRI is a valuable and cost-effective prognostic biomarker in patients with OCSCC. Our nomogram facilitates the practical use of mGNRI and offers individualized predictions of OS.


Mouth Neoplasms , Nutrition Assessment , Humans , Female , Male , Mouth Neoplasms/surgery , Mouth Neoplasms/mortality , Mouth Neoplasms/pathology , Aged , Prognosis , Retrospective Studies , Middle Aged , Geriatric Assessment/methods , Carcinoma, Squamous Cell/surgery , Carcinoma, Squamous Cell/pathology , Nutritional Status , Aged, 80 and over , Kaplan-Meier Estimate , Disease-Free Survival , ROC Curve , Risk Factors , Proportional Hazards Models , Risk Assessment/methods
9.
Sci Rep ; 14(1): 12974, 2024 06 05.
Article En | MEDLINE | ID: mdl-38839923

Programmed death-ligand 1 (PD-L1) is overexpressed in squamous cervical cancer (SCC) and can be used for targeted immunotherapy. The highest mortality rates of SCC are reported in sub-Saharan Africa, where Human immunodeficiency virus (HIV) prevalence is high. In Mozambique most SCC patients present at advanced stages. Thus, there is a need to introduce new treatment options. However, immunocompromised patients were frequently excluded in previous clinical trials. Our aim was to determine if PD-L1 expression in SCC is as prevalent among women living with HIV (WLWH) as among other patients. 575 SCC from Maputo Central Hospital were included. HIV status was available in 266 (46%) cases PD-L1 expression was scored through tumour proportion score (TPS) and combined positive score (CPS). PD-L1 was positive in 20.1% of the cases (n = 110), TPS (score ≥ 25%) and in 26.3% (n = 144), CPS (score ≥ 1). Stratifying according to the HIV status, WLWH were TPS positive in 16.7%, compared to 20.9%, p = 0.43, and concerning CPS 21.1% versus 28.7%, p = 0.19, respectively. PD-L1 status was not influenced by stage, Ki-67 or p16, CD8 expression influenced only CPS status. Our data indicates that the documented effect of PD-L1 therapy on SCC should be confirmed in randomized clinical trials in an HIV endemic milieu.


B7-H1 Antigen , Carcinoma, Squamous Cell , HIV Infections , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , B7-H1 Antigen/metabolism , Mozambique/epidemiology , HIV Infections/complications , HIV Infections/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Middle Aged , Adult , Aged
11.
Sci Rep ; 14(1): 12732, 2024 06 03.
Article En | MEDLINE | ID: mdl-38831004

Single nucleotide substitutions are the most common type of somatic mutations in cancer genome. The goal of this study was to use publicly available somatic mutation data to quantify negative and positive selection in individual lung tumors and test how strength of directional and absolute selection is associated with clinical features. The analysis found a significant variation in strength of selection (both negative and positive) among tumors, with median selection tending to be negative even though tumors with strong positive selection also exist. Strength of selection estimated as the density of missense mutations relative to the density of silent mutations showed only a weak correlation with tumor mutation burden. In the "all histology together" analysis we found that absolute strength of selection was strongly correlated with all clinically relevant features analyzed. In histology-stratified analysis selection was strongest in small cell lung cancer. Selection in adenocarcinoma was somewhat higher compared to squamous cell carcinoma. The study suggests that somatic mutation- based quantifying of directional and absolute selection in individual tumors can be a useful biomarker of tumor aggressiveness.


Lung Neoplasms , Mutation , Selection, Genetic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Biomarkers, Tumor/genetics , Mutation, Missense , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology
12.
J Gene Med ; 26(6): e3694, 2024 Jun.
Article En | MEDLINE | ID: mdl-38847309

BACKGROUND: Immune checkpoint blockade has emerged as a key strategy to the therapy landscape of non-small cell lung cancer (NSCLC). However, notable differences in immunotherapeutic outcomes exist between the two primary NSCLC subtypes: lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). This disparity may stem from the tumor immune microenvironment's heterogeneity at the transcriptome level. METHODS: By integrative analysis of transcriptomic characterization of 38 NSCLC patients by single-cell RNA sequencing, the present study revealed a distinct tumor microenvironment (TME) between LUAD and LUSC, with relevant results further confirmed in bulk transcriptomic and multiplex immunofluorescence (mIF) validation cohort of neoadjuvant immunotherapy patients. RESULTS: LUAD exhibited a more active immune microenvironment compared to LUSC. This included highly expression of HLA I/II in cancer cells, reinforced antigen presentation potential of dendritic cells and enhanced cytotoxic activity observed in T/NK cells. In LUSC, cancer cells highly expressed genes belonging to the aldo-keto reductases, glutathione S-transferases and aldehyde dehydrogenase family, negatively correlating with immunotherapy outcomes in the validation cohort of our center. Further analysis revealed elevated infiltrated cancer-associated fibroblasts (CAFs) in LUSC, which was corroborated in The Cancer Genome Atlas cohort. Corresponding increased infiltration of ADH1B+ CAFs in major pathologic response (MPR) patients and the higher presence of FAP+ CAFs in non-MPR patients were demonstrated by multiplex mIF. Moreover, upregulating immunosuppressive extracellular matrix remodeling was identified in LUSC. CONCLUSIONS: These comprehensive analyses advance the understanding of the differences in TME between LUAD and LUSC, offering insights for patient selection and developing subtype-specific treatment strategies.


Adenocarcinoma of Lung , Carcinoma, Squamous Cell , Gene Expression Regulation, Neoplastic , Immunotherapy , Lung Neoplasms , Single-Cell Analysis , Transcriptome , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Single-Cell Analysis/methods , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Immunotherapy/methods , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/therapy , Carcinoma, Squamous Cell/pathology , Gene Expression Profiling , Male , Female , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/pathology , Middle Aged , Aged
13.
Arch Dermatol Res ; 316(7): 341, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847867

Topical tirbanibulin is a highly effective and well tolerated novel treatment option for actinic keratoses (AKs). This study aimed to characterize the mode of action of tirbanibulin in keratinocytes (NHEK) and cutaneous squamous cell carcinoma (cSCC) cell lines (A431, SCC-12) in vitro. Tirbanibulin significantly reduced proliferation in a dose-dependent manner in all investigated cell lines, inhibited migration, and induced G2/M-cell cycle arrest only in the cSCC cell lines analyzed, and induced apoptosis solely in A431, which showed the highest sensitivity to tirbanibulin. In general, we detected low basal expression of phosphorylated SRC in all cell lines analyzed, therefore, interference with SRC signaling does not appear to be the driving force regarding the observed effects of tirbanibulin. The most prominent tirbanibulin-mediated effect was on ß-tubulin-polymerization, which was especially impaired in A431. Additionally, tirbanibulin induced an increase of the proinflammatory cytokines IL-1α, bFGF and VEGF in A431. In conclusion, tirbanibulin mediated anti-tumor effects predominantly in A431, while healthy keratinocytes and more dedifferentiated SCC-12 were less influenced. These effects of tirbanibulin are most likely mediated via dysregulation of ß-tubulin-polymerization and may be supported by proinflammatory aspects.


Apoptosis , Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Keratinocytes , Skin Neoplasms , Tubulin , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Line, Tumor , Tubulin/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Polymerization/drug effects , Keratosis, Actinic/drug therapy , Keratosis, Actinic/pathology , Keratosis, Actinic/metabolism , Signal Transduction/drug effects , Acetamides , Morpholines , Pyridines
15.
Skin Res Technol ; 30(5): e13706, 2024 May.
Article En | MEDLINE | ID: mdl-38721854

BACKGROUND: The incidence rates of cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC) skin cancers are rising, while the current diagnostic process is time-consuming. We describe the development of a novel approach to high-throughput sampling of tissue lipids using electroporation-based biopsy, termed e-biopsy. We report on the ability of the e-biopsy technique to harvest large amounts of lipids from human skin samples. MATERIALS AND METHODS: Here, 168 lipids were reliably identified from 12 patients providing a total of 13 samples. The extracted lipids were profiled with ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS-MS) providing cSCC, BCC, and healthy skin lipidomic profiles. RESULTS: Comparative analysis identified 27 differentially expressed lipids (p < 0.05). The general profile trend is low diglycerides in both cSCC and BCC, high phospholipids in BCC, and high lyso-phospholipids in cSCC compared to healthy skin tissue samples. CONCLUSION: The results contribute to the growing body of knowledge that can potentially lead to novel insights into these skin cancers and demonstrate the potential of the e-biopsy technique for the analysis of lipidomic profiles of human skin tissues.


Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Electroporation , Lipidomics , Skin Neoplasms , Skin , Humans , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/metabolism , Carcinoma, Basal Cell/diagnosis , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/chemistry , Lipidomics/methods , Biopsy , Skin/pathology , Skin/metabolism , Skin/chemistry , Female , Male , Electroporation/methods , Middle Aged , Aged , Lipids/analysis , Tandem Mass Spectrometry/methods
16.
Int J Biol Sci ; 20(7): 2576-2591, 2024.
Article En | MEDLINE | ID: mdl-38725862

We showed that microtubule-associated tumor suppressor gene (MTUS1/ATIP) downregulation correlated with poor survival in head and neck squamous cell carcinoma (HNSCC) patients and that MTUS1/ATIP1 was the most abundant isoform in HNSCC tissue. However, the location and function of MTUS1/ATIP1 have remain unclear. In this study, we confirmed that MTUS1/ATIP1 inhibited proliferation, growth and metastasis in HNSCC in cell- and patient-derived xenograft models in vitro and in vivo. MTUS1/ATIP1 localized in the outer mitochondrial membrane, influence the morphology, movement and metabolism of mitochondria and stimulated oxidative stress in HNSCC cells by directly interacting with MFN2. MTUS1/ATIP1 activated ROS, recruiting Bax to mitochondria, facilitating cytochrome c release to the cytosol to activate caspase-3, and inducing GSDME-dependent pyroptotic death in HNSCC cells. Our findings showed that MTUS1/ATIP1 localized in the outer mitochondrial membrane in HNSCC cells and mediated anticancer effects through ROS-induced pyroptosis, which may provide a novel therapeutic strategy for HNSCC treatment.


Head and Neck Neoplasms , Mitochondria , Pyroptosis , Reactive Oxygen Species , Squamous Cell Carcinoma of Head and Neck , Humans , Reactive Oxygen Species/metabolism , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Animals , Cell Line, Tumor , Mitochondria/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Mice , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Mice, Nude , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Mitochondrial Membranes/metabolism , Cell Proliferation
17.
Technol Cancer Res Treat ; 23: 15330338241254059, 2024.
Article En | MEDLINE | ID: mdl-38725285

Objective: Primary squamous cell thyroid carcinoma (PSCTC) is an extremely rare carcinoma, accounting for less than 1% of all thyroid carcinomas. However, the factors contributing to PSCTC outcomes remain unclear. This study aimed to identify the prognostic factors and develop a prognostic predictive model for patients with PSCTC. Methods: The analysis included patients diagnosed with thyroid carcinoma between 1975 and 2016 from the Surveillance, Epidemiology, and End Results database. Prognostic differences among the 5 pathological types of thyroid carcinomas were analyzed. To determine prognostic factors in PSCTC patients, the Cox regression model and Fine-Gray competing risk model were utilized. Based on the Fine-Gray competing risk model, a nomogram was established for predicting the prognosis of patients with PSCTC. Results: A total of 198,757 thyroid carcinoma patients, including 218 PSCTC patients, were identified. We found that PSCTC and anaplastic thyroid cancer had the worst prognosis among the 5 pathological types of thyroid carcinoma (P < .001). According to univariate and multivariate Cox regression analyses, age (71-95 years) was an independent risk factor for poorer overall survival and disease-specific survival in PSCTC patients. Using Fine-Gray regression analysis, the total number of in situ/malignant tumors for patient (Number 1) (≥2) was identified as an independent protective factor for prognosis of PSCTC. The area under the curve, the concordance index (C-index), calibration curves and decision curve analysis revealed that the nomogram was capable of predicting the prognosis of PSCTC patients accurately. Conclusion: The competing risk nomogram is highly accurate in predicting prognosis for patients with PSCTC, which may help clinicians to optimize individualized treatment decisions.


Carcinoma, Squamous Cell , Nomograms , SEER Program , Thyroid Neoplasms , Humans , Male , Female , Thyroid Neoplasms/pathology , Thyroid Neoplasms/mortality , Thyroid Neoplasms/diagnosis , Prognosis , Aged , Middle Aged , Aged, 80 and over , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/mortality , Adult , Risk Factors , Proportional Hazards Models , Risk Assessment , Neoplasm Staging , Kaplan-Meier Estimate
18.
Sci Rep ; 14(1): 10471, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714840

Lung diseases globally impose a significant pathological burden and mortality rate, particularly the differential diagnosis between adenocarcinoma, squamous cell carcinoma, and small cell lung carcinoma, which is paramount in determining optimal treatment strategies and improving clinical prognoses. Faced with the challenge of improving diagnostic precision and stability, this study has developed an innovative deep learning-based model. This model employs a Feature Pyramid Network (FPN) and Squeeze-and-Excitation (SE) modules combined with a Residual Network (ResNet18), to enhance the processing capabilities for complex images and conduct multi-scale analysis of each channel's importance in classifying lung cancer. Moreover, the performance of the model is further enhanced by employing knowledge distillation from larger teacher models to more compact student models. Subjected to rigorous five-fold cross-validation, our model outperforms existing models on all performance metrics, exhibiting exceptional diagnostic accuracy. Ablation studies on various model components have verified that each addition effectively improves model performance, achieving an average accuracy of 98.84% and a Matthews Correlation Coefficient (MCC) of 98.83%. Collectively, the results indicate that our model significantly improves the accuracy of disease diagnosis, providing physicians with more precise clinical decision-making support.


Deep Learning , Lung Neoplasms , Neural Networks, Computer , Humans , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/classification , Small Cell Lung Carcinoma/diagnosis , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/classification , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/pathology , Adenocarcinoma/pathology , Adenocarcinoma/diagnosis , Adenocarcinoma/classification , Image Processing, Computer-Assisted/methods , Diagnosis, Differential
20.
Laryngorhinootologie ; 103(S 01): S3-S27, 2024 May.
Article En, De | MEDLINE | ID: mdl-38697141

Squamous cell carcinomas are the most common malignancies in the oral cavity, pharynx, and larynx. Even in the age of the most modern drug treatment methods, radical resection of these tumors is and currently remains the therapeutic gold standard. The loss of anatomical structures associated with surgery inevitably increases the functional deficits caused by the tumor itself. In this context, the extent of functional deficits is largely determined by the extent of resection. Complete organ resections, such as glossectomy, complete palate resection, laryngectomy, or transverse pharyngo-laryngectomy, lead to severe functional deficits, such as swallowing disturbances with life-threatening aspiration and articulation disorders up to the inability to speak. With the help of plastic reconstructive surgery, the lost tissue can be replaced and the specific functions of the upper aerodigestive tract can be preserved or restored.In recent decades, reconstructive surgical procedures have developed enormously in the treatment of malignant tumors of the head and neck. In order to make optimal use of them, a comprehensive, interdisciplinary therapy concept is a prerequisite for positive oncological and functional outcome. In addition to general medical and social parameters, surgical parameters play a crucial role in the choice of the reconstruction method. The extent to which the surgical measures must be interdisciplinary depends on the localization of the defects in the head and neck region and on the type of replacement tissue required. Here, the expertise of plastic surgery, oral and maxillofacial surgery, and abdominal surgery comes into play in particular. The use of different tissues, the combination of different grafts and flaps, or the preforming of donor regions allow reconstructions far beyond the level of simply restoring surface integrity. The functional results and thus the quality of life of patients after surgical therapy of extensive tumors of the mentioned localizations depend decisively on the type of reconstruction. Therefore, in the following review, special emphasis 1 be placed on the choice of reconstruction method and reconstruction technique for tissue loss after resections of HNSCC.


Plastic Surgery Procedures , Humans , Plastic Surgery Procedures/methods , Carcinoma, Squamous Cell/surgery , Carcinoma, Squamous Cell/pathology , Interdisciplinary Communication , Head and Neck Neoplasms/surgery , Head and Neck Neoplasms/pathology , Patient Care Team , Squamous Cell Carcinoma of Head and Neck/surgery , Squamous Cell Carcinoma of Head and Neck/pathology , Intersectoral Collaboration
...