Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.273
1.
Heart Fail Clin ; 20(3): 333-341, 2024 Jul.
Article En | MEDLINE | ID: mdl-38844304

Transthyretin amyloid cardiomyopathy (ATTR-CM) is caused by the myocardial extracellular deposition of amyloid fibrils formed from the dissociation of TTR tetramer into monomers. The rate-limiting step in TTR amyloidogenesis is the dissociation of the TTR tetramer into monomers: Tafamidis is an effective TTR-stabilizer in its native homotetrameric structure. Tafamidis is a safe and effective drug in reducing symptoms, hospitalization and mortality in accurately selected patients affected by hereditary and wild-type transthyretin amyloid cardiomyopathy.


Amyloid Neuropathies, Familial , Benzoxazoles , Cardiomyopathies , Humans , Benzoxazoles/therapeutic use , Benzoxazoles/pharmacology , Amyloid Neuropathies, Familial/drug therapy , Amyloid Neuropathies, Familial/complications , Amyloid Neuropathies, Familial/genetics , Cardiomyopathies/drug therapy , Cardiomyopathies/metabolism , Prealbumin/genetics , Prealbumin/metabolism
2.
Heart Fail Clin ; 20(3): 343-352, 2024 Jul.
Article En | MEDLINE | ID: mdl-38844305

Transthyretin amyloid cardiomyopathy (ATTR-CM) is a relatively prevalent cause of morbidity and mortality. Over the recent years, development of disease-modifying treatments has enabled stabilization of the circulating transthyretin tetramer and suppression of its hepatic production, resulting in a remarkable improvement in survival of patients with ATTR-CM. Second-generation drugs for silencing are currently under investigation in randomized clinical trials. In vivo gene editing of transthyretin has been achieving unanticipated suppression of hepatic production in ATTR-CM. Trials of antibodies inducing the active removal of transthyretin amyloid deposits in the heart are ongoing, and evidence has gathered for exceptional spontaneous regression of ATTR-CM.


Amyloid Neuropathies, Familial , Benzoxazoles , Cardiomyopathies , Prealbumin , Humans , Amyloid Neuropathies, Familial/drug therapy , Amyloid Neuropathies, Familial/metabolism , Cardiomyopathies/drug therapy , Cardiomyopathies/metabolism , Benzoxazoles/therapeutic use , Prealbumin/metabolism , Prealbumin/genetics
5.
Int Immunopharmacol ; 134: 112186, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38733824

BACKGROUND: Although the pathophysiological mechanism of septic cardiomyopathy has been continuously discovered, it is still a lack of effective treatment method. Cortistatin (CST), a neuroendocrine polypeptide of the somatostatin family, has emerged as a novel cardiovascular-protective peptide, but the specific mechanism has not been elucidated. PURPOSE: The aim of our study is to explore the role of CST in cardiomyocytes pyroptosis and myocardial injury in sepsis and whether CST inhibits cardiomyocytes pyroptosis through specific binding with somastatin receptor 2 (SSTR2) and activating AMPK/Drp1 signaling pathway. METHODS AND RESULTS: In this study, plasma CST levels were significantly high and were negatively correlated with N-terminal pro-B type natriuretic peptide (NT-proBNP), a biomarker for cardiac dysfunction, in patients with sepsis. Exogenous administration of CST significantly improved survival rate and cardiac function in mouse models of sepsis by inhibiting the activation of the NLRP3 inflammasome and pyroptosis of cardiomyocytes (decreased cleavage of caspase-1, IL-1ß and gasdermin D). Pharmacological inhibition and genetic ablation revealed that CST exerted anti-pyroptosis effects by specifically binding to somatostatin receptor subtype 2 (SSTR2), thus activating AMPK and inactivating Drp1 to inhibit mitochondrial fission in cardiomyocytes. CONCLUSIONS: This study is the first to report that CST attenuates septic cardiomyopathy by inhibiting cardiomyocyte pyroptosis through the SSTR2-AMPK-Drp1-NLRP3 pathway. Importantly, CST specifically binds to SSTR2, which promotes AMPK phosphorylation, inhibits Drp1-mediated mitochondrial fission, and reduces ROS levels, thereby inhibiting NLRP3 inflammasome activation-mediated pyroptosis and alleviating sepsis-induced myocardial injury.


AMP-Activated Protein Kinases , Cardiomyopathies , Mice, Inbred C57BL , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Neuropeptides , Pyroptosis , Receptors, Somatostatin , Sepsis , Signal Transduction , Animals , Pyroptosis/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Receptors, Somatostatin/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans , Sepsis/drug therapy , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Neuropeptides/metabolism , Mice , Male , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Disease Models, Animal , Mice, Knockout
6.
Immun Inflamm Dis ; 12(5): e1229, 2024 May.
Article En | MEDLINE | ID: mdl-38775678

BACKGROUND: Dioscin has many pharmacological effects; however, its role in sepsis-induced cardiomyopathy (SIC) is unknown. Accordingly, we concentrate on elucidating the mechanism of Dioscin in SIC rat model. METHODS: The SIC rat and H9c2 cell models were established by lipopolysaccharide (LPS) induction. The heart rate (HR), left ventricle ejection fraction (LVEF), mean arterial blood pressure (MAP), and heart weight index (HWI) of rats were evaluated. The myocardial tissue was observed by hematoxylin and eosin staining. 4-Hydroxy-2-nonenal (4-HNE) level in myocardial tissue was detected by immunohistochemistry. Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activities in serum samples of rats and H9c2 cells were determined by colorimetric assay. Bax, B-cell lymphoma-2 (Bcl-2), toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), phosphorylated-p65 (p-p65), and p65 levels in myocardial tissues of rats and treated H9c2 cells were measured by quantitative real-time PCR and Western blot. Viability and reactive oxygen species (ROS) accumulation of treated H9c2 cells were assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and dihydroethidium staining assays. RESULTS: Dioscin decreased HR and HWI, increased LVEF and MAP, alleviated the myocardial tissue damage, and reduced 4-HNE level in SIC rats. Dioscin reversed LPS-induced reduction on SOD, CAT, GSH, and Bcl-2 levels, and increment on Bax and TLR4 levels in rats and H9c2 cells. Overexpressed TLR4 attenuated the effects of Dioscin on promoting viability, as well as dwindling TLR4, ROS and MyD88 levels, and p-p65/p65 value in LPS-induced H9c2 cells. CONCLUSION: Protective effects of Dioscin against LPS-induced SIC are achieved via regulation of TLR4/MyD88/p65 signal pathway.


Cardiomyopathies , Diosgenin , Myeloid Differentiation Factor 88 , Sepsis , Signal Transduction , Toll-Like Receptor 4 , Animals , Diosgenin/analogs & derivatives , Diosgenin/pharmacology , Diosgenin/therapeutic use , Toll-Like Receptor 4/metabolism , Rats , Myeloid Differentiation Factor 88/metabolism , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Signal Transduction/drug effects , Male , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/prevention & control , Cell Line , Rats, Sprague-Dawley , Transcription Factor RelA/metabolism , Oxidative Stress/drug effects , Lipopolysaccharides , Disease Models, Animal , Apoptosis/drug effects
7.
J Am Heart Assoc ; 13(10): e034518, 2024 May 21.
Article En | MEDLINE | ID: mdl-38761073

BACKGROUND: Although tafamidis treatment improves prognosis in patients with wild-type transthyretin amyloid cardiomyopathy, an optimal surrogate marker monitoring its therapeutic effect remains unclear. This study investigated the association between changes in cardiac biomarkers, high-sensitivity cardiac troponin T (hs-cTnT) and B-type natriuretic peptide (BNP) during the first year after tafamidis treatment and clinical outcomes. METHODS AND RESULTS: In 101 patients with wild-type transthyretin amyloid cardiomyopathy receiving tafamidis at our institution, change in cardiac biomarkers from baseline to 1 year after tafamidis administration and its association with composite outcomes (composite of all-cause death and hospitalization attributable to heart failure) was assessed. During the follow-up period (median, 17 months), 16 (16%) patients experienced composite outcomes. The hs-cTnT level significantly decreased at 1 year after tafamidis treatment, unlike the BNP level. The frequencies of increased hs-cTnT and BNP levels were significantly higher in those with composite outcomes than in those without (44% versus 15%; P=0.01). Kaplan-Meier survival analysis showed that patients in whom both hs-cTnT and BNP levels increased at 1 year after tafamidis had a higher probability of composite outcomes compared with those with decreased hs-cTnT and BNP levels (log-rank P<0.01). Cox regression analysis identified increased hs-cTnT and BNP levels at 1 year after tafamidis administration as an independent predictor of higher cumulative risk of composite outcomes. CONCLUSIONS: Deterioration in cardiac biomarkers during the first year after tafamidis treatment predicted a worse prognosis, suggesting the utility of serial assessment of cardiac biomarkers for monitoring the therapeutic response to tafamidis in patients with wild-type transthyretin amyloid cardiomyopathy.


Amyloid Neuropathies, Familial , Benzoxazoles , Biomarkers , Cardiomyopathies , Natriuretic Peptide, Brain , Troponin T , Humans , Male , Female , Biomarkers/blood , Natriuretic Peptide, Brain/blood , Aged , Amyloid Neuropathies, Familial/blood , Amyloid Neuropathies, Familial/drug therapy , Amyloid Neuropathies, Familial/mortality , Amyloid Neuropathies, Familial/diagnosis , Benzoxazoles/therapeutic use , Troponin T/blood , Cardiomyopathies/blood , Cardiomyopathies/drug therapy , Cardiomyopathies/mortality , Cardiomyopathies/diagnosis , Treatment Outcome , Time Factors , Middle Aged , Aged, 80 and over , Heart Failure/blood , Heart Failure/drug therapy , Heart Failure/mortality , Retrospective Studies , Prealbumin/metabolism
9.
Circ Heart Fail ; 17(4): e011110, 2024 Apr.
Article En | MEDLINE | ID: mdl-38567527

BACKGROUND: Mutations in LMNA encoding nuclear envelope proteins lamin A/C cause dilated cardiomyopathy. Activation of the AKT/mTOR (RAC-α serine/threonine-protein kinase/mammalian target of rapamycin) pathway is implicated as a potential pathophysiologic mechanism. The aim of this study was to assess whether pharmacological inhibition of mTOR signaling has beneficial effects on heart function and prolongs survival in a mouse model of the disease, after onset of heart failure. METHODS: We treated male LmnaH222P/H222P mice, after the onset of heart failure, with placebo or either of 2 orally bioavailable mTOR inhibitors: everolimus or NV-20494, a rapamycin analog highly selective against mTORC1. We examined left ventricular remodeling, and the cell biological, biochemical, and histopathologic features of cardiomyopathy, potential drug toxicity, and survival. RESULTS: Everolimus treatment (n=17) significantly reduced left ventricular dilatation and increased contractility on echocardiography, with a 7% (P=0.018) reduction in left ventricular end-diastolic diameter and a 39% (P=0.0159) increase fractional shortening compared with placebo (n=17) after 6 weeks of treatment. NV-20494 treatment (n=15) yielded similar but more modest and nonsignificant changes. Neither drug prevented the development of cardiac fibrosis. Drug treatment reactivated suppressed autophagy and inhibited mTORC1 signaling in the heart, although everolimus was more potent. With regards to drug toxicity, everolimus alone led to a modest degree of glucose intolerance during glucose challenge. Everolimus (n=20) and NV-20494 (n=20) significantly prolonged median survival in LmnaH222P/H222P mice, by 9% (P=0.0348) and 11% (P=0.0206), respectively, compared with placebo (n=20). CONCLUSIONS: These results suggest that mTOR inhibitors may be beneficial in patients with cardiomyopathy caused by LMNA mutations and that further study is warranted.


Cardiomyopathies , Drug-Related Side Effects and Adverse Reactions , Heart Failure , Mice , Humans , Male , Animals , Everolimus/pharmacology , Everolimus/therapeutic use , Lamin Type A/genetics , Lamin Type A/metabolism , MTOR Inhibitors , Cardiomyopathies/drug therapy , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Mutation , TOR Serine-Threonine Kinases , Mechanistic Target of Rapamycin Complex 1/genetics , Mammals/metabolism
10.
Int Immunopharmacol ; 133: 112103, 2024 May 30.
Article En | MEDLINE | ID: mdl-38648713

BACKGROUND: Sepsis is often accompanied by multiple organ dysfunction, in which the incidence of cardiac injury is about 60%, and is closely related to high mortality. Recent studies have shown that Golgi stress is involved in liver injury, kidney injury, and lung injury in sepsis. However, whether it is one of the key mechanisms of sepsis-induced cardiomyopathy (SIC) is still unclear. The aim of this study is to investigate whether Golgi stress mediates SIC and the specific mechanism. METHODS: Sepsis model of male C57BL/6J mice was established by cecal ligation and puncture. To observe the effect of Golgi stress on SIC, mice were injected with Golgi stimulant (Brefeldin A) or Golgi inhibitor (Glutathione), respectively. The 7-day survival rate of mice were recorded, and myocardial injury indicators including cardiac function, myocardial enzymes, myocardial pathological tissue score, myocardial inflammatory factors, and apoptosis were detected. The morphology of Golgi was observed by immunofluorescence, and the Golgi stress indices including GM-130, GOLPH3 and Goligin97 were detected by WB and qPCR. RESULTS: After CLP, the cardiac function of mice was impaired and the levels of myocardial enzymes were significantly increased. Golgi stress was accompanied by increased myocardial inflammation and apoptosis. Moreover, the expressions of morphological proteins GM-130 and Golgin97 were decreased, and the expression of stress protein GOLPH3 was increased. In addition, Brefeldin A increased 7-day mortality and the above indicators in mice. The use of glutathione improves all of the above indicators. CONCLUSION: Golgi stress mediates SIC, and the inhibition of Golgi stress can improve SIC by inhibiting apoptosis and inflammation.


Apoptosis , Brefeldin A , Cardiomyopathies , Golgi Apparatus , Mice, Inbred C57BL , Sepsis , Animals , Apoptosis/drug effects , Male , Sepsis/complications , Sepsis/drug therapy , Golgi Apparatus/metabolism , Golgi Apparatus/drug effects , Cardiomyopathies/etiology , Cardiomyopathies/drug therapy , Mice , Brefeldin A/pharmacology , Inflammation/drug therapy , Disease Models, Animal , Glutathione/metabolism , Myocardium/pathology , Myocardium/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans
11.
Korean J Radiol ; 25(5): 426-437, 2024 May.
Article En | MEDLINE | ID: mdl-38685733

OBJECTIVE: Cardiac magnetic resonance (CMR) is a diagnostic tool that provides precise and reproducible information about cardiac structure, function, and tissue characterization, aiding in the monitoring of chemotherapy response in patients with light-chain cardiac amyloidosis (AL-CA). This study aimed to evaluate the feasibility of CMR in monitoring responses to chemotherapy in patients with AL-CA. MATERIALS AND METHODS: In this prospective study, we enrolled 111 patients with AL-CA (50.5% male; median age, 54 [interquartile range, 49-63] years). Patients underwent longitudinal monitoring using biomarkers and CMR imaging. At follow-up after chemotherapy, patients were categorized into superior and inferior response groups based on their hematological and cardiac laboratory responses to chemotherapy. Changes in CMR findings across therapies and differences between response groups were analyzed. RESULTS: Following chemotherapy (before vs. after), there were significant increases in myocardial T2 (43.6 ± 3.5 ms vs. 44.6 ± 4.1 ms; P = 0.008), recovery in right ventricular (RV) longitudinal strain (median of -9.6% vs. -11.7%; P = 0.031), and decrease in RV extracellular volume fraction (ECV) (median of 53.9% vs. 51.6%; P = 0.048). These changes were more pronounced in the superior-response group. Patients with superior cardiac laboratory response showed significantly greater reductions in RV ECV (-2.9% [interquartile range, -8.7%-1.1%] vs. 1.7% [-5.5%-7.1%]; P = 0.017) and left ventricular ECV (-2.0% [-6.0%-1.3%] vs. 2.0% [-3.0%-5.0%]; P = 0.01) compared with those with inferior response. CONCLUSION: Cardiac amyloid deposition can regress following chemotherapy in patients with AL-CA, particularly showing more prominent regression, possibly earlier, in the RV. CMR emerges as an effective tool for monitoring associated tissue characteristics and ventricular functional recovery in patients with AL-CA undergoing chemotherapy, thereby supporting its utility in treatment response assessment.


Cardiomyopathies , Humans , Male , Middle Aged , Female , Prospective Studies , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/drug therapy , Magnetic Resonance Imaging/methods , Feasibility Studies , Amyloidosis/diagnostic imaging , Amyloidosis/drug therapy , Immunoglobulin Light-chain Amyloidosis/diagnostic imaging , Immunoglobulin Light-chain Amyloidosis/drug therapy , Treatment Outcome , Magnetic Resonance Imaging, Cine/methods , Antineoplastic Agents/therapeutic use
18.
Physiol Rep ; 12(8): e16020, 2024 Apr.
Article En | MEDLINE | ID: mdl-38658362

Desminopathy R350P is a human myopathy that is characterized by the progressive loss of muscle fiber organization. This results in the loss of muscle size, mobility, and strength. In desminopathy, inflammation affects muscle homeostasis and repair, and contributes to progressive muscle deterioration. Mitochondria morphology was also suggested to affect desminopathy progression. Epicatechin (Epi)-a natural compound found in cacao-has been proposed to regulate inflammatory signaling and mitochondria morphology in human and animal models. Hence, we hypothesize chronic Epi consumption to improve inflammatory pathway and mitochondria morphology in the peripheral blood mononuclear cells (PBMCs) of a desminopathy R350P patient. We found that 12 weeks of Epi consumption partially restored TRL4 signaling, indicative of inflammatory signaling and mitochondria morphology in the desminopathy patient. Moreover, Epi consumption improved blood health parameters, including reduced HOMA-IR and IL-6 levels in the desminopathy patient. This indicates that Epi consumption could be a useful tool to slow disease progression in desminopathy patients.


Catechin , Leukocytes, Mononuclear , Mitochondria , Humans , Catechin/pharmacology , Catechin/administration & dosage , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Male , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Muscular Dystrophies/drug therapy , Muscular Dystrophies/genetics , Adult , Female , Inflammation/metabolism , Inflammation/pathology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/drug therapy , Desmin/metabolism , Desmin/genetics
19.
Life Sci ; 346: 122611, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38580195

Sepsis is a life-threatening condition manifested by organ dysfunction caused by a dysregulated host response to infection. Lung, brain, liver, kidney, and heart are among the affected organs. Sepsis-induced cardiomyopathy is a common cause of death among septic patients. Sepsis-induced cardiomyopathy is characterized by an acute and reversible significant decline in biventricular both systolic and diastolic function. This is accompanied by left ventricular dilatation. The pathogenesis underlying sepsis-induced cardiomyopathy is multifactorial. Hence, targeting an individual pathway may not be effective in halting the extensive dysregulated immune response. Despite major advances in sepsis management strategies, no effective pharmacological strategies have been shown to treat or even reverse sepsis-induced cardiomyopathy. Melatonin, namely, N-acetyl-5-methoxytryptamine, is synthesized in the pineal gland of mammals and can also be produced in many cells and tissues. Melatonin has cardioprotective, neuroprotective, and anti-tumor activity. Several literature reviews have explored the role of melatonin in preventing sepsis-induced organ failure. Melatonin was found to act on different pathways that are involved in the pathogenesis of sepsis-induced cardiomyopathy. Through its antimicrobial, anti-inflammatory, and antioxidant activity, it offers a potential role in sepsis-induced cardiomyopathy. Its antioxidant activity is through free radical scavenging against reactive oxygen and nitrogen species and modulating the expression and activity of antioxidant enzymes. Melatonin anti-inflammatory activities control the overactive immune system and mitigate cytokine storm. Also, it mitigates mitochondrial dysfunction, a major mechanism involved in sepsis-induced cardiomyopathy, and thus controls apoptosis. Therefore, this review discusses melatonin as a promising drug for the management of sepsis-induced cardiomyopathy.


Antioxidants , Cardiomyopathies , Melatonin , Sepsis , Melatonin/pharmacology , Melatonin/therapeutic use , Sepsis/complications , Sepsis/drug therapy , Humans , Cardiomyopathies/etiology , Cardiomyopathies/drug therapy , Cardiomyopathies/prevention & control , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use
20.
Int Immunopharmacol ; 131: 111897, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38513575

BACKGROUND: Esculin, a main active ingredient from Cortex fraxini, possesses biological activities such as anti-thrombosis, anti-inflammatory, and anti-oxidation effects. However, the effects of Esculin on septic cardiomyopathy remains unclear. This study aimed to explore the protective properties and mechanisms of Esculin in countering sepsis-induced cardiac trauma and dysfunction. METHODS AND RESULTS: In lipopolysaccharide (LPS)-induced mice model, Esculin could obviously improve heart injury and function. Esculin treatment also significantly reduced the production of inflammatory and apoptotic cells, the release of inflammatory cytokines, and the expression of oxidative stress-associated and apoptosis-associated markers in hearts compared to LPS injection alone. These results were consistent with those of in vitro experiments based on neonatal rat cardiomyocytes. Database analysis and molecular docking suggested that TLR4 was targeted by Esculin, as shown by stable hydrogen bonds formed between Esculin with VAL-308, ASN-307, CYS-280, CYS-304 and ASP-281 of TLR4. Esculin reversed LPS-induced upregulation of TLR4 and phosphorylation of NF-κB p65 in cardiomyocytes. The plasmid overexpressing TLR4 abolished the protective properties of Esculin in vitro. CONCLUSION: We concluded that Esculin could alleviate LPS-induced septic cardiomyopathy via binding to TLR4 to attenuate cardiomyocyte inflammation, oxidative stress and apoptosis.


Cardiomyopathies , Lipopolysaccharides , Mice , Rats , Animals , Lipopolysaccharides/pharmacology , Esculin/pharmacology , Toll-Like Receptor 4/metabolism , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Cardiomyopathies/chemically induced , Cardiomyopathies/drug therapy , NF-kappa B/metabolism
...