Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.174
1.
Lancet Healthy Longev ; 5(6): e422-e430, 2024 Jun.
Article En | MEDLINE | ID: mdl-38824957

BACKGROUND: The ε4 allele of the apolipoprotein E gene (APOE4) plays a role in neurodegeneration and in cardiovascular disease, but findings on its association with mortality are inconsistent. We aimed to examine the association between APOE4 and mortality, and the role of dementia in this association. METHODS: In this pooled analysis, data on White participants aged 45-90 years who underwent APOE genotyping were drawn from two population-based cohorts: the Whitehall II study (UK), which began in 1985 and is ongoing, and the Three-City study (France), initiated in 1999 and ended in 2012. In the Three-City study, vital status was ascertained through linkage to the national registry of death Institut National de la Statistique des Études économiques, and dementia was ascertained via a neuropsychological evaluation and validation of diagnoses by an independent committee of neurologists and geriatricians. In the Whitehall II study, vital status was ascertained through linkage to the UK national mortality register, and dementia cases were ascertained by linkage to three national registers. Participants with prevalent dementia at baseline and participants missing an APOE genotype were excluded from analyses. Cox regression proportional hazard models were used to examine the association of APOE4 with all-cause, cardiovascular, and cancer mortality. The role of dementia in the association between APOE4 status and mortality was examined by excluding participants who developed dementia during follow-up from the analyses. An illness-death model was then used to examine the role of incident dementia in these associations. FINDINGS: 14 091 participants (8492 from the Three-City study and 5599 from the Whitehall II study; 6668 [47%] of participants were women and 7423 [53%] were men), with a median follow-up of 15·4 years (IQR 10·6-21·2), were included in the analyses. Of these participants, APOE4 carriers (3264 [23%] of the cohort carried at least one ε4 allele) had a higher risk of all-cause mortality compared with non-carriers, with hazard ratios (HR) of 1·16 (95% CI 1·07-1·26) for heterozygotes and 1·59 (1·24-2·06) for homozygotes. Compared with APOE3 homozygotes, higher cardiovascular mortality was observed in APOE4 carriers, with a HR of 1·23 (1·01-1·50) for heterozygotes, and no association was found between APOE4 and cancer mortality. Excluding cases of incident dementia over the follow-up resulted in attenuated associations with mortality in homozygotes but not in heterozygotes. The illness-death model indicated that the higher mortality risk in APOE4 carriers was not solely attributable to dementia. INTERPRETATION: We found a robust association between APOE4 and all-cause and cardiovascular mortality but not cancer mortality. Dementia explained a significant proportion of the association with all-cause mortality for APOE4 homozygotes, while non-dementia factors, such as cardiovascular disease mortality, are likely to play a role in shaping mortality outcomes in APOE4 heterozygotes. FUNDING: National Institutes of Health. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Apolipoprotein E4 , Dementia , Humans , Female , Apolipoprotein E4/genetics , Male , Aged , Dementia/genetics , Dementia/mortality , Dementia/epidemiology , Middle Aged , Aged, 80 and over , Cohort Studies , Cause of Death , Cardiovascular Diseases/genetics , Cardiovascular Diseases/mortality , Genotype , United Kingdom/epidemiology , Alleles
2.
Sci Rep ; 14(1): 10645, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724583

Dyslipidaemias is the leading risk factor of several major cardiovascular diseases (CVDs), but there is still a lack of sufficient evidence supporting a causal role of lipoprotein subspecies in CVDs. In this study, we comprehensively investigated several lipoproteins and their subspecies, as well as other metabolites, in relation to coronary heart disease (CHD), heart failure (HF) and ischemic stroke (IS) longitudinally and by Mendelian randomization (MR) leveraging NMR-measured metabolomic data from 118,012 UK Biobank participants. We found that 123, 110 and 36 analytes were longitudinally associated with myocardial infarction, HF and IS (FDR < 0.05), respectively, and 25 of those were associated with all three outcomes. MR analysis suggested that genetically predicted levels of 70, 58 and 7 analytes were associated with CHD, HF and IS (FDR < 0.05), respectively. Two analytes, ApoB/ApoA1 and M-HDL-C were associated with all three CVD outcomes in the MR analyses, and the results for M-HDL-C were concordant in both observational and MR analyses. Our results implied that the apoB/apoA1 ratio and cholesterol in medium size HDL were particularly of importance to understand the shared pathophysiology of CHD, HF and IS and thus should be further investigated for the prevention of all three CVDs.


Cardiovascular Diseases , Mendelian Randomization Analysis , Humans , Cardiovascular Diseases/genetics , Male , Female , Risk Factors , Middle Aged , Magnetic Resonance Spectroscopy/methods , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Aged , Cholesterol, HDL/blood , Coronary Disease/genetics , Metabolomics/methods , Apolipoprotein B-100/genetics , Ischemic Stroke/genetics , Ischemic Stroke/blood , Ischemic Stroke/epidemiology , Heart Failure/genetics
3.
J Am Coll Cardiol ; 83(18): 1717-1727, 2024 May 07.
Article En | MEDLINE | ID: mdl-38692825

BACKGROUND: The expansion of hematopoietic stem cells caused by acquired somatic mutations (clonal hematopoiesis [CH]) is a novel cardiovascular risk factor. The prognostic value of CH in patients with carotid atherosclerosis remains to be evaluated. OBJECTIVES: This study assessed the prognostic significance of CH in patients with atherosclerosis as detected by ultrasound of the carotid artery. METHODS: We applied deep sequencing of selected genomic regions within the genes DNMT3A, TET2, ASXL1, and JAK2 to screen for CH in 968 prospectively collected patients with asymptomatic carotid atherosclerosis evaluated by duplex sonography. RESULTS: We detected clonal markers at variant allele frequency ≥2% in 133 (13.7%) of 968 patients (median age 69.2 years), with increasing prevalence at advanced age. Multivariate analyses including age and established cardiovascular risk factors revealed overall presence of CH to be significantly associated with increased risk of cardiovascular death (HR: 1.50; 95% CI: 1.12-2.00; P = 0.007), reflected also at the single gene level. The effect of CH was more pronounced in older patients and independent of the patients' inflammatory status as measured by high-sensitivity C-reactive protein. Simultaneous assessment of CH and degree of carotid stenosis revealed combined effects on cardiovascular mortality, depicted by a superior risk for patients with >50% stenosis and concomitant CH (adjusted HR: 1.60; 95% CI: 1.08-2.38; P = 0.020). CONCLUSIONS: CH status in combination with the extent of carotid atherosclerosis jointly predict long-term mortality. Determination of CH can provide additional prognostic information in patients with asymptomatic carotid atherosclerosis.


Carotid Stenosis , Clonal Hematopoiesis , Janus Kinase 2 , Humans , Male , Female , Aged , Clonal Hematopoiesis/genetics , Carotid Stenosis/genetics , Carotid Stenosis/complications , Carotid Stenosis/diagnostic imaging , Middle Aged , DNA Methyltransferase 3A , Dioxygenases , Prospective Studies , DNA-Binding Proteins/genetics , Repressor Proteins/genetics , Proto-Oncogene Proteins/genetics , Prognosis , Cardiovascular Diseases/genetics , Cardiovascular Diseases/mortality , DNA (Cytosine-5-)-Methyltransferases/genetics
4.
PLoS One ; 19(5): e0303610, 2024.
Article En | MEDLINE | ID: mdl-38758931

We have previously shown that polygenic risk scores (PRS) can improve risk stratification of peripheral artery disease (PAD) in a large, retrospective cohort. Here, we evaluate the potential of PRS in improving the detection of PAD and prediction of major adverse cardiovascular and cerebrovascular events (MACCE) and adverse events (AE) in an institutional patient cohort. We created a cohort of 278 patients (52 cases and 226 controls) and fit a PAD-specific PRS based on the weighted sum of risk alleles. We built traditional clinical risk models and machine learning (ML) models using clinical and genetic variables to detect PAD, MACCE, and AE. The models' performances were measured using the area under the curve (AUC), net reclassification index (NRI), integrated discrimination improvement (IDI), and Brier score. We also evaluated the clinical utility of our PAD model using decision curve analysis (DCA). We found a modest, but not statistically significant improvement in the PAD detection model's performance with the inclusion of PRS from 0.902 (95% CI: 0.846-0.957) (clinical variables only) to 0.909 (95% CI: 0.856-0.961) (clinical variables with PRS). The PRS inclusion significantly improved risk re-classification of PAD with an NRI of 0.07 (95% CI: 0.002-0.137), p = 0.04. For our ML model predicting MACCE, the addition of PRS did not significantly improve the AUC, however, NRI analysis demonstrated significant improvement in risk re-classification (p = 2e-05). Decision curve analysis showed higher net benefit of our combined PRS-clinical model across all thresholds of PAD detection. Including PRS to a clinical PAD-risk model was associated with improvement in risk stratification and clinical utility, although we did not see a significant change in AUC. This result underscores the potential clinical utility of incorporating PRS data into clinical risk models for prevalent PAD and the need for use of evaluation metrics that can discern the clinical impact of using new biomarkers in smaller populations.


Peripheral Arterial Disease , Humans , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/diagnosis , Female , Male , Aged , Middle Aged , Risk Assessment/methods , Risk Factors , Machine Learning , Cardiovascular Diseases/genetics , Cardiovascular Diseases/diagnosis , Retrospective Studies , Multifactorial Inheritance/genetics , Case-Control Studies , Area Under Curve , Genetic Risk Score
5.
PLoS One ; 19(5): e0303357, 2024.
Article En | MEDLINE | ID: mdl-38743757

Short telomeres are associated with cardiovascular disease (CVD). We aimed to investigate, if genetically determined telomere-length effects CVD-risk in the Heinz-Nixdorf-Recall study (HNRS) population. We selected 14 single-nucleotide polymorphisms (SNPs) associated with telomere-length (p<10-8) from the literature and after exclusion 9 SNPs were included in the analyses. Additionally, a genetic risk score (GRS) using these 9 SNPs was calculated. Incident CVD was defined as fatal and non-fatal myocardial infarction, stroke, and coronary death. We included 3874 HNRS participants with available genetic data and had no known history of CVD at baseline. Cox proportional-hazards regression was used to test the association between the SNPs/GRS and incident CVD-risk adjusting for common CVD risk-factors. The analyses were further stratified by CVD risk-factors. During follow-up (12.1±4.31 years), 466 participants experienced CVD-events. No association between SNPs/GRS and CVD was observed in the adjusted analyses. However, the GRS, rs10936599, rs2487999 and rs8105767 increase the CVD-risk in current smoker. Few SNPs (rs10936599, rs2487999, and rs7675998) showed an increased CVD-risk, whereas rs10936599, rs677228 and rs4387287 a decreased CVD-risk, in further strata. The results of our study suggest different effects of SNPs/GRS on CVD-risk depending on the CVD risk-factor strata, highlighting the importance of stratified analyses in CVD risk-factors.


Cardiovascular Diseases , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Telomere , Humans , Cardiovascular Diseases/genetics , Male , Female , Middle Aged , Aged , Telomere/genetics , Risk Factors , Telomere Homeostasis/genetics
6.
BMC Med ; 22(1): 201, 2024 May 20.
Article En | MEDLINE | ID: mdl-38764043

BACKGROUND: Lipid-lowering drugs and antihypertensive drugs are commonly combined for cardiovascular disease (CVD). However, the relationship of combined medications with CVD remains controversial. We aimed to explore the associations of genetically proxied medications of lipid-lowering and antihypertensive drugs, either alone or both, with risk of CVD, other clinical and safety outcomes. METHODS: We divided 423,821 individuals in the UK Biobank into 4 groups via median genetic scores for targets of lipid-lowering drugs and antihypertensive drugs: lower low-density lipoprotein cholesterol (LDL-C) mediated by targets of statins or proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, lower systolic blood pressure (SBP) mediated by targets of ß-blockers (BBs) or calcium channel blockers (CCBs), combined genetically lower LDL-C and SBP, and reference (genetically both higher LDL-C and SBP). Associations with risk of CVD and other clinical outcomes were explored among each group in factorial Mendelian randomization. RESULTS: Independent and additive effects were observed between genetically proxied medications of lipid-lowering and antihypertensive drugs with CVD (including coronary artery disease, stroke, and peripheral artery diseases) and other clinical outcomes (ischemic stroke, hemorrhagic stroke, heart failure, diabetes mellitus, chronic kidney disease, and dementia) (P > 0.05 for interaction in all outcomes). Take the effect of PCSK9 inhibitors and BBs on CVD for instance: compared with the reference, PCSK9 group had a 4% lower risk of CVD (odds ratio [OR], 0.96; 95%CI, 0.94-0.99), and a 3% lower risk was observed in BBs group (OR, 0.97; 95%CI, 0.94-0.99), while combined both were associated with a 6% additively lower risk (OR, 0.94; 95%CI, 0.92-0.97; P = 0.87 for interaction). CONCLUSIONS: Genetically proxied medications of combined lipid-lowering and antihypertensive drugs have an independent and additive effects on CVD, other clinical and safety outcomes, with implications for CVD clinical practice, subsequent trials as well as drug development of polypills.


Antihypertensive Agents , Cardiovascular Diseases , Mendelian Randomization Analysis , Humans , Antihypertensive Agents/therapeutic use , Cardiovascular Diseases/genetics , Cardiovascular Diseases/drug therapy , Male , Female , Hypolipidemic Agents/therapeutic use , Middle Aged , Aged , Genetic Variation , United Kingdom/epidemiology , Drug Therapy, Combination , Blood Pressure/drug effects
7.
FASEB J ; 38(10): e23672, 2024 May 31.
Article En | MEDLINE | ID: mdl-38775929

Cardiovascular disease (CVD) is a leading global cause of mortality, difficult to predict in advance. Evidence indicates that the copy number of mitochondrial DNA (mtDNAcn) in blood is altered in individuals with CVD. MtDNA released into circulation may act as a mediator of inflammation, a recognized factor in the development of CVD, in the long distance. This pilot study aims to test if levels of mtDNAcn in buffy coat DNA (BC-mtDNA), in circulating cellfree DNA (cf-mtDNA), or in DNA extracted from plasma extracellular vesicles (EV-mtDNA) are altered in CVD patients and if they can predict heart attack in advance. A group of 144 people with different CVD statuses (50 that had CVD, 94 healthy) was selected from the LifeLines Biobank according to the incidence of new cardiovascular event monitored in 6 years (50 among controls had heart attack after the basal assessment). MtDNAcn was quantified in total cf-DNA and EV-DNA from plasma as well as in buffy coat. EVs have been characterized by their size, polydispersity index, count rate, and zeta potential, by Dynamic Light Scattering. BC-mtDNAcn and cf-mtDNAcn were not different between CVD patients and healthy subjects. EVs carried higher mtDNAcn in subject with a previous history of CVD than controls, also adjusting the analysis for the EVs derived count rate. Despite mtDNAcn was not able to predict CVD in advance, the detection of increased EV-mtDNAcn in CVD patients in this pilot study suggests the need for further investigations to determine its pathophysiological role in inflammation.


Cardiovascular Diseases , Cell-Free Nucleic Acids , DNA Copy Number Variations , DNA, Mitochondrial , Extracellular Vesicles , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/blood , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Male , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Female , Pilot Projects , Cardiovascular Diseases/genetics , Cardiovascular Diseases/blood , Middle Aged , Case-Control Studies , Aged , Prospective Studies
8.
Signal Transduct Target Ther ; 9(1): 124, 2024 May 15.
Article En | MEDLINE | ID: mdl-38744846

Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.


Mitochondria , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , Mitochondrial Diseases/metabolism , DNA, Mitochondrial/genetics , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Neoplasms/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Animals
9.
Int J Mol Sci ; 25(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38791492

The review examines the impact of maternal preeclampsia (PE) on the cardiometabolic and cardiovascular health of offspring. PE, a hypertensive disorder of pregnancy, is responsible for 2 to 8% of pregnancy-related complications. It significantly contributes to adverse outcomes for their infants, affecting the time of birth, the birth weight, and cardiometabolic risk factors such as blood pressure, body mass index (BMI), abdominal obesity, lipid profiles, glucose, and insulin. Exposure to PE in utero predisposes offspring to an increased risk of cardiometabolic diseases (CMD) and cardiovascular diseases (CVD) through mechanisms that are not fully understood. The incidence of CMD and CVD is constantly increasing, whereas CVD is the main cause of morbidity and mortality globally. A complex interplay of genes, environment, and developmental programming is a plausible explanation for the development of endothelial dysfunction, which leads to atherosclerosis and CVD. The underlying molecular mechanisms are angiogenic imbalance, inflammation, alterations in the renin-angiotensin-aldosterone system (RAAS), endothelium-derived components, serotonin dysregulation, oxidative stress, and activation of both the hypothalamic-pituitary-adrenal axis and hypothalamic-pituitary-gonadal axis. Moreover, the potential role of epigenetic factors, such as DNA methylation and microRNAs as mediators of these effects is emphasized, suggesting avenues for future research and therapeutic interventions.


Cardiovascular Diseases , Humans , Female , Pregnancy , Cardiovascular Diseases/genetics , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Hypertension, Pregnancy-Induced/genetics , Hypertension, Pregnancy-Induced/metabolism , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/genetics , Epigenesis, Genetic , Risk Factors , MicroRNAs/genetics , MicroRNAs/metabolism
10.
Int J Mol Sci ; 25(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38791593

Epidemiological evidence suggests existing comorbidity between postmenopausal osteoporosis (OP) and cardiovascular disease (CVD), but identification of possible shared genes is lacking. The skeletal global transcriptomes were analyzed in trans-iliac bone biopsies (n = 84) from clinically well-characterized postmenopausal women (50 to 86 years) without clinical CVD using microchips and RNA sequencing. One thousand transcripts highly correlated with areal bone mineral density (aBMD) were further analyzed using bioinformatics, and common genes overlapping with CVD and associated biological mechanisms, pathways and functions were identified. Fifty genes (45 mRNAs, 5 miRNAs) were discovered with established roles in oxidative stress, inflammatory response, endothelial function, fibrosis, dyslipidemia and osteoblastogenesis/calcification. These pleiotropic genes with possible CVD comorbidity functions were also present in transcriptomes of microvascular endothelial cells and cardiomyocytes and were differentially expressed between healthy and osteoporotic women with fragility fractures. The results were supported by a genetic pleiotropy-informed conditional False Discovery Rate approach identifying any overlap in single nucleotide polymorphisms (SNPs) within several genes encoding aBMD- and CVD-associated transcripts. The study provides transcriptional and genomic evidence for genes of importance for both BMD regulation and CVD risk in a large collection of postmenopausal bone biopsies. Most of the transcripts identified in the CVD risk categories have no previously recognized roles in OP pathogenesis and provide novel avenues for exploring the mechanistic basis for the biological association between CVD and OP.


Bone Density , Cardiovascular Diseases , Osteoporosis, Postmenopausal , Polymorphism, Single Nucleotide , Transcriptome , Humans , Female , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/pathology , Aged , Middle Aged , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Aged, 80 and over , Bone Density/genetics , Gene Expression Profiling , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics
11.
FASEB J ; 38(9): e23635, 2024 May 15.
Article En | MEDLINE | ID: mdl-38690685

Cardiovascular disease (CVD) is the leading cause of death worldwide. MicroRNAs (MiRNAs) have attracted considerable attention for their roles in several cardiovascular disease states, including both the physiological and pathological processes. In this review, we will briefly describe microRNA-181 (miR-181) transcription and regulation and summarize recent findings on the roles of miR-181 family members as biomarkers or therapeutic targets in different cardiovascular-related conditions, including atherosclerosis, myocardial infarction, hypertension, and heart failure. Lessons learned from these studies may provide new theoretical foundations for CVD.


Biomarkers , Cardiovascular Diseases , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , Cardiovascular Diseases/metabolism , Biomarkers/metabolism , Animals
12.
Cardiovasc Diabetol ; 23(1): 165, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730445

OBJECTIVE: To investigate the contributions of low-grade inflammation measured by C-reactive protein (CRP), hyperglycaemia, and type 2 diabetes to risk of ischemic heart disease (IHD) and cardiovascular disease (CVD) death in the general population, and whether hyperglycaemia and high CRP are causally related. RESEARCH DESIGN AND METHODS: Observational and bidirectional, one-sample Mendelian randomization (MR) analyses in 112,815 individuals from the Copenhagen General Population Study and the Copenhagen City Heart Study, and bidirectional, two-sample MR with summary level data from two publicly available consortia, CHARGE and MAGIC. RESULTS: Observationally, higher plasma CRP was associated with stepwise higher risk of IHD and CVD death, with hazard ratios and 95% confidence intervals (95%CI) of 1.50 (1.38, 1.62) and 2.44 (1.93, 3.10) in individuals with the 20% highest CRP concentrations. The corresponding hazard ratios for elevated plasma glucose were 1.10 (1.02, 1.18) and 1.22 (1.01, 1.49), respectively. Cumulative incidences of IHD and CVD death were 365% and 592% higher, respectively, in individuals with both type 2 diabetes and plasma CRP ≥ 2 mg/L compared to individuals without either. Plasma CRP and glucose were observationally associated (ß-coefficient: 0.02 (0.02, 0.03), p = 3 × 10- 20); however, one- and two-sample MR did not support a causal effect of CRP on glucose (-0.04 (-0.12, 0.32) and - 0.03 (-0.13, 0.06)), nor of glucose on CRP (-0.01 (-0.08, 0.07) and - 0.00 (-0.14, 0.13)). CONCLUSIONS: Elevated concentrations of plasma CRP and glucose are predictors of IHD and CVD death in the general population. We found no genetic association between CRP and glucose, or vice versa, suggesting that lowering glucose pharmacologically does not have a direct effect on low-grade inflammation.


Biomarkers , Blood Glucose , C-Reactive Protein , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Heart Disease Risk Factors , Hyperglycemia , Mendelian Randomization Analysis , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/mortality , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Biomarkers/blood , Hyperglycemia/blood , Hyperglycemia/epidemiology , Hyperglycemia/diagnosis , Hyperglycemia/mortality , Hyperglycemia/genetics , Risk Assessment , Blood Glucose/metabolism , Male , Denmark/epidemiology , Cardiovascular Diseases/mortality , Cardiovascular Diseases/genetics , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/blood , Female , Middle Aged , Incidence , Up-Regulation , Myocardial Ischemia/blood , Myocardial Ischemia/genetics , Myocardial Ischemia/epidemiology , Myocardial Ischemia/diagnosis , Myocardial Ischemia/mortality , Aged , Prognosis , Inflammation Mediators/blood , Genetic Predisposition to Disease , Risk Factors
13.
BMJ Open ; 14(5): e081399, 2024 May 15.
Article En | MEDLINE | ID: mdl-38749693

OBJECTIVES: To estimate the shape of the causal relationship between body mass index (BMI) and mortality risk in a Mendelian randomisation framework. DESIGN: Mendelian randomisation analyses of two prospective population-based cohorts. SETTING: Individuals of European ancestries living in Norway or the UK. PARTICIPANTS: 56 150 participants from the Trøndelag Health Study (HUNT) in Norway and 366 385 participants from UK Biobank recruited by postal invitation. OUTCOMES: All-cause mortality and cause-specific mortality (cardiovascular, cancer, non-cardiovascular non-cancer). RESULTS: A previously published non-linear Mendelian randomisation analysis of these data using the residual stratification method suggested a J-shaped association between genetically predicted BMI and mortality outcomes with the lowest mortality risk at a BMI of around 25 kg/m2. However, the 'constant genetic effect' assumption required by this method is violated. The reanalysis of these data using the more reliable doubly-ranked stratification method provided some indication of a J-shaped relationship, but with much less certainty as there was less precision in estimates at the lower end of the BMI distribution. Evidence for a harmful effect of reducing BMI at low BMI levels was only present in some analyses, and where present, only below 20 kg/m2. A harmful effect of increasing BMI for all-cause mortality was evident above 25 kg/m2, for cardiovascular mortality above 24 kg/m2, for cancer mortality above 30 kg/m2 and for non-cardiovascular non-cancer mortality above 26 kg/m2. In UK Biobank, the association between genetically predicted BMI and mortality at high BMI levels was stronger in women than in men. CONCLUSION: This research challenges findings from previous conventional observational epidemiology and Mendelian randomisation investigations that the lowest level of mortality risk is at a BMI level of around 25 kg/m2. Our results provide some evidence that reductions in BMI will increase mortality risk for a small proportion of the population, and clear evidence that increases in BMI will increase mortality risk for those with BMI above 25 kg/m2.


Body Mass Index , Mendelian Randomization Analysis , Humans , United Kingdom/epidemiology , Female , Male , Middle Aged , Aged , Prospective Studies , Norway/epidemiology , Biological Specimen Banks , Neoplasms/mortality , Neoplasms/genetics , Cardiovascular Diseases/mortality , Cardiovascular Diseases/genetics , Adult , Cause of Death , Mortality , Risk Factors , UK Biobank
14.
PLoS One ; 19(5): e0301112, 2024.
Article En | MEDLINE | ID: mdl-38771893

BACKGROUND: Previous studies revealed that sleep disorders are potential risk factors for cardiovascular diseases, such as obstructive sleep apnea and rapid eye movement (REM) sleep behavior disorder (RBD). However, the causal associations between RBD and cardiovascular diseases remained unknown. MATERIALS AND METHODS: We used the latest and largest summary-level genome-wide association studies of RBD, stroke and its subtypes, coronary artery disease (CAD), myocardial infarction (MI), and heart failure (HF) to select genetic variants as the instrumental variables. Mendelian randomization (MR) analysis was performed to test the causal associations between RBD and the cardiovascular diseases above. Inverse variance weighted method was used as the main analysis. RESULTS: After multiple comparisons, genetically predicted RBD was significantly associated with the risk of HF [odds ratio (OR) = 1.033, 95% CI 1.013-1.052, p = 0.001]. Leave-one-out analysis further supported the robustness of the causal association. Furthermore, we identified a suggestive association between genetically predicted MI and RBD (OR = 0.716, 95% CI 0.546-0.940, p = 0.016). However, in our study no associations were identified of RBD with CAD or stroke and its subtypes. CONCLUSION: Our study highlighted the potential associations between RBD and cardiovascular diseases at genetic level, including HF and MI. More studies were required to clarify the biological mechanisms involved the associations.


Cardiovascular Diseases , Genome-Wide Association Study , Mendelian Randomization Analysis , REM Sleep Behavior Disorder , Humans , REM Sleep Behavior Disorder/genetics , Cardiovascular Diseases/genetics , Myocardial Infarction/genetics , Risk Factors , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Heart Failure/genetics , Stroke/genetics
15.
J Int Med Res ; 52(5): 3000605241255568, 2024 May.
Article En | MEDLINE | ID: mdl-38819085

OBJECTIVE: Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently used in clinical microbiology laboratories. This study aimed to determine whether dual-polarity time-of-flight mass spectrometry (DP-TOF MS) could be applied to clinical nucleotide detection. METHODS: This prospective study included 40 healthy individuals and 110 patients diagnosed with cardiovascular diseases. We used DP-TOF MS and Sanger sequencing to evaluate 17 loci across 11 genes associated with cardiovascular drug responses. In addition, we used DP-TOF MS to test 998 retrospectively collected clinical DNA samples with known results. RESULTS: A, T, and G nucleotide detection by DP-TOF MS and Sanger sequencing revealed 100% concordance, whereas the C nucleotide concordance was 99.86%. Genotyping based on the results of the two methods showed 99.96% concordance. Regarding clinical applications, DP-TOF MS yielded a 99.91% concordance rate for known loci. The minimum detection limit for DNA was 0.4 ng; the inter-assay and intra-assay precision rates were both 100%. Anti-interference analysis showed that aerosol contamination greater than 1013 copies/µL in the laboratory environment could influence the results of DP-TOF MS. CONCLUSIONS: The DP-TOF MS platform displayed good detection performance, as demonstrated by its 99.96% concordance rate with Sanger sequencing. Thus, it may be applied to clinical nucleotide detection.


Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Female , Male , Prospective Studies , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Middle Aged , Adult , Aged , Sequence Analysis, DNA/methods , DNA/genetics , DNA/analysis , Retrospective Studies , Case-Control Studies , Polymorphism, Single Nucleotide
16.
PLoS One ; 19(5): e0300500, 2024.
Article En | MEDLINE | ID: mdl-38820305

BACKGROUND: The cardiac-brain connection has been identified as the basis for multiple cardio-cerebral diseases. However, effective therapeutic targets for these diseases are still limited. Therefore, this study aimed to identify pleiotropic and specific therapeutic targets for cardio-cerebral diseases using Mendelian randomization (MR) and colocalization analyses. METHODS: This study included two large protein quantitative trait loci studies with over 4,000 plasma proteins were included in the discovery and replication cohorts, respectively. We initially used MR to estimate the associations between protein and 20 cardio-cerebral diseases. Subsequently, Colocalization analysis was employed to enhance the credibility of the results. Protein target prioritization was based solely on including highly robust significant results from both the discovery and replication phases. Lastly, the Drug-Gene Interaction Database was utilized to investigate protein-gene-drug interactions further. RESULTS: A total of 46 target proteins for cardio-cerebral diseases were identified as robust in the discovery and replication phases by MR, comprising 7 pleiotropic therapeutic proteins and 39 specific target proteins. Followed by colocalization analysis and prioritization of evidence grades for target protein, 6 of these protein-disease pairs have achieved the highly recommended level. For instance, the PILRA protein presents a pleiotropic effect on sick sinus syndrome and Alzheimer's disease, whereas GRN exerts specific effects on the latter. APOL3, LRP4, and F11, on the other hand, have specific effects on cardiomyopathy and ischemic stroke, respectively. CONCLUSIONS: This study successfully identified important therapeutic targets for cardio-cerebral diseases, which benefits the development of preventive or therapeutic drugs.


Mendelian Randomization Analysis , Proteome , Quantitative Trait Loci , Humans , Proteome/metabolism , Genetic Pleiotropy , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/drug therapy , Genome-Wide Association Study , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/drug therapy
17.
Int Immunopharmacol ; 134: 112222, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38728881

Cardiovascular disease is currently the number one cause of death endangering human health. There is currently a large body of research showing that the development of cardiovascular disease and its complications is often accompanied by inflammatory processes. In recent years, epitranscriptional modifications have been shown to be involved in regulating the pathophysiological development of inflammation in cardiovascular diseases, with 6-methyladenine being one of the most common RNA transcriptional modifications. In this review, we link different cardiovascular diseases, including atherosclerosis, heart failure, myocardial infarction, and myocardial ischemia-reperfusion, with inflammation and describe the regulatory processes involved in RNA methylation. Advances in RNA methylation research have revealed the close relationship between the regulation of transcriptome modifications and inflammation in cardiovascular diseases and brought potential therapeutic targets for disease diagnosis and treatment. At the same time, we also discussed different cell aspects. In addition, in the article we also describe the different application aspects and clinical pathways of RNA methylation therapy. In summary, this article reviews the mechanism, regulation and disease treatment effects of m6A modification on inflammation and inflammatory cells in cardiovascular diseases in recent years. We will discuss issues facing the field and new opportunities that may be the focus of future research.


Cardiovascular Diseases , Epigenesis, Genetic , Inflammation , Humans , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Inflammation/genetics , Animals , Adenine/analogs & derivatives , Transcriptome , Methylation
18.
J Ethnopharmacol ; 331: 118287, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38705429

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiovascular and cerebrovascular diseases are the leading causes of death worldwide and interact closely with each other. Danhong Injection (DHI) is a widely used preparation for the co-treatment of brain and heart diseases (CTBH). However, the underlying molecular endotype mechanisms of DHI in the CTBH remain unclear. AIM OF THIS STUDY: To elucidate the underlying endotype mechanisms of DHI in the CTBH. MATERIALS AND METHODS: In this study, we proposed a modular-based disease and drug-integrated analysis (MDDIA) strategy for elucidating the systematic CTBH mechanisms of DHI using high-throughput transcriptome-wide sequencing datasets of DHI in the treatment of patients with stable angina pectoris (SAP) and cerebral infarction (CI). First, we identified drug-targeted modules of DHI and disease modules of SAP and CI based on the gene co-expression networks of DHI therapy and the protein-protein interaction networks of diseases. Moreover, module proximity-based topological analyses were applied to screen CTBH co-module pairs and driver genes of DHI. At the same time, the representative driver genes were validated via in vitro experiments on hypoxia/reoxygenation-related cardiomyocytes and neuronal cell lines of H9C2 and HT22. RESULTS: Seven drug-targeted modules of DHI and three disease modules of SAP and CI were identified by co-expression networks. Five modes of modular relationships between the drug and disease modules were distinguished by module proximity-based topological analyses. Moreover, 13 targeted module pairs and 17 driver genes associated with DHI in the CTBH were also screened. Finally, the representative driver genes AKT1, EDN1, and RHO were validated by in vitro experiments. CONCLUSIONS: This study, based on clinical sequencing data and modular topological analyses, integrated diseases and drug targets. The CTBH mechanism of DHI may involve the altered expression of certain driver genes (SRC, STAT3, EDN1, CYP1A1, RHO, RELA) through various enriched pathways, including the Wnt signaling pathway.


Drugs, Chinese Herbal , Protein Interaction Maps , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Humans , Animals , Cerebrovascular Disorders/drug therapy , Cerebrovascular Disorders/genetics , Gene Regulatory Networks/drug effects , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Transcriptome/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Injections
19.
Free Radic Biol Med ; 220: 262-270, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38729451

Aging affects all organs. Arteries, in particular, are among the most affected. Vascular aging (VA) is defined as age-associated changes in function and structure of vessels. Classical VA phenotypes are carotid intima-media thickness (IMT), carotid plaque (CP), and arterial stiffness (STIFF). Individuals have different predisposition to these VA phenotypes and their associated risk of cardiovascular events. Some develop an early vascular aging (EVA), and others are protected and identified as having supernormal vascular aging (SUPERNOVA). The mechanisms leading to these phenotypes are not well understood. In the Northern Manhattan Study (NOMAS), we found genetic variants in the 7 Sirtuins (SIRT) and 5 Uncoupling Proteins (UCP) to be differently associated with risk to developing VA phenotypes. In this article, we review the results of genetic-epidemiology studies to better understand which of the single nucleotide polymorphisms (SNPs) in SIRT and UCP are responsible for both EVA and SUPERNOVA.


Aging , Polymorphism, Single Nucleotide , Sirtuins , Humans , Sirtuins/genetics , Sirtuins/metabolism , Aging/genetics , Aging/metabolism , Vascular Stiffness/genetics , Carotid Intima-Media Thickness , Mitochondrial Uncoupling Proteins/genetics , Mitochondrial Uncoupling Proteins/metabolism , Genetic Predisposition to Disease , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology
20.
Curr Atheroscler Rep ; 26(5): 163-175, 2024 05.
Article En | MEDLINE | ID: mdl-38698167

PURPOSE OF REVIEW: Fatty acid-binding protein 4 (FABP4) plays a role in lipid metabolism and cardiovascular health. In this paper, we cover FABP4 biology, its implications in atherosclerosis from observational studies, genetic factors affecting FABP4 serum levels, and ongoing drug development to target FABP4 and offer insights into future FABP4 research. RECENT FINDINGS: FABP4 impacts cells through JAK2/STAT2 and c-kit pathways, increasing inflammatory and adhesion-related proteins. In addition, FABP4 induces angiogenesis and vascular smooth muscle cell proliferation and migration. FABP4 is established as a reliable predictive biomarker for cardiovascular disease in specific at-risk groups. Genetic studies robustly link PPARG and FABP4 variants to FABP4 serum levels. Considering the potential effects on atherosclerotic lesion development, drug discovery programs have been initiated in search for potent inhibitors of FABP4. Elevated FABP4 levels indicate an increased cardiovascular risk and is causally related to acceleration of atherosclerotic disease, However, clinical trials for FABP4 inhibition are lacking, possibly due to concerns about available compounds' side effects. Further research on FABP4 genetics and its putative causal role in cardiovascular disease is needed, particularly in aging subgroups.


Aging , Cardiovascular Diseases , Fatty Acid-Binding Proteins , Humans , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/epidemiology , Aging/genetics , Aging/physiology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Animals , Biomarkers/blood , Biomarkers/metabolism
...