Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.432
Filter
1.
Anal Chim Acta ; 1317: 342897, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030003

ABSTRACT

BACKGROUND: Accurate and quick judgement of the food quality can protect the legitimate rights of consumers. Currently, nanozymes are widely employed in the rapid detection of food due to their stability and economy. The contents of bisphenol A and antioxidant can be used to measure the quality of beverages. However, due to the complexity of the actual samples, it is still challenging to achieve the sensitive detection of both at the same time. The development of nanozyme with high enzyme activity is essential for sensitive detection of targets in complex foods. RESULTS: In this work, a novel nanomaterial (ZrTGA) was synthesized based on thioglycolic acid-modified Metal-Organic Framework (MOF-818). The interaction between Cu-S bonds and increase in the proportion of Cu1+ resulted in ZrTGA exhibiting higher peroxidase-like and polyphenol oxidase-like activities. These enzyme activities were 317 % and 200 % of the original values, respectively. With high enzyme activity can sensitively detect two important indicators of bisphenol A and antioxidants in beverages. The increased enzyme activity of ZrTGA enabled the content of both substances to be detected by smartphone extraction of RGB. Finally, through the output of the ''0″ and ''1″ signals of the logic gates, it is possible to quickly determine the level of the two substances and thus directly assess the quality of the beverages. SIGNIFICANCE: The modification of nanozyme enables the detection of substances at low concentrations based on enhancing dual-enzyme activity. The combination of mobile phone photography and logic gate technology enables the continuous detection of two important indicators in beverages, overcoming the limitations of traditional large-scale instruments. It also provides an alternative strategy for food quality detection.


Subject(s)
Antioxidants , Benzhydryl Compounds , Beverages , Metal-Organic Frameworks , Phenols , Benzhydryl Compounds/analysis , Benzhydryl Compounds/chemistry , Phenols/analysis , Phenols/chemistry , Metal-Organic Frameworks/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Beverages/analysis , Nanostructures/chemistry , Copper/chemistry , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry
2.
Physiol Plant ; 176(4): e14420, 2024.
Article in English | MEDLINE | ID: mdl-38956780

ABSTRACT

This study explores the impact of juglone on cucumber (Cucumis sativus cv. Beith Alpha), scrutinizing its effects on seed germination, growth, and the polyphenol oxidase (PPO) enzyme's activity and gene expression. Employing concentrations ranging from 0.01 to 0.5 mM, we found juglone's effects to be concentration-dependent. At lower concentrations (0.01 and 0.1 mM), juglone promoted root and shoot growth along with germination, whereas higher concentrations (0.25 and 0.5 mM) exerted inhibitory effects, delineating a threshold for its allelopathic influence. Notably, PPO activity surged, especially at 0.5 mM in roots, hinting at oxidative stress involvement. Real-time PCR unveiled that juglone modulates PPO gene expression in cotyledons, peaking at 0.1 mM and diminishing at elevated levels. Correlation analyses elucidated a positive link between juglone-induced root growth and cotyledon PPO gene expression but a negative correlation with heightened root enzyme activity. Additionally, germination percentage inversely correlated with root PPO activity, while PPO activities positively associated with dopa and catechol substrates in both roots and cotyledons. Molecular docking studies revealed juglone's selective interactions with PPO's B chain, suggesting regulatory impacts. Protein interaction assessments highlighted juglone's influence on amino acid metabolism, and molecular dynamics indicated juglone's stronger, more stable binding to PPO, inferring potential alterations in enzyme function and stability. Conclusively, our findings elucidate juglone's dose-dependent physiological and biochemical shifts in cucumber plants, offering insights into its role in plant growth, stress response, and metabolic modulation.


Subject(s)
Catechol Oxidase , Cucumis sativus , Germination , Molecular Docking Simulation , Naphthoquinones , Plant Roots , Catechol Oxidase/metabolism , Catechol Oxidase/genetics , Cucumis sativus/genetics , Cucumis sativus/enzymology , Cucumis sativus/drug effects , Naphthoquinones/pharmacology , Naphthoquinones/metabolism , Germination/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/enzymology , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Cotyledon/genetics , Cotyledon/drug effects , Cotyledon/enzymology
3.
Talanta ; 277: 126422, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38897016

ABSTRACT

Phenolic compounds (PCs) are diverse in nature and undergo complex migration and transformations in the environment, making it challenging to use techniques such as chromatography and other traditional methods to determine the concentration of PCs by separation, individual monitoring and subsequent addition. To address this issue, a facile and on-site strategy was developed to measure the concentration of PCs using a novel nanozyme with polyphenol oxidase-like activity. First, the nanozyme was designed by coordinating the asymmetric ligand nicotinic acid with copper to mimic the structure of mononuclear and trinuclear copper clusters of natural laccases. Subsequently, by introducing 2-mercaptonicotinic acid to regulate the valence state of copper, the composite nanozyme CuNA10S was obtained with significantly enhanced activity. Interestingly, CuNA10S was shown to have a broad substrate spectrum capable of catalyzing common PCs. Building upon the superior performance of this nanozyme, a method was developed to determine the concentration of PCs. To enable rapid on-site sensing, we designed and prepared CuNA10S-based test strips and developed a tailored smartphone sensing platform. Using paper strip sensors combined with a smartphone sensing platform with RGB streamlined the sensing process, facilitating rapid on-site analysis of PCs within a range of 0-100 µM. Our method offers a solution for the quick screening of phenolic wastewater at contaminated sites, allowing sensitive and quick monitoring of PCs without the need for standard samples. This significantly simplifies the monitoring procedure compared to more cumbersome large-scale instrumental methods.


Subject(s)
Catechol Oxidase , Phenols , Phenols/chemistry , Phenols/analysis , Catechol Oxidase/chemistry , Catechol Oxidase/metabolism , Copper/chemistry , Smartphone , Nanostructures/chemistry
4.
Food Res Int ; 188: 114325, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823824

ABSTRACT

In this study, inactivation of mushroom polyphenol oxidase (PPO) by low intensity direct current (DC) electric field and its molecular mechanism were investigated. In the experiments under 3 V/cm, 5 V/cm, 7 V/cm and 9 V/cm electric fields, PPOs were all completely inactivated after different exposure times. Under 1 V/cm, a residual activity of 11.88 % remained. The inactivation kinetics confirms to Weibull model. Under 1-7 V/cm, n value closes to a constant about 1.3. The structural analysis of PPO under 3 V/cm and 5 V/cm by fluorescence emission spectroscopy and molecular dynamics (MD) simulation showed that the tertiary structure was slightly changed with increased radius of gyration, higher potential energy and rate of C-alpha fluctuation. After exposure to the electric field, most of the hydrophobic tryptophan (TRP) residues turned to the hydrophilic surface, resulting the fluorescence red-shifted and quenched. Molecular docking indicated that the receptor binding domain of catechol in PPO was changed. PPO under electric field was MD simulated the first time, revealing the changing mechanism of the electric field itself on PPO, a binuclear copper enzyme, which has a metallic center. All these suggest that the low intensity DC electric field would be a promising option for enzymatic browning inhibition or even enzyme activity inactivation.


Subject(s)
Catechol Oxidase , Molecular Docking Simulation , Molecular Dynamics Simulation , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry , Spectrometry, Fluorescence , Kinetics , Electricity , Agaricales/enzymology , Catechols/chemistry , Catechols/metabolism
5.
J Agric Food Chem ; 72(25): 14294-14301, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38874060

ABSTRACT

Enzymatic browning in fruits and vegetables, driven by polyphenol oxidase (PPO) activity, results in color changes and loss of bioactive compounds. Emerging technologies are being explored to prevent this browning and ensure microbial safety in foods. This study assessed the effectiveness of pulsed light (PL) and ultraviolet light-emitting diodes (UV-LED) in inhibiting PPO and inactivating Escherichia coli ATTC 25922 in fresh apple juice (Malus domestica var. Red Delicious). Both treatments' effects on juice quality, including bioactive compounds, color changes, and microbial inactivation, were examined. At similar doses, PL-treated samples (126 J/cm2) showed higher 2,2- diphenyl-1-picrylhydrazyl inhibition (9.5%) compared to UV-LED-treated samples (132 J/cm2), which showed 1.06%. For microbial inactivation, UV-LED achieved greater E. coli reduction (>3 log cycles) and less ascorbic acid degradation (9.4% ± 0.05) than PL. However, increasing PL doses to 176 J/cm2 resulted in more than 5 log cycles reduction of E. coli, showing a synergistic effect with the final temperature reached (55 °C). The Weibull model analyzed survival curves to evaluate inactivation kinetics. UV-LED was superior in preserving thermosensitive compounds, while PL excelled in deactivating more PPO and achieving maximal microbial inactivation more quickly.


Subject(s)
Catechol Oxidase , Escherichia coli , Fruit and Vegetable Juices , Malus , Microbial Viability , Ultraviolet Rays , Catechol Oxidase/metabolism , Malus/chemistry , Escherichia coli/radiation effects , Fruit and Vegetable Juices/analysis , Fruit and Vegetable Juices/microbiology , Microbial Viability/radiation effects , Food Irradiation/methods
6.
Nature ; 631(8020): 350-359, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926577

ABSTRACT

Insect respiration has long been thought to be solely dependent on an elaborate tracheal system without assistance from the circulatory system or immune cells1,2. Here we describe that Drosophila crystal cells-myeloid-like immune cells called haemocytes-control respiration by oxygenating Prophenoloxidase 2 (PPO2) proteins. Crystal cells direct the movement of haemocytes between the trachea of the larval body wall and the circulation to collect oxygen. Aided by copper and a neutral pH, oxygen is trapped in the crystalline structures of PPO2 in crystal cells. Conversely, PPO2 crystals can be dissolved when carbonic anhydrase lowers the intracellular pH and then reassembled into crystals in cellulo by adhering to the trachea. Physiologically, larvae lacking crystal cells or PPO2, or those expressing a copper-binding mutant of PPO2, display hypoxic responses under normoxic conditions and are susceptible to hypoxia. These hypoxic phenotypes can be rescued by hyperoxia, expression of arthropod haemocyanin or prevention of larval burrowing activity to expose their respiratory organs. Thus, we propose that insect immune cells collaborate with the tracheal system to reserve and transport oxygen through the phase transition of PPO2 crystals, facilitating internal oxygen homeostasis in a process that is comparable to vertebrate respiration.


Subject(s)
Catechol Oxidase , Drosophila Proteins , Drosophila melanogaster , Enzyme Precursors , Hemocytes , Oxygen , Phase Transition , Respiration , Animals , Female , Male , Biological Transport , Carbonic Anhydrases/metabolism , Catechol Oxidase/metabolism , Copper/metabolism , Crystallization , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Drosophila melanogaster/enzymology , Drosophila melanogaster/immunology , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Enzyme Precursors/metabolism , Hemocyanins/metabolism , Hemocytes/immunology , Hemocytes/metabolism , Homeostasis , Hydrogen-Ion Concentration , Hyperoxia/metabolism , Hypoxia/metabolism , Larva/anatomy & histology , Larva/cytology , Larva/immunology , Larva/metabolism , Oxygen/metabolism
7.
Plant J ; 119(2): 927-941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38872484

ABSTRACT

Acteoside is a bioactive phenylethanoid glycoside widely distributed throughout the plant kingdom. Because of its two catechol moieties, acteoside displays a variety of beneficial activities. The biosynthetic pathway of acteoside has been largely elucidated, but the assembly logic of two catechol moieties in acteoside remains unclear. Here, we identified a novel polyphenol oxidase OfPPO2 from Osmanthus fragrans, which could hydroxylate various monophenolic substrates, including tyrosine, tyrosol, tyramine, 4-hydroxyphenylacetaldehyde, salidroside, and osmanthuside A, leading to the formation of corresponding catechol-containing intermediates for acteoside biosynthesis. OfPPO2 could also convert osmanthuside B into acteoside, creating catechol moieties directly via post-modification of the acteoside skeleton. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and subcellular localization assay further support the involvement of OfPPO2 in acteoside biosynthesis in planta. These findings suggest that the biosynthesis of acteoside in O. fragrans may follow "parallel routes" rather than the conventionally considered linear route. In support of this hypothesis, the glycosyltransferase OfUGT and the acyltransferase OfAT could direct the flux of diphenolic intermediates generated by OfPPO2 into acteoside. Significantly, OfPPO2 and its orthologs constitute a functionally conserved enzyme family that evolved independently from other known biosynthetic enzymes of acteoside, implying that the substrate promiscuity of this PPO family may offer acteoside-producing plants alternative ways to synthesize acteoside. Overall, this work expands our understanding of parallel pathways plants may employ to efficiently synthesize acteoside, a strategy that may contribute to plants' adaptation to environmental challenges.


Subject(s)
Catechol Oxidase , Glucosides , Phenols , Plant Proteins , Catechol Oxidase/metabolism , Catechol Oxidase/genetics , Glucosides/metabolism , Glucosides/biosynthesis , Phenols/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Biosynthetic Pathways , Oleaceae/enzymology , Oleaceae/genetics , Oleaceae/metabolism , Catechols/metabolism , Gene Expression Regulation, Plant , Polyphenols
8.
Insect Biochem Mol Biol ; 171: 104151, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880307

ABSTRACT

Peptidoglycan recognition proteins (PGRPs) are a family of pattern recognition receptors that play a critical role in the immune response of invertebrates and vertebrates. Herein, the short ApPGRP-D gene was cloned from the model lepidopteran Antheraea pernyi. Quantitative PCR (qPCR) confirmed that ApPGRP-D is an immune-related protein and that the expression of ApPGRP-D can be induced by microorganisms. ApPGRP-D is a broad-spectrum pattern recognition protein that activates the prophenoloxidase cascade activation system and promotes the agglutination of microbial cells. Likely due to its amidase activity, ApPGRP-D can inhibit the growth of E. coli and S. aureus. In addition, we demonstrated for the first time that zinc ions, as important metal coenzymes, could promote multiple functions of ApPGRP-D but not its amidase activity.


Subject(s)
Carrier Proteins , Immunity, Humoral , Insect Proteins , Moths , Animals , Moths/immunology , Moths/genetics , Moths/metabolism , Moths/microbiology , Insect Proteins/metabolism , Insect Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Escherichia coli , Staphylococcus aureus , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Catechol Oxidase/metabolism , Cloning, Molecular , Zinc/metabolism , Enzyme Precursors
9.
Food Chem ; 456: 139996, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38925008

ABSTRACT

This study was aimed to evaluate the potential of high-humidity hot air impingement cooking (HHAIC) on Penaeus vannamei, focusing on its drying characteristics, microstructure, water distribution, enzyme activity, astaxanthin content, antioxidant capacity, color, and Maillard reaction. Results demonstrated that a 3 min HHAIC significantly improved the shrimp's color and optimized astaxanthin content with a notable increase in scavenging capacity based on an in-vitro as antioxidation activity evaluation. Compared to the untreated samples, HHAIC could significantly inactivate polyphenol oxidase by 95.76%. Also, it suppressed the Maillard reaction by decreasing 5-hydroxymethylfurfural content and shortened the drying time by 40%. In addition, the low-field nuclear magnetic resonance and microstructure analysis showed alterations in the shrimp muscle fiber structure and water distribution. This study indicated that HHAIC could elevate quality, enhance appearance, and reduce the processing time of dried shrimp, presenting valuable implications for industry progress.


Subject(s)
Color , Cooking , Hot Temperature , Maillard Reaction , Penaeidae , Animals , Penaeidae/chemistry , Penaeidae/enzymology , Catechol Oxidase/chemistry , Catechol Oxidase/metabolism , Desiccation , Shellfish/analysis , Antioxidants/chemistry , Xanthophylls/chemistry
10.
PLoS One ; 19(6): e0300748, 2024.
Article in English | MEDLINE | ID: mdl-38889121

ABSTRACT

The current study aimed to assess the influence of dietary inclusion of cyanobacterium Arthrospira platensis NIOF17/003 as a dry material and as a free-lipid biomass (FL) on the growth performance, body composition, redox status, immune responses, and gene expression of whiteleg shrimp, Litopenaeus vannamei postlarvae. L. vannamei were fed five different supplemented diets; the first group was fed on an un-supplemented diet as a negative control group (C-N), the second group was fed on a commercial diet supplemented with 2% of A. platensis complete biomass as a positive control group (C-P20), whereas, the three remaining groups were fed on a commercial diet supplemented with graded amounts of FL at 1%, 2%, and 3% (FL10, FL20, and FL30, respectively). The obtained results indicated that the diet containing 1% FL significantly increased the growth performance, efficiency of consumed feed, and survival percentage of L. vannamei compared to both C-N and C-P20 groups. As for the carcass analysis, diets containing A. platensis or its FL at higher levels significantly increased the protein, lipid, and ash content compared to the C-N group. Moreover, the shrimp group fed on C-P20 and FL10 gave significantly stimulated higher digestive enzyme activities compared with C-N. The shrimp fed C-P20 or FL exhibited higher innate immune responses and promoted their redox status profile. Also, the shrimp fed a low FL levels significantly upregulated the expression of both the peroxiredoxin (Prx) and prophenoloxidase (PPO1) genes than those receiving C-N. The current results recommended that dietary supplementation with 1% FL is the most effective treatment in promoting the performance and immunity of whiteleg shrimp.


Subject(s)
Animal Feed , Body Composition , Oxidation-Reduction , Penaeidae , Spirulina , Animals , Penaeidae/growth & development , Penaeidae/immunology , Penaeidae/genetics , Animal Feed/analysis , Dietary Supplements , Biomass , Immunity, Innate/drug effects , Catechol Oxidase/metabolism , Catechol Oxidase/genetics , Gene Expression Regulation/drug effects , Enzyme Precursors/metabolism , Enzyme Precursors/genetics
11.
Physiol Plant ; 176(3): e14335, 2024.
Article in English | MEDLINE | ID: mdl-38705728

ABSTRACT

Sound vibrations (SV) are known to influence molecular and physiological processes that can improve crop performance and yield. In this study, the effects of three audible frequencies (100, 500 and 1000 Hz) at constant amplitude (90 dB) on tomato Micro-Tom physiological responses were evaluated 1 and 3 days post-treatment. Moreover, the potential use of SV treatment as priming agent for improved Micro-Tom resistance to Pseudomonas syringae pv. tomato DC3000 was tested by microarray. Results showed that the SV-induced physiological changes were frequency- and time-dependent, with the largest changes registered at 1000 Hz at day 3. SV treatments tended to alter the foliar content of photosynthetic pigments, soluble proteins, sugars, phenolic composition, and the enzymatic activity of polyphenol oxidase, peroxidase, superoxide dismutase and catalase. Microarray data revealed that 1000 Hz treatment is effective in eliciting transcriptional reprogramming in tomato plants grown under normal conditions, but particularly after the infection with Pst DC3000. Broadly, in plants challenged with Pst DC3000, the 1000 Hz pretreatment provoked the up-regulation of unique differentially expressed genes (DEGs) involved in cell wall reinforcement, phenylpropanoid pathway and defensive proteins. In addition, in those plants, DEGs associated with enhancing plant basal immunity, such as proteinase inhibitors, pathogenesis-related proteins, and carbonic anhydrase 3, were notably up-regulated in comparison with non-SV pretreated, infected plants. These findings provide new insights into the modulation of Pst DC3000-tomato interaction by sound and open up prospects for further development of strategies for plant disease management through the reinforcement of defense mechanisms in Micro-Tom plants.


Subject(s)
Gene Expression Regulation, Plant , Plant Diseases , Pseudomonas syringae , Solanum lycopersicum , Pseudomonas syringae/physiology , Pseudomonas syringae/pathogenicity , Solanum lycopersicum/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Sound , Disease Resistance/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Catechol Oxidase/metabolism , Catechol Oxidase/genetics
12.
PLoS One ; 19(5): e0304673, 2024.
Article in English | MEDLINE | ID: mdl-38820398

ABSTRACT

In Tunisia, Orobanche foetida Poir. is considered an important agricultural biotic constraint on faba bean (Vicia faba L.) production. An innovative control method for managing this weed in faba bean is induced resistance through inoculation by rhizobia strains. In this study, we explored the biochemical dynamics in V. faba L. minor inoculated by rhizobia in response to O. foetida parasitism. A systemic induced resistant reaction was evaluated through an assay of peroxidase (POX), polyphenol oxidase (PPO) and phenyl alanine ammonialyase (PAL) activity and phenolic compound and hydrogen peroxide (H2O2) accumulation in faba bean plants infested with O. foetida and inoculated with rhizobia. Two rhizobia strains (Mat, Bj1) and a susceptible variety of cultivar Badi were used in a co-culture Petri dish experiment. We found that Mat inoculation significantly decreased O. foetida germination and the number of tubercles on the faba bean roots by 87% and 88%, respectively. Following Bj1 inoculation, significant decreases were only observed in O. foetida germination (62%). In addition, Mat and Bj1 inoculation induced a delay in tubercle formation (two weeks) and necrosis in the attached tubercles (12.50% and 4.16%, respectively) compared to the infested control. The resistance of V. faba to O. foetida following Mat strain inoculation was mainly associated with a relatively more efficient enzymatic antioxidative response. The antioxidant enzyme activity was enhanced following Mat inoculation of the infected faba bean plant. Indeed, increases of 45%, 67% and 86% were recorded in the POX, PPO and PAL activity, respectively. Improvements of 56% and 12% were also observed in the soluble phenolic and H2O2 contents. Regarding inoculation with the Bj1 strain, significant increases were only observed in soluble phenolic and H2O2 contents and PPO activity (especially at 45 days after inoculation) compared to the infested control. These results imply that inoculation with the rhizobia strains (especially Mat) induced resistance and could bio-protect V. faba against O. foetida parasitism by inducing systemic resistance, although complete protectionwas not achieved by rhizobia inoculation. The Mat strain could be used as a potential candidate for the development of an integrated method for controlling O. foetida parasitism in faba bean.


Subject(s)
Hydrogen Peroxide , Orobanche , Vicia faba , Vicia faba/microbiology , Vicia faba/parasitology , Vicia faba/metabolism , Hydrogen Peroxide/metabolism , Catechol Oxidase/metabolism , Plant Roots/microbiology , Plant Roots/parasitology , Plant Roots/metabolism , Rhizobium/physiology , Peroxidase/metabolism , Plant Diseases/parasitology , Plant Diseases/microbiology , Phenylalanine Ammonia-Lyase/metabolism
13.
Food Chem ; 453: 139621, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761728

ABSTRACT

Bael (Aegle marmelos) beverage was pasteurized using continuous-microwave (MW) and traditional thermal processing and the activity of native enzymes, pulp-hydrolyzing enzymes, bioactive, physicochemical, and sensory properties were analyzed. First-order and linear biphasic models fitted well (R2 ≥ 0.90) for enzyme inactivation and bioactive alteration kinetics, respectively. For the most resistant enzyme, polyphenoloxidase (PPO), the inactivation target of ≥ 90 % was achieved at 90 °C TMW (final temperature under MW) and 95 °C for 5 min (conventional thermal). MW treatment displayed faster enzyme inactivation and better retention of TPC and AOC. MW treatment at 90 °C TMW showed 5.3 min D-value, 90% total carotenoid content, 3.42 crisp sensory score (out of 5), and no or minor change in physicochemical attributes. Thermal and MW treatment caused the loss of 14 and 10 bioactive compounds, respectively. The secondary and tertiary structural modifications of PPO enzyme-protein revealed MW's lethality primarily due to its thermal effects.


Subject(s)
Catechol Oxidase , Microwaves , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry , Food Handling , Hot Temperature , Taste , Humans , Beverages/analysis , Kinetics , Enzyme Stability , Plant Proteins/chemistry , Plant Proteins/metabolism , Fruit/chemistry , Fruit/enzymology
14.
ACS Appl Bio Mater ; 7(5): 3164-3178, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38722774

ABSTRACT

Microbial biofilm accumulation poses a serious threat to the environment, presents significant challenges to different industries, and exhibits a large impact on public health. Since there has not been a conclusive answer found despite various efforts, the potential green and economical methods are being focused on, particularly the innovative approaches that employ biochemical agents. In the present study, we propose a bio-nanotechnological method using magnetic cross-linked polyphenol oxidase aggregates (PPO m-CLEA) for inhibition of microbial biofilm including multidrug resistant bacteria. Free PPO solution showed only 55-60% biofilm inhibition, whereas m-CLEA showed 70-75% inhibition, as confirmed through microscopic techniques. The carbohydrate and protein contents in biofilm extracellular polymeric substances (EPSs) were reduced significantly. The m-CLEA demonstrated reusability up to 5 cycles with consistent efficiency in biofilm inhibition. Computational work was also done where molecular docking of PPO with microbial proteins associated with biofilm formation was conducted, resulting in favorable binding scores and inter-residual interactions. Overall, both in vitro and in silico results suggest that PPO interferes with microbial cell attachment and EPS formation, thereby preventing biofilm colonization.


Subject(s)
Anti-Bacterial Agents , Biofilms , Catechol Oxidase , Particle Size , Biofilms/drug effects , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry , Catechol Oxidase/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Materials Testing , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Microbial Sensitivity Tests , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/pharmacology , Molecular Docking Simulation , Escherichia coli/drug effects
15.
Food Chem ; 449: 139166, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604025

ABSTRACT

Apostichopus japonicus (A. japonicus) has rich nutritional value and is an important economic crop. Due to its rich endogenous enzyme system, fresh A. japonicus is prone to autolysis during market circulation and storage, resulting in economic losses. In order to alleviate this phenomenon, we investigated the effect of polyphenol oxidase (PPO) mediated (-)-epigallocatechin gallate (EGCG) on the activity and structure of endogenous cathepsin series protein (CEP) from A. japonicus. Research on cathepsin activity showed that PPO mediated EGCG could significantly reduce enzyme activity, resulting in a decrease in enzymatic reaction rate. SDS-PAGE and scanning electron microscopy results showed that PPO mediates EGCG could induce CEP aggregation to form protein aggregates. Various spectral results indicated that EGCG caused changes in the structure of CEP. Meanwhile, the conjugates formed by PPO mediated EGCG had lower thermal stability. In conclusion, PPO mediated EGCG was an effective method to inhibit the endogenous enzyme activity.


Subject(s)
Catechin , Catechin/analogs & derivatives , Catechol Oxidase , Cathepsins , Stichopus , Catechin/chemistry , Catechin/pharmacology , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry , Animals , Stichopus/enzymology , Stichopus/chemistry , Cathepsins/metabolism , Cathepsins/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Stability , Kinetics
16.
Food Chem ; 450: 139392, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640546

ABSTRACT

The combinational effects of kojic acid and lauroyl arginine ethyl ester hydrochloride (ELAH) on fresh-cut potatoes were investigated. Kojic acid of 0.6% (w/w) effectively inhibited the browning of fresh-cut potatoes and displayed antimicrobial capacity. The color difference value of samples was decreased from 175 to 26 by kojic acid. In contrast, ELAH could not effectively bind with the active sites of tyrosinase and catechol oxidase at molecular level. Although 0.5% (w/w) of ELAH prominently inhibited the microbial growth, it promoted the browning of samples. However, combining kojic acid and ELAH effectively inhibited the browning of samples and microbial growth during the storage and the color difference value of samples was decreased to 52. This amount of kojic acid inhibited enzyme activities toward phenolic compounds. The results indicated that combination of kojic acid and ELAH could provide a potential strategy to extend the shelf life of fresh-cut products.


Subject(s)
Arginine , Monophenol Monooxygenase , Pyrones , Solanum tuberosum , Pyrones/pharmacology , Pyrones/chemistry , Arginine/chemistry , Arginine/analogs & derivatives , Arginine/pharmacology , Solanum tuberosum/chemistry , Solanum tuberosum/growth & development , Monophenol Monooxygenase/metabolism , Food Preservation/methods , Catechol Oxidase/metabolism , Food Preservatives/pharmacology , Food Preservatives/chemistry , Bacteria/drug effects , Bacteria/genetics
17.
Food Chem ; 450: 139285, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631203

ABSTRACT

Theaflavins are beneficial to human health due to various bioactivities. Biosynthesis of theaflavins using polyphenol oxidase (PPO) is advantageous due to cost effectiveness and environmental friendliness. In this review, studies on the mechanism of theaflavins formation, the procedures to screen and prepare PPOs, optimization of reaction systems and immobilization of PPOs were described. The challenges associated with the mass biosynthesis of theaflavins, such as poor enzyme activity, undesirable subproducts and inclusion bodies of recombinant PPOs were presented. Further strategies to solve these challenges and improve theaflavins production, including enzyme engineering, immobilization enzyme technology, water-immiscible solvent-water biphasic systems and recombinant enzyme technology, were proposed.


Subject(s)
Biflavonoids , Catechin , Catechol Oxidase , Biflavonoids/chemistry , Biflavonoids/metabolism , Biocatalysis , Catechin/chemistry , Catechin/metabolism , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism
18.
Angew Chem Int Ed Engl ; 63(25): e202402546, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38616162

ABSTRACT

Phenylethanoid glycosides (PhGs) exhibit a multitude of structural variations linked to diverse pharmacological activities. Assembling various PhGs via multienzyme cascades represents a concise strategy over traditional synthetic methods. However, the challenge lies in identifying a comprehensive set of catalytic enzymes. This study explores biosynthetic PhG reconstruction from natural precursors, aiming to replicate and amplify their structural diversity. We discovered 12 catalytic enzymes, including four novel 6'-OH glycosyltransferases and three new polyphenol oxidases, revealing the intricate network in PhG biosynthesis. Subsequently, the crystal structure of CmGT3 (2.62 Å) was obtained, guiding the identification of conserved residue 144# as a critical determinant for sugar donor specificity. Engineering this residue in PhG glycosyltransferases (FsGT61, CmGT3, and FsGT6) altered their sugar donor recognition. Finally, a one-pot multienzyme cascade was established, where the combined action of glycosyltransferases and acyltransferases boosted conversion rates by up to 12.6-fold. This cascade facilitated the reconstruction of 26 PhGs with conversion rates ranging from 5-100 %, and 20 additional PhGs detectable by mass spectrometry. PhGs with extra glycosyl and hydroxyl modules demonstrated notable liver cell protection. This work not only provides catalytic tools for PhG biosynthesis, but also serves as a proof-of-concept for cell-free enzymatic construction of diverse natural products.


Subject(s)
Glycosides , Glycosyltransferases , Protein Engineering , Glycosides/chemistry , Glycosides/biosynthesis , Glycosides/metabolism , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry
19.
J Food Sci ; 89(6): 3260-3275, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685879

ABSTRACT

Ginger (Zingiber officinale Rosc.) possesses a rich nutritional profile, making it a valuable ingredient for a wide range of culinary applications. After removing its outer skin, ginger can be effectively utilized in the production of pickles and other processed food products. However, following scraping, ginger undergoes a series of physiological and biochemical changes during storage, which can impact its subsequent development and utilization in food. Thus, the current study aimed to investigate the browning mechanism of scraped ginger using non-targeted metabolomics and transcriptomics. The findings revealed 149 shared differential metabolites and 639 shared differential genes among freshly scraped ginger, ginger browned for 5 days, and ginger browned for 15 days. These metabolites and genes are primarily enriched in stilbenes, diarylheptane, and gingerol biosynthesis, phenylpropanoid biosynthesis, and tyrosine metabolism. Through the combined regulation of these pathways, the levels of phenolic components (such as chlorogenic acid and ferulic acid) and the ginger indicator component (6-gingerol) decreased, whereas promoting an increase in the content of coniferaldehyde and curcumin. Additionally, the activities of polyphenol oxidase (PPO) and peroxidase (POD) were significantly increased (p-adjust <0.05). This study hypothesized that chlorogenic and ferulic acid undergo polymerization under the catalysis of PPO and POD, thereby exacerbating the lignification of scraped ginger. These findings offer a theoretical foundation for understanding the browning mechanism of ginger after scraping. PRACTICAL APPLICATION: Ginger's quality and nutrition can change when its skin is removed. This happens due to physical and biochemical reactions during scraping. The browning that occurs affects both the taste and health benefits of ginger, we can better understand how to prevent browning and maintain ginger's quality. This research sheds light on improving ginger processing techniques for better products.


Subject(s)
Metabolomics , Transcriptome , Zingiber officinale , Metabolomics/methods , Fatty Alcohols/metabolism , Catechol Oxidase/metabolism , Catechol Oxidase/genetics , Catechols/metabolism , Maillard Reaction , Food Handling/methods , Phenols/metabolism , Food Storage/methods , Peroxidase/metabolism , Peroxidase/genetics
20.
Protein Expr Purif ; 219: 106474, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38518927

ABSTRACT

The polyphenol oxidase (PPO) enzyme, which causes enzymatic browning, has been repeatedly purified from fruit and vegetables by affinity chromatography. In the present research, Sepharose 4B-l-tyrosine-4-amino-2-methylbenzoic acid, a novel affinity gel for the purification of the PPO enzyme with high efficiency, was synthesized. Additionally, Sepharose 4B-l-tyrosine-p-aminobenzoic acid affinity gel, known in the literature, was also synthesized, and 9.02, 16.57, and 28.13 purification folds were obtained for the PPO enzymes of potato, mushroom, and eggplant by the reference gel. The PPO enzymes of potato, mushroom, and eggplant were purified 41.17, 64.47, and 56.78-fold from the new 4-amino-2-methylbenzoic acid gel. Following their isolation from the new affinity column, the assessment of PPO enzyme purity involved the utilization of SDS-PAGE. According to the results from SDS-PAGE and native PAGE, the molecular weight of each enzyme was 50 kDa. Then, the inhibition effects of naringin, morin hydrate, esculin hydrate, homovanillic acid, vanillic acid, phloridzin dihydrate, and p-coumaric acid phenolic compounds on purified potato, mushroom, and eggplant PPO enzyme were investigated. Among the tested phenolic compounds, morin hydrate was determined to be the most potent inhibitor on the potato (Ki: 0.07 ± 0.03 µM), mushroom (Ki: 0.7 ± 0.3 µM), and eggplant (Ki: 4.8 ± 1.2 µM) PPO enzymes. The studies found that the weakest inhibitor was homovanillic acid for the potato (Ki: 1112 ± 324 µM), mushroom (Ki: 567 ± 81 µM), and eggplant (Ki: 2016.7 ± 805.6 µM) PPO enzymes. Kinetic assays indicated that morin hydrate was a remarkable inhibitor on PPO.


Subject(s)
Catechol Oxidase , Chromatography, Affinity , Catechol Oxidase/chemistry , Catechol Oxidase/isolation & purification , Catechol Oxidase/antagonists & inhibitors , Agaricales/enzymology , Solanum tuberosum/enzymology , Solanum tuberosum/chemistry , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Solanum melongena/enzymology , Solanum melongena/chemistry , Coumaric Acids/chemistry , Propionates/chemistry , meta-Aminobenzoates/chemistry , 4-Aminobenzoic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL