Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.826
1.
Vet Ital ; 60(1)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38722261

Obtaining the complete or near-complete genome sequence of pathogens is becoming increasingly crucial for epidemiology, virology, clinical science and practice. This study aimed to detect viruses and conduct genetic characterization of genomes using metagenomics in order to identify the viral agents responsible for a calf's diarrhoea. The findings showed that bovine coronavirus (BCoV) and bovine rotavirus (BRV) are the primary viral agents responsible for the calf's diarrhoea. The current study successfully obtained the first-ever near-complete genome sequence of a bovine coronavirus (BCoV) from Türkiye. The G+C content was 36.31% and the genetic analysis revealed that the Turkish BCoV strain is closely related to respiratory BCoV strains from France and Ireland, with high nucleotide sequence and amino acid identity and similarity. In the present study, analysis of the S protein of the Turkish BCoV strain revealed the presence of 13 amino acid insertions, one of which was found to be shared with the French respiratory BCoV. The study also identified a BRV strain through metagenomic analysis and detected multiple mutations within the structural and non-structural proteins of the BRV strain, suggesting that the BRV Kirikkale strain may serve as an ancestor for reassortants with interspecies transmission, especially involving rotaviruses that infect rabbits and giraffes.


Coronavirus, Bovine , Genome, Viral , Metagenomics , Rotavirus , Animals , Metagenomics/methods , Coronavirus, Bovine/genetics , Coronavirus, Bovine/isolation & purification , Cattle , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Turkey , Cattle Diseases/virology , Rotavirus Infections/veterinary , Rotavirus Infections/virology
3.
Sci Rep ; 14(1): 10289, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704437

Myocarditis is considered a fatal form of foot-and-mouth disease (FMD) in suckling calves. In the present study, a total of 17 calves under 4 months of age and suspected clinically for FMD were examined for clinical lesions, respiratory rate, heart rate, and heart rhythm. Lesion samples, saliva, nasal swabs, and whole blood were collected from suspected calves and subjected to Sandwich ELISA and reverse transcription multiplex polymerase chain reaction (RT-mPCR) for detection and serotyping of FMD virus (FMDV). The samples were found to be positive for FMDV serotype "O". Myocarditis was suspected in 6 calves based on tachypnoea, tachycardia, and gallop rhythm. Serum aspartate aminotransferase (AST), creatinine kinase myocardial band (CK-MB) and lactate dehydrogenase (LDH), and cardiac troponins (cTnI) were measured. Mean serum AST, cTn-I and LDH were significantly higher (P < 0.001) in < 2 months old FMD-infected calves showing clinical signs suggestive of myocarditis (264.833 ± 4.16; 11.650 ± 0.34 and 1213.33 ± 29.06) than those without myocarditis (< 2 months old: 110.00 ± 0.00, 0.06 ± 0.00, 1050.00 ± 0.00; > 2 months < 4 months: 83.00 ± 3.00, 0.05 ± 0.02, 1159.00 ± 27.63) and healthy control groups (< 2 months old: 67.50 ± 3.10, 0.047 ± 0.01, 1120.00 ± 31.62; > 2 months < 4 months: 72.83 ± 2.09, 0.47 ± 0.00, 1160.00 ± 18.44). However, mean serum CK-MB did not differ significantly amongst the groups. Four calves under 2 months old died and a necropsy revealed the presence of a pathognomic gross lesion of the myocardial form of FMD known as "tigroid heart". Histopathology confirmed myocarditis. This study also reports the relevance of clinical and histopathological findings and biochemical markers in diagnosing FMD-related myocarditis in suckling calves.


Foot-and-Mouth Disease , Myocarditis , Animals , Cattle , Myocarditis/veterinary , Myocarditis/virology , Myocarditis/pathology , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease/pathology , Cattle Diseases/virology , Cattle Diseases/blood , Cattle Diseases/pathology , Foot-and-Mouth Disease Virus/pathogenicity , Foot-and-Mouth Disease Virus/isolation & purification , Animals, Suckling , Age Factors , Aspartate Aminotransferases/blood , Male , L-Lactate Dehydrogenase/blood
6.
J Vet Diagn Invest ; 36(3): 428-437, 2024 May.
Article En | MEDLINE | ID: mdl-38711295

Bovine abortion is a critical problem in the cattle industry. Identifying causes of abortion is key to establishing appropriate herd management and prevention strategies. We used pathology examinations, detection of etiologic agents, and serology to determine the cause of bovine abortions in Korea. We analyzed 360 abortion and stillbirth cases submitted to the Animal and Plant Quarantine Agency from December 2014 to January 2020. The putative cause of abortion was identified in 140 of 360 (38.9%) cases; 124 of the 140 (88.6%) cases were attributed to infections. The most common etiologic agents detected were bovine viral diarrhea virus (65 of 360; 18.1%), Coxiella burnetii (19 of 360; 5.3%), Leptospira spp. (13 of 360; 3.6%), Listeria monocytogenes (9 of 360; 2.5%), and Neospora caninum (8 of 360; 2.2%). Minor abortifacient pathogens included Brucella abortus (2 of 360; 0.6%), bovine alphaherpesvirus 1 (2 of 360; 0.6%), Akabane virus (2 of 360, 0.6%), and bovine ephemeral fever virus (1 of 360; 0.3%). Non-infectious conditions included congenital anomalies (7 of 360; 1.9%), goiter (7 of 360; 1.9%), and vitamin A deficiency (2 of 360; 0.6%). Our diagnostic rate in cases with placenta submitted (42 of 86; 48.8%) was significantly higher than in cases without placenta (98 of 274; 35.8%), which highlights the value of submitting placentas. Our results confirm the status of the large variety of causative agents associated with abortions in cattle in Korea.


Abortion, Veterinary , Cattle Diseases , Stillbirth , Animals , Cattle , Abortion, Veterinary/virology , Abortion, Veterinary/microbiology , Abortion, Veterinary/epidemiology , Republic of Korea/epidemiology , Female , Stillbirth/veterinary , Stillbirth/epidemiology , Cattle Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/microbiology , Pregnancy
9.
Emerg Microbes Infect ; 13(1): 2343907, 2024 Dec.
Article En | MEDLINE | ID: mdl-38738553

Influenza D virus (IDV) plays an important role in the bovine respiratory disease (BRD) complex. Its potential for the zoonotic transmission is of particular concern. In China, IDV has previously been identified in agricultural animals by molecular surveys with no live virus isolates reported. In this study, live IDVs were successfully isolated from cattle in China, which prompted us to further investigate the national prevalence, antigenic property, and infection biology of the virus. IDV RNA was detected in 11.1% (51/460) of cattle throughout the country in 2022-2023. Moreover, we conducted the first IDV serosurveillance in China, revealing a high seroprevalence (91.4%, 393/430) of IDV in cattle during the 2022-2023 winter season. Notably, all the 16 provinces from which cattle originated possessed seropositive animals, and 3 of them displayed the 100% IDV-seropositivity rate. In contrast, a very low seroprevalence of IDV was observed in pigs (3%, 3/100) and goats (1%, 1/100) during the same period of investigation. Furthermore, besides D/Yama2019 lineage-like IDVs, we discovered the D/660 lineage-like IDV in Chinese cattle, which has not been detected to date in Asia. Finally, the Chinese IDVs replicated robustly in diverse cell lines but less efficiently in the swine cell line. Considering the nationwide distribution, high seroprevalence, and appreciably genetic diversity, further studies are required to fully evaluate the risk of Chinese IDVs for both animal and human health in China, which can be evidently facilitated by IDV isolates reported in this study.


Cattle Diseases , Orthomyxoviridae Infections , Phylogeny , Thogotovirus , Animals , China/epidemiology , Cattle , Thogotovirus/genetics , Thogotovirus/classification , Thogotovirus/isolation & purification , Thogotovirus/immunology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/transmission , Seroepidemiologic Studies , Swine , Cattle Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/transmission , Goats , Swine Diseases/virology , Swine Diseases/epidemiology , Antibodies, Viral/blood , Humans , Deltainfluenzavirus
11.
BMC Vet Res ; 20(1): 225, 2024 May 24.
Article En | MEDLINE | ID: mdl-38790010

BACKGROUND: Peste des Petits Ruminants (PPR) is a world organization for animal health (WOAH) notifiable and economically important transboundary, highly communicable viral disease of small ruminants. PPR virus (PPRV) belongs to the genus Morbillivirus of the family Paramyxoviridae. AIM: The present cross-sectional epidemiological investigation was accomplished to estimate the apparent prevalence and identify the risk factors linked with peste des petits ruminants (PPR) in the previously neglected northern border regions of Pakistan. METHOD: A total of 1300 samples (serum = 328; swabs = 972) from 150 flocks/herds were compiled from sheep (n = 324), goats (n = 328), cattle (n = 324), and buffaloes (n = 324) during 2020-2021 and tested using ELISA for detection of viral antibody in sera or antigen in swabs. RESULTS: An overall apparent prevalence of 38.7% (504 samples) and an estimated true prevalence (calculated by the Rogan and Gladen estimator) of 41.0% (95% CI, 38.0-44 were recorded in the target regions. The highest apparent prevalence of 53.4% (85 samples) and the true prevalence of 57.0%, 95% Confidence Interval (CI) were documented in the Gilgit district and the lowest apparent prevalence of 53 (25.1%) and the true prevalence of 26.0%, 95% Confidence Interval (CI), 19.0-33.0) was reported in the Swat district. A questionnaire was designed to collect data about associated risk factors that were put into a univariable logistic regression to decrease the non-essential assumed risk dynamics with a P-value of 0.25. ArcGIS, 10.8.1 was used to design hotspot maps and MedCalc's online statistical software was used to calculate Odds Ratio (OR). Some of the risk factors significantly different (P < 0.05) in the multivariable logistic regression were flock/herd size, farming methods, nomadic animal movement, and outbreaks of PPR. The odds of large-sized flocks/herds were 1.7 (OR = 1.79; 95% Confidence Interval (CI) = 0.034-91.80%) times more likely to be positive than small-sized. The odds of transhumance and nomadic systems were 1.1 (OR = 1.15; 95% Confidence Interval (CI) = 0.022-58.64%) and 1.0 (OR = 1.02; 95% Confidence Interval (CI) = 0.020-51.97%) times more associated to be positive than sedentary and mixed farming systems, respectively. The odds of nomadic animal movement in the area was 0.7 (OR = 0.57; 95% Confidence Interval (CI) = 0.014-38.06%) times more associated to be positive than in areas where no nomadic movement was observed. In addition, the odds of an outbreak of PPR in the area were 1.0 (OR = 1.00; 95% Confidence Interval (CI) = 0.018-46.73%) times more associated to be positive than in areas where no outbreak of PPR was observed. CONCLUSIONS: It was concluded that many northern regions considered endemic for PPR, large and small ruminants are kept and reared together making numerous chances for virus transmission dynamic, so a big threats of disease spread exist in the region. The results of the present study would contribute to the global goal of controlling and eradicating PPR by 2030.


Goat Diseases , Goats , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Sheep Diseases , Animals , Pakistan/epidemiology , Peste-des-Petits-Ruminants/epidemiology , Peste-des-Petits-Ruminants/virology , Risk Factors , Prevalence , Sheep , Cross-Sectional Studies , Goat Diseases/epidemiology , Goat Diseases/virology , Sheep Diseases/epidemiology , Sheep Diseases/virology , Peste-des-petits-ruminants virus/isolation & purification , Cattle , Buffaloes/virology , Cattle Diseases/epidemiology , Cattle Diseases/virology , Antibodies, Viral/blood
12.
Viruses ; 16(5)2024 05 08.
Article En | MEDLINE | ID: mdl-38793621

Bovine gammaherpesvirus 4 (BoGHV4) is a member of the Gammaherspivirinae subfamily, Rhadinovirus genus. Its natural host is the bovine, and it is prevalent among the global cattle population. Although the complete genome of BoGHV4 has been successfully sequenced, the functions of most of its genes remain unknown. Currently, only six strains of BoGHV4, all belonging to Genotype 1, have been sequenced. This is the first report of the nearly complete genome of Argentinean BoGHV4 strains isolated from clinical cases of abortion, representing the first BoGHV4 Genotype 2 and 3 genomes described in the literature. Both Argentinean isolates presented the highest nt p-distance values, indicating a greater level of divergence. Overall, the considerable diversity observed in the complete genomes and open reading frames underscores the distinctiveness of both Argentinean isolates compared to the existing BoGHV4 genomes. These findings support previous studies that categorized the Argentinean BoGHV4 strains 07-435 and 10-154 as Genotypes 3 and 2, respectively. The inclusion of these sequences represents a significant expansion to the currently limited pool of BoGHV4 genomes while providing an important basis to increase the knowledge of local isolates.


Abortion, Veterinary , Cattle Diseases , Genome, Viral , Genotype , Herpesviridae Infections , Herpesvirus 4, Bovine , Phylogeny , Whole Genome Sequencing , Animals , Cattle , Herpesvirus 4, Bovine/genetics , Herpesvirus 4, Bovine/isolation & purification , Abortion, Veterinary/virology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Cattle Diseases/virology , Female , Argentina , Open Reading Frames , Pregnancy , Genetic Variation , DNA, Viral/genetics
13.
BMC Vet Res ; 20(1): 228, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796429

BACKGROUND: Tick-borne encephalitis (TBE) is a severe human neuroinfection caused by TBE virus (TBEV). TBEV is transmitted by tick bites and by the consumption of unpasteurized dairy products from infected asymptomatic ruminants. In France, several food-borne transmission events have been reported since 2020, raising the question of the level of exposure of domestic ungulates to TBEV. In this study, our objectives were (i) to estimate TBEV seroprevalence and quantify antibodies titres in cattle in the historical endemic area of TBEV in France using the micro virus neutralisation test (MNT) and (ii) to compare the performance of two veterinary cELISA kits with MNT for detecting anti-TBEV antibodies in cattle in various epidemiological contexts. A total of 344 cattle sera from four grid cells of 100 km² in Alsace-Lorraine (endemic region) and 84 from western France, assumed to be TBEV-free, were investigated. RESULTS: In Alsace-Lorraine, cattle were exposed to the virus with an overall estimated seroprevalence of 57.6% (95% CI: 52.1-62.8%, n = 344), varying locally from 29.9% (95% CI: 21.0-40.0%) to 92.1% (95% CI: 84.5-96.8%). Seroprevalence did not increase with age, with one- to three-year-old cattle being as highly exposed as older ones, suggesting a short-life duration of antibodies. The proportion of sera with MNT titres lower than 1:40 per grid cell decreased with increased seroprevalence. Both cELISA kits showed high specificity (> 90%) and low sensitivity (less than 78.1%) compared with MNT. Sensitivity was lower for sera with neutralising antibodies titres below 1:40, suggesting that sensitivity of these tests varied with local virus circulation intensity. CONCLUSIONS: Our results highlight that cattle were highly exposed to TBEV. Screening strategy and serological tests should be carefully chosen according to the purpose of the serological study and with regard to the limitations of each method.


Antibodies, Viral , Cattle Diseases , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Animals , Cattle , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/veterinary , Encephalitis, Tick-Borne/virology , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis Viruses, Tick-Borne/isolation & purification , France/epidemiology , Seroepidemiologic Studies , Cattle Diseases/epidemiology , Cattle Diseases/virology , Antibodies, Viral/blood , Female , Male , Neutralization Tests/veterinary , Endemic Diseases/veterinary
14.
Arch Virol ; 169(6): 125, 2024 May 16.
Article En | MEDLINE | ID: mdl-38753082

Bovine rhinitis B virus (BRBV) (genus Aphthovirus, family Picornaviridae) is a significant etiological agent of the bovine respiratory disease complex. Despite global reports on BRBV, genomic data for Japanese strains are not available. In this study, we aimed to obtain genomic information on BRBV in Japan and analyze its genetic characteristics. In nasal swabs from 66 cattle, BRBV was detected in 6 out of 10 symptomatic and 4 out of 56 asymptomatic cattle. Using metagenomic sequencing and Sanger sequencing, the nearly complete genome sequences of two Japanese BRBV strains, IBA/2211/2 and LAV/238002, from symptomatic and asymptomatic cattle, respectively, were determined. These viruses shared significant genetic similarity with known BRBV strains and exhibited unique mutations and recombination events, indicating dynamic evolution, influenced by regional environmental and biological factors. Notably, the leader gene was only approximately 80% and 90% identical in its nucleotide and amino acid sequence, respectively, to all of the BRBV strains with sequences in the GenBank database, indicating significant genetic divergence in the Japanese BRBV leader gene. These findings provide insights into the genetic makeup of Japanese BRBV strains, enriching our understanding of their genetic diversity and evolutionary mechanisms.


Aphthovirus , Cattle Diseases , Genome, Viral , Phylogeny , Cattle , Japan/epidemiology , Animals , Genome, Viral/genetics , Cattle Diseases/virology , Aphthovirus/genetics , Aphthovirus/isolation & purification , Aphthovirus/classification , Genetic Variation , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Metagenomics
16.
Trop Anim Health Prod ; 56(5): 167, 2024 May 18.
Article En | MEDLINE | ID: mdl-38761254

Ticks can transmit viruses, bacteria, and parasites to humans, livestock, and pet animals causing tick-borne diseases (TBDs) mechanically or biologically in the world. Lumpy skin disease virus, Anaplasma marginale, and Theileria annulata inflict severe infections in cattle, resulting in significant economic losses worldwide. The study investigated the potential transmissions of LSDV, A. marginale, and T. annulata through male Hyalomma anatolicum ticks in cattle calves. Two 6-month-old Holstein crossbred calves designated as A and B were used. On day 1, 15 uninfected female ticks (IIa) and infected batch of 40 male ticks (I) were attached on calf A for 11 days. Filial transmission of the infections was observed in female ticks (IIb) collected from calf A, where 8 female ticks had been co-fed with infected male ticks. The blood sample of calf B was found positive through PCR for the infections. The larvae and egg pools obtained from the infected ticks were also tested positive in PCR. The study confirmed the presence of these mixed pathogens and potential intra-stadial and transovarial transmissions of A. marginale, T. annulata, and LSDV in male and female ticks of H. anatolicum and experimental calves to establish the feasibility of infections through an in vivo approach.


Anaplasma marginale , Anaplasmosis , Ixodidae , Lumpy skin disease virus , Theileria annulata , Theileriasis , Animals , Cattle , Male , Anaplasma marginale/isolation & purification , Ixodidae/virology , Ixodidae/microbiology , Theileria annulata/isolation & purification , Lumpy skin disease virus/physiology , Lumpy skin disease virus/isolation & purification , Female , Anaplasmosis/transmission , Theileriasis/transmission , Lumpy Skin Disease/transmission , Lumpy Skin Disease/virology , Cattle Diseases/virology , Cattle Diseases/parasitology , Cattle Diseases/microbiology , Cattle Diseases/transmission , Larva/virology
17.
BMC Vet Res ; 20(1): 209, 2024 May 18.
Article En | MEDLINE | ID: mdl-38760785

BACKGROUND: Bovine coronavirus (BCoV) is implicated in severe diarrhea in calves and contributes to the bovine respiratory disease complex; it shares a close relationship with human coronavirus. Similar to other coronaviruses, remarkable variability was found in the genome and biology of the BCoV. In 2022, samples of feces were collected from a cattle farm. A virus was isolated from 7-day-old newborn calves. In this study, we present the genetic characteristics of a new BCoV isolate. The complete genomic, spike protein, and nucleocapsid protein gene sequences of the BCoV strain, along with those of other coronaviruses, were obtained from the GenBank database. Genetic analysis was conducted using MEGA7.0 and the Neighbor-Joining (NJ) method. The reference strains' related genes were retrieved from GenBank for comparison and analysis using DNAMAN. RESULTS: The phylogenetic tree and whole genome consistency analysis showed that it belonged to the GIIb subgroup, which is epidemic in Asia and America, and was quite similar to the Chinese strains in the same cluster. Significantly, the S gene was highly consistent with QH1 (MH810151.1) isolated from yak. This suggests that the strain may have originated from interspecies transmission involving mutations of wild strains. The N gene was conserved and showed high sequence identity with the epidemic strains in China and the USA. CONCLUSIONS: Genetic characterization suggests that the isolated strain could be a new mutant from a wild-type lineage, which is in the same cluster as most Chinese epidemic strains but on a new branch.


Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Genome, Viral , Phylogeny , Animals , Cattle , Coronavirus, Bovine/genetics , Coronavirus, Bovine/isolation & purification , China/epidemiology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Feces/virology , Spike Glycoprotein, Coronavirus/genetics , Animals, Newborn
19.
Emerg Infect Dis ; 30(5): 1036-1039, 2024 May.
Article En | MEDLINE | ID: mdl-38666687

We report the detection of Crimean-Congo hemorrhagic fever virus (CCHFV) in Corsica, France. We identified CCHFV African genotype I in ticks collected from cattle at 2 different sites in southeastern and central-western Corsica, indicating an established CCHFV circulation. Healthcare professionals and at-risk groups should be alerted to CCHFV circulation in Corsica.


Cattle Diseases , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Phylogeny , Ticks , Animals , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Hemorrhagic Fever Virus, Crimean-Congo/classification , Cattle , France/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/virology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Ticks/virology , Genotype , Humans
20.
Emerg Infect Dis ; 30(5): 1039-1042, 2024 May.
Article En | MEDLINE | ID: mdl-38666690

In Latin America, rabies virus has persisted in a cycle between Desmodus rotundus vampire bats and cattle, potentially enhanced by deforestation. We modeled bovine rabies virus outbreaks in Costa Rica relative to land-use indicators and found spatial-temporal relationships among rabies virus outbreaks with deforestation as a predictor.


Cattle Diseases , Disease Outbreaks , Rabies virus , Rabies , Animals , Costa Rica/epidemiology , Rabies/epidemiology , Rabies/veterinary , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/virology , Conservation of Natural Resources , Chiroptera/virology , History, 21st Century
...