Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.623
Filter
1.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-39025524

ABSTRACT

Epithelia consist of proliferating and differentiating cells that often display patterned arrangements. However, the mechanism regulating these spatial arrangements remains unclear. Here, we show that cell-cell adhesion dictates multicellular patterning in stratified epithelia. When cultured keratinocytes, a type of epithelial cell in the skin, are subjected to starvation, they spontaneously develop a pattern characterized by areas of high and low cell density. Pharmacological and knockout experiments show that adherens junctions are essential for patterning, whereas the mathematical model that only considers local cell-cell adhesion as a source of attractive interactions can form regions with high/low cell density. This phenomenon, called cell-cell adhesion-induced patterning (CAIP), influences cell differentiation and proliferation through Yes-associated protein modulation. Starvation, which induces CAIP, enhances the stratification of the epithelia. These findings highlight the intrinsic self-organizing property of epithelial cells.


Subject(s)
Adherens Junctions , Cell Adhesion , Cell Differentiation , Cell Proliferation , Epithelial Cells , Keratinocytes , Cell Adhesion/physiology , Keratinocytes/metabolism , Keratinocytes/cytology , Cell Differentiation/genetics , Humans , Epithelial Cells/metabolism , Epithelial Cells/cytology , Adherens Junctions/metabolism , Animals , Epithelium/metabolism , Mice , Cells, Cultured
2.
Am J Physiol Cell Physiol ; 327(3): C505-C515, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38981610

ABSTRACT

Cell adhesion proteins localize to epithelial and endothelial cell membranes to form junctional complexes between neighboring cells or between cells and the underlying basement membrane. The structural and functional integrities of these junctions are critical to establish cell polarity and maintain tissue barrier function, while also facilitating leukocyte migration and adhesion to sites of inflammation. In addition to their adhesive properties, however, junctional proteins can also serve important noncanonical functions in inflammatory signaling and transcriptional regulation. Intriguingly, recent work has unveiled novel roles for cell adhesion proteins as both signaling initiators and downstream targets during inflammation. In this review, we discuss both the traditional functions of junction proteins in cell adhesion and tissue barrier function as well as their noncanonical signaling roles that have been implicated in facilitating diverse inflammatory pathologies.


Subject(s)
Cell Adhesion , Inflammation , Signal Transduction , Humans , Inflammation/metabolism , Inflammation/pathology , Animals , Cell Adhesion/physiology , Cell Adhesion Molecules/metabolism
3.
Curr Biol ; 34(15): 3367-3379.e5, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39013464

ABSTRACT

Adhesion between epithelial cells enables the remarkable mechanical behavior of epithelial tissues during morphogenesis. However, it remains unclear how cell-cell adhesion influences mechanics in both static and dynamically flowing confluent epithelial tissues. Here, we systematically modulate E-cadherin-mediated adhesion in the Drosophila embryo and study the effects on the mechanical behavior of the germband epithelium before and during dramatic tissue remodeling and flow associated with body axis elongation. Before axis elongation, we find that increasing E-cadherin levels produces tissue comprising more elongated cells and predicted to be more fluid-like, providing reduced resistance to tissue flow. During axis elongation, we find that the dominant effect of E-cadherin is tuning the speed at which cells proceed through rearrangement events. Before and during axis elongation, E-cadherin levels influence patterns of actomyosin-dependent forces, supporting the notion that E-cadherin tunes tissue mechanics in part through effects on actomyosin. Notably, the effects of ∼4-fold changes in E-cadherin levels on overall tissue structure and flow are relatively weak, suggesting that the system is tolerant to changes in absolute E-cadherin levels over this range where an intact tissue is formed. Taken together, these findings reveal dual-and sometimes opposing-roles for E-cadherin-mediated adhesion in controlling tissue structure and dynamics in vivo, which result in unexpected relationships between adhesion and flow in confluent tissues.


Subject(s)
Actomyosin , Cadherins , Drosophila melanogaster , Morphogenesis , Animals , Cadherins/metabolism , Actomyosin/metabolism , Drosophila melanogaster/physiology , Drosophila melanogaster/metabolism , Cell Adhesion/physiology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Biomechanical Phenomena , Embryo, Nonmammalian/physiology , Embryo, Nonmammalian/metabolism
4.
PLoS Pathog ; 20(7): e1012392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39052670

ABSTRACT

Cell migration modes can vary, depending on a number of environmental and intracellular factors. The high motility of the pathogenic amoeba Entamoeba histolytica is a decisive factor in its ability to cross the human colonic barrier. We used quantitative live imaging techniques to study the migration of this parasite on fibronectin, a key tissue component. Entamoeba histolytica amoebae on fibronectin contain abundant podosome-like structures. By using a laminar flow chamber, we determined that the adhesion forces generated on fibronectin were twice those on non-coated glass. When migrating on fibronectin, elongated amoeboid cells converted into fan-shaped cells characterized by the presence of a dorsal column of F-actin and a broad cytoplasmic extension at the front. The fan shape depended on the Arp2/3 complex, and the amoebae moved laterally and more slowly. Intracellular measurements of physical variables related to fluid dynamics revealed that cytoplasmic pressure gradients were weaker within fan-shaped cells; hence, actomyosin motors might be less involved in driving the cell body forward. We also found that the Rho-associated coiled-coil containing protein kinase regulated podosome dynamics. We conclude that E. histolytica spontaneously changes its migration mode as a function of the substrate composition. This adaptive ability might favour E. histolytica's invasion of human colonic tissue. By combining microfluidic experiments, mechanical modelling, and image analysis, our work also introduces a computational pipeline for the study of cell migration.


Subject(s)
Cell Movement , Entamoeba histolytica , Fibronectins , Entamoeba histolytica/metabolism , Entamoeba histolytica/physiology , Fibronectins/metabolism , Humans , Cell Movement/physiology , Entamoebiasis/parasitology , Entamoebiasis/metabolism , Actins/metabolism , Podosomes/metabolism , Cell Adhesion/physiology , Protozoan Proteins/metabolism
5.
Mol Biol Cell ; 35(9): ar120, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39046775

ABSTRACT

Endothelial cell behavior is regulated by subendothelial extracellular matrix (ECM). The ECM protein fibronectin (FN) is rare in healthy blood vessels but accumulates in disease accompanied by endothelial dysfunctions. Here, we report that excess assembly of FN disrupts key endothelial functions. We mimicked increased FN expression as in diseased stroma by providing exogenous FN basally in a Transwell insert and found dose-dependent upregulation of subendothelial FN matrix assembly. Taking advantage of discontinuous matrix assembly by endothelial cells, we show correlations between regional increases in FN matrix and disruptions in endothelial cell morphology, VE-cadherin junctions, and the cell cycle, all of which were not changed in FN-deficient regions of the monolayer. These changes affected endothelial barrier function with increased monolayer permeability exposing basal regions of high FN matrix and permitting FN-dependent adhesion of MDA-MB-231 tumor cells from the apical side of the monolayer. FN matrix accumulation was quick and increases in FN matrix preceded all other changes in the endothelium. Therefore, subendothelial accumulation of FN matrix is a cause, not an effect, of endothelial monolayer disorganization and leakiness. Regulating FN accumulation in the subendothelial space could be an important target for controlling progression of fibrosis and related diseases.


Subject(s)
Cadherins , Cell Adhesion , Endothelial Cells , Extracellular Matrix , Fibronectins , Fibronectins/metabolism , Humans , Extracellular Matrix/metabolism , Endothelial Cells/metabolism , Cadherins/metabolism , Cell Adhesion/physiology , Human Umbilical Vein Endothelial Cells/metabolism , Cell Line, Tumor , Antigens, CD/metabolism , Cell Cycle
6.
Proc Natl Acad Sci U S A ; 121(31): e2320372121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39042691

ABSTRACT

Cells exist in different phenotypes and can transition between them. A phenotype may be characterized by many different aspects. Here, we focus on the example of whether the cell is adhered or suspended and choose particular parameters related to the structure and mechanics of the actin cortex. The cortex is essential to cell mechanics, morphology, and function, such as for adhesion, migration, and division of animal cells. To predict and control cellular functions and prevent malfunctioning, it is necessary to understand the actin cortex. The structure of the cortex governs cell mechanics; however, the relationship between the architecture and mechanics of the cortex is not yet well enough understood to be able to predict one from the other. Therefore, we quantitatively measured structural and mechanical cortex parameters, including cortical thickness, cortex mesh size, actin bundling, and cortex stiffness. These measurements required developing a combination of measurement techniques in scanning electron, expansion, confocal, and atomic force microscopy. We found that the structure and mechanics of the cortex of cells in interphase are different depending on whether the cell is suspended or adhered. We deduced general correlations between structural and mechanical properties and show how these findings can be explained within the framework of semiflexible polymer network theory. We tested the model predictions by perturbing the properties of the actin within the cortex using compounds. Our work provides an important step toward predictions of cell mechanics from cortical structures and suggests how cortex remodeling between different phenotypes impacts the mechanical properties of cells.


Subject(s)
Actins , Cell Adhesion , Cell Adhesion/physiology , Actins/metabolism , Animals , Microscopy, Atomic Force/methods , Biomechanical Phenomena , Models, Biological
7.
Sensors (Basel) ; 24(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38894171

ABSTRACT

Adherent cells perceive mechanical feedback from the underlying matrix and convert it into biochemical signals through a process known as mechanotransduction. The response to changes in the microenvironment relies on the cell's mechanical properties, including elasticity, which was recently identified as a biomarker for various diseases. Here, we propose the design, development, and characterization of a new system for the measurement of adherent cells' strain drop, a parameter correlated with cells' elasticity. To consider the interplay between adherent cells and the host extracellular matrix, cell stretching was combined with adhesion on substrates with different stiffnesses. The technique is based on the linear stretching of silicone chambers, high-speed image acquisition, and feedback for image centering. The system was characterized in terms of the strain homogeneity, impact of collagen coating, centering capability, and sensitivity. Subsequently, it was employed to measure the strain drop of two osteosarcoma cell lines, low-aggressive osteoblast-like SaOS-2 and high-aggressive 143B, cultured on two different substrates to recall the stiffness of the bone and lung extracellular matrices. Results demonstrated good substrate homogeneity, a negligible effect of the collagen coating, and an accurate image centering. Finally, the experimental results showed an average strain drop that was lower in the 143B cells in comparison with the SaOS-2 cells in all the tested conditions.


Subject(s)
Osteosarcoma , Osteosarcoma/pathology , Humans , Cell Line, Tumor , Extracellular Matrix/metabolism , Mechanotransduction, Cellular/physiology , Cell Adhesion/physiology , Elasticity , Stress, Mechanical , Bone Neoplasms/pathology , Collagen/chemistry , Collagen/metabolism , Osteoblasts/cytology , Osteoblasts/physiology
8.
PLoS Comput Biol ; 20(6): e1012112, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38861575

ABSTRACT

Cell sedimentation in 3D hydrogel cultures refers to the vertical migration of cells towards the bottom of the space. Understanding this poorly examined phenomenon may allow us to design better protocols to prevent it, as well as provide insights into the mechanobiology of cancer development. We conducted a multiscale experimental and mathematical examination of 3D cancer growth in triple negative breast cancer cells. Migration was examined in the presence and absence of Paclitaxel, in high and low adhesion environments and in the presence of fibroblasts. The observed behaviour was modeled by hypothesizing active migration due to self-generated chemotactic gradients. Our results did not reject this hypothesis, whereby migration was likely to be regulated by the MAPK and TGF-ß pathways. The mathematical model enabled us to describe the experimental data in absence (normalized error<40%) and presence of Paclitaxel (normalized error<10%), suggesting inhibition of random motion and advection in the latter case. Inhibition of sedimentation in low adhesion and co-culture experiments further supported the conclusion that cells actively migrated downwards due to the presence of signals produced by cells already attached to the adhesive glass surface.


Subject(s)
Cell Adhesion , Cell Movement , Paclitaxel , Humans , Cell Adhesion/physiology , Cell Movement/physiology , Paclitaxel/pharmacology , Cell Line, Tumor , Models, Biological , Cell Culture Techniques, Three Dimensional/methods , Triple Negative Breast Neoplasms/pathology , Computational Biology , Fibroblasts/physiology , Chemotaxis/physiology
9.
J Biomed Opt ; 29(Suppl 2): S22708, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872791

ABSTRACT

Significance: The ability to observe and monitor cell density and morphology has been imperative for assessing the health of a cell culture and for producing high quality, high yield cell cultures for decades. Microcarrier-based cultures, used for large-scale cellular expansion processes, are not compatible with traditional visualization-based methods, such as widefield microscopy, due to their thickness and material composition. Aim: Here, we assess the optical imaging compatibilities of commercial polystyrene microcarriers versus custom-fabricated gelatin methacryloyl (gelMA) microcarriers for non-destructive and non-invasive visualization of the entire microcarrier surface, direct cell enumeration, and sub-cellular visualization of mesenchymal stem/stromal cells. Approach: Mie scattering and wavefront error simulations of the polystyrene and gelMA microcarriers were performed to assess the potential for elastic scattering-based imaging of adherent cells. A Zeiss Z.1 light-sheet microscope was adapted to perform light-sheet tomography using label-free elastic scattering contrast from planar side illumination to achieve optical sectioning and permit non-invasive and non-destructive, in toto, three-dimensional, high-resolution visualization of cells cultured on microcarriers. Results: The polystyrene microcarrier prevents visualization of cells on the distal half of the microcarrier using either fluorescence or elastic scattering contrast, whereas the gelMA microcarrier allows for high fidelity visualization of cell morphology and quantification of cell density using light-sheet fluorescence microscopy and tomography. Conclusions: The combination of optical-quality gelMA microcarriers and label-free light-sheet tomography will facilitate enhanced control of bioreactor-microcarrier cell culture processes.


Subject(s)
Cell Adhesion , Hydrogels , Mesenchymal Stem Cells , Polystyrenes , Polystyrenes/chemistry , Mesenchymal Stem Cells/cytology , Hydrogels/chemistry , Cell Adhesion/physiology , Optical Imaging/methods , Optical Imaging/instrumentation , Humans , Gelatin/chemistry , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , Cells, Cultured , Animals
10.
Cell Immunol ; 401-402: 104843, 2024.
Article in English | MEDLINE | ID: mdl-38905771

ABSTRACT

Monocyte migration is an important process in inflammation and atherogenesis. Identification of the key signalling pathways that regulate monocyte migration can provide prospective targets for prophylactic treatments in inflammatory diseases. Previous research showed that the focal adhesion kinase Pyk2, Src kinase and MAP kinases play an important role in MCP-1-induced monocyte migration. In this study, we demonstrate that MCP-1 induces iPLA2 activity, which is regulated by PKCß and affects downstream activation of Rac1 and Pyk2. Rac1 interacts directly with iPLA2 and Pyk2, and plays a crucial role in MCP-1-mediated monocyte migration by modulating downstream Pyk2 and p38 MAPK activation. Furthermore, Rac1 is necessary for cell spreading and F-actin polymerization during monocyte adhesion to fibronectin. Finally, we provide evidence that Rac1 controls the secretion of inflammatory mediator vimentin from MCP-1-stimulated monocytes. Altogether, this study demonstrates that the PKCß/iPLA2/Rac1/Pyk2/p38 MAPK signalling cascade is essential for MCP-1-induced monocyte adhesion and migration.


Subject(s)
Cell Adhesion , Cell Movement , Chemokine CCL2 , Focal Adhesion Kinase 2 , Monocytes , Signal Transduction , p38 Mitogen-Activated Protein Kinases , rac1 GTP-Binding Protein , Humans , Monocytes/metabolism , Monocytes/immunology , Chemokine CCL2/metabolism , Cell Adhesion/physiology , rac1 GTP-Binding Protein/metabolism , Focal Adhesion Kinase 2/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Protein Kinase C beta/metabolism , Actins/metabolism
11.
Mol Biol Cell ; 35(8): ar110, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38922850

ABSTRACT

Contractile myosin and cell adhesion work together to induce tissue shape changes, but how they are patterned to achieve diverse morphogenetic outcomes remains unclear. Epithelial folding occurs via apical constriction, mediated by apical contractile myosin engaged with adherens junctions, as in Drosophila ventral furrow formation. While it has been shown that a multicellular gradient of myosin contractility determines folding shape, the impact of multicellular patterning of adherens junction levels on tissue folding is unknown. We identified a novel Drosophila gene moat essential for differential apical constriction and folding behaviors across the ventral epithelium which contains both folding ventral furrow and nonfolding ectodermal anterior midgut (ectoAMG). We show that Moat functions to downregulate polarity-dependent adherens junctions through inhibiting cortical clustering of Bazooka/Par3 proteins. Such downregulation of polarity-dependent junctions is critical for establishing a myosin-dependent pattern of adherens junctions, which in turn mediates differential apical constriction in the ventral epithelium. In moat mutants, abnormally high levels of polarity-dependent junctions promote ectopic apical constriction in cells with low-level contractile myosin, resulting in expansion of infolding from ventral furrow to ectoAMG, and flattening of ventral furrow constriction gradient. Our results demonstrate that tissue-scale distribution of adhesion levels patterns apical constriction and establishes morphogenetic boundaries.


Subject(s)
Adherens Junctions , Cell Polarity , Drosophila Proteins , Drosophila melanogaster , Animals , Adherens Junctions/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Cell Polarity/physiology , Epithelium/metabolism , Myosins/metabolism , Epithelial Cells/metabolism , Cell Adhesion/physiology , Morphogenesis , Intracellular Signaling Peptides and Proteins
12.
J R Soc Interface ; 21(214): 20240022, 2024 May.
Article in English | MEDLINE | ID: mdl-38715321

ABSTRACT

Using a three-dimensional model of cell monolayers, we study the spatial organization of active stress chains as the monolayer transitions from a solid to a liquid state. The critical exponents that characterize this transition map the isotropic stress percolation onto the two-dimensional random percolation universality class, suggesting short-range stress correlations near this transition. This mapping is achieved via two distinct, independent pathways: (i) cell-cell adhesion and (ii) active traction forces. We unify our findings by linking the nature of this transition to high-stress fluctuations, distinctly linked to each pathway. The results elevate the importance of the transmission of mechanical information in dense active matter and provide a new context for understanding the non-equilibrium statistical physics of phase transition in active systems.


Subject(s)
Cell Adhesion , Models, Biological , Cell Adhesion/physiology , Stress, Mechanical , Phase Transition
13.
Invest Ophthalmol Vis Sci ; 65(5): 4, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691089

ABSTRACT

Purpose: To investigate the adhesion of Acanthamoeba to scleral contact lens (ScCL) surface according to lens shape. Methods: Two strains of A. polyphaga (CDC:V062 and ATCC 30461) and one clinical Acanthamoeba isolate, were inoculated onto five contact lens (CL): one first-generation silicone hydrogel (SHCL; lotrafilcon B; adhesion control) containing plasma surface treatment; two ScCL (fluorosilicone acrylate) one containing surface treatment composed of plasma and the other containing plasma with Hydra-PEG, and two CL designed with a flat shape having the same material and surface treatments of the ScCL. Trophozoites that adhered to the lens's surfaces were counted by inverted optical light microscopy. Possible alterations of the lens surface that could predispose amoeba adhesion and Acanthamoeba attached to these lens surfaces were evaluated by scanning electron microscopy (SEM). Results: All strains revealed greater adhesion to the ScCL when compared with the flat lenses (P < 0.001). The clinical isolate and the ATCC 30461 had a higher adhesion (P < 0.001) when compared with the CDC:V062. A rough texture was observed on the surface of the lenses that have been examined by SEM. Also, SEM revealed that the isolates had a rounded appearance on the surface of the ScCL in contrast with an elongated appearance on the surface of the silicone hydrogel. Conclusions: The findings revealed that the curved shape of the ScCL favors amoeba adhesion.


Subject(s)
Acanthamoeba , Microscopy, Electron, Scanning , Acanthamoeba/physiology , Acanthamoeba/ultrastructure , Sclera , Humans , Contact Lenses, Hydrophilic/parasitology , Cell Adhesion/physiology , Contact Lenses/parasitology , Trophozoites/ultrastructure , Trophozoites/physiology , Hydrogels , Animals
14.
Proc Natl Acad Sci U S A ; 121(22): e2318248121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38787878

ABSTRACT

For eukaryotic cells to heal wounds, respond to immune signals, or metastasize, they must migrate, often by adhering to extracellular matrix (ECM). Cells may also deposit ECM components, leaving behind a footprint that influences their crawling. Recent experiments showed that some epithelial cell lines on micropatterned adhesive stripes move persistently in regions they have previously crawled over, where footprints have been formed, but barely advance into unexplored regions, creating an oscillatory migration of increasing amplitude. Here, we explore through mathematical modeling how footprint deposition and cell responses to footprint combine to allow cells to develop oscillation and other complex migratory motions. We simulate cell crawling with a phase field model coupled to a biochemical model of cell polarity, assuming local contact with the deposited footprint activates Rac1, a protein that establishes the cell's front. Depending on footprint deposition rate and response to the footprint, cells on micropatterned lines can display many types of motility, including confined, oscillatory, and persistent motion. On two-dimensional (2D) substrates, we predict a transition between cells undergoing circular motion and cells developing an exploratory phenotype. Small quantitative changes in a cell's interaction with its footprint can completely alter exploration, allowing cells to tightly regulate their motion, leading to different motility phenotypes (confined vs. exploratory) in different cells when deposition or sensing is variable from cell to cell. Consistent with our computational predictions, we find in earlier experimental data evidence of cells undergoing both circular and exploratory motion.


Subject(s)
Cell Movement , Extracellular Matrix , Cell Movement/physiology , Extracellular Matrix/metabolism , Extracellular Matrix/physiology , rac1 GTP-Binding Protein/metabolism , Humans , Cell Polarity/physiology , Models, Biological , Animals , Cell Adhesion/physiology , Epithelial Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/physiology
15.
Phys Rev Lett ; 132(18): 188402, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759206

ABSTRACT

Cell adhesion receptors are transmembrane proteins that bind cells to their environment. These proteins typically cluster into disk-shaped or linear structures. Here, we show that such clustering patterns spontaneously emerge when the receptor senses the membrane deformation gradient, for example, by reaching a lower-energy conformation when the membrane is tilted relative to the underlying binding substrate. Increasing the strength of the membrane gradient-sensing mechanism first yields isolated disk-shaped clusters and then long linear structures. Our theory is coherent with experimental estimates of the parameters, suggesting that a tilt-induced clustering mechanism is relevant in the context of cell adhesion.


Subject(s)
Cell Membrane , Cell Membrane/metabolism , Models, Biological , Cell Adhesion/physiology , Phase Separation , Platelet Glycoprotein GPIb-IX Complex
16.
J Vis Exp ; (207)2024 May 03.
Article in English | MEDLINE | ID: mdl-38767378

ABSTRACT

Ultrashort self-assembling peptides (SAPs) can spontaneously form nanofibers that resemble the extracellular matrix. These fibers allow the formation of hydrogels that are biocompatible, biodegradable, and non-immunogenic. We have previously proven that SAPs, when biofunctionalized with protein-derived motifs, can mimic the extracellular matrix characteristics that support colorectal organoid formation. These biofunctional peptide hydrogels retain the original parent peptide's mechanical properties, tunability, and printability while incorporating cues that allow cell-matrix interactions to increase cell adhesion. This paper presents the protocols needed to evaluate and characterize the effects of various biofunctional peptide hydrogels on cell adhesion and lumen formation using an adenocarcinoma cancer cell line able to form colorectal cancer organoids cost-effectively. These protocols will help evaluate biofunctional peptide hydrogel effects on cell adhesion and luminal formation using immunostaining and fluorescence image analysis. The cell line used in this study has been previously utilized for generating organoids in animal-derived matrices.


Subject(s)
Colorectal Neoplasms , Hydrogels , Organoids , Peptides , Organoids/cytology , Humans , Colorectal Neoplasms/pathology , Cell Line, Tumor , Hydrogels/chemistry , Peptides/chemistry , Nanofibers/chemistry , Adenocarcinoma/pathology , Extracellular Matrix/chemistry , Cell Adhesion/physiology
17.
Mol Biol Cell ; 35(7): ar102, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38809584

ABSTRACT

Interferon Regulatory Factor 6 (IRF6) is a transcription factor essential for keratinocyte cell-cell adhesions. Previously, we found that recycling of E-cadherin was defective in the absence of IRF6, yet total E-cadherin levels were not altered, suggesting a previously unknown, nontranscriptional function for IRF6. IRF6 protein contains a DNA binding domain (DBD) and a protein binding domain (PBD). The transcriptional function of IRF6 depends on its DBD and PBD, however, whether the PBD is necessary for the interaction with cytoplasmic proteins has yet to be demonstrated. Here, we show that an intact PBD is required for recruitment of cell-cell adhesion proteins at the plasma membrane, including the recycling of E-cadherin. Colocalizations and coimmunoprecipitations reveal that IRF6 forms a complex in recycling endosomes with Rab11, Myosin Vb, and E-cadherin, and that the PBD is required for this interaction. These data indicate that IRF6 is a novel effector of the endosomal recycling of E-cadherin and demonstrate a non-transcriptional function for IRF6 in regulating cell-cell adhesions.


Subject(s)
Cadherins , Cell Adhesion , Endosomes , Interferon Regulatory Factors , Animals , Humans , Mice , Cadherins/metabolism , Cell Adhesion/physiology , Cell Membrane/metabolism , Endosomes/metabolism , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Keratinocytes/metabolism , Protein Binding , Protein Domains , Protein Transport , rab GTP-Binding Proteins/metabolism
18.
Mol Immunol ; 171: 12-21, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735126

ABSTRACT

Macrophages are critical in mediating immune and inflammatory responses, while monocyte-to-macrophage differentiation is one of the main macrophage resources that involves various matrix proteins. Matrix remodeling associated 7 (MXRA7) was recently discovered to affect a variety of physiological and pathological processes related to matrix biology. In the present study, we investigated the role of MXRA7 in monocyte-to-macrophage differentiation in vitro. We found that knockdown of MXRA7 inhibited the proliferation of THP-1 human monocytic cells. Knockdown of MXRA7 increased the adhesion ability of THP-1 cells through upregulation the expression of adhesion molecules VCAM-1 and ICAM1. Knockdown of MXRA7 alone could promoted the differentiation of THP-1 cells to macrophages. Furthermore, the MXRA7-knockdown THP-1 cells produced a more significant upregulation pattern with M1-type cytokines (TNF-α, IL-1ß and IL-6) than with those M2-type molecules (TGF-ß1 and IL-1RA) upon PMA stimulation, indicating that knockdown of MXRA7 facilitated THP-1 cells differentiation toward M1 macrophages. RNA sequencing analysis revealed the potential biological roles of MXRA7 in cell adhesion, macrophage and monocyte differentiation. Moreover, MXRA7 knockdown promoted the expression of NF-κB p52/p100, while PMA stimulation could increase the expression of NF-κB p52/p100 and activating MAPK signaling pathways in MXRA7 knockdown cells. In conclusion, MXRA7 affected the differentiation of THP-1 cells toward macrophages possibly through NF-κB signaling pathways.


Subject(s)
Cell Differentiation , Macrophages , Monocytes , Humans , Cell Adhesion/physiology , Cell Differentiation/immunology , Cell Differentiation/genetics , Cell Proliferation , Cytokines/metabolism , Gene Knockdown Techniques , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Macrophages/metabolism , Macrophages/immunology , Monocytes/metabolism , NF-kappa B/metabolism , Signal Transduction , THP-1 Cells , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics
19.
J R Soc Interface ; 21(214): 20240105, 2024 May.
Article in English | MEDLINE | ID: mdl-38774959

ABSTRACT

During mesenchymal migration, F-actin protrusion at the leading edge and actomyosin contraction determine the retrograde flow of F-actin within the lamella. The coupling of this flow to integrin-based adhesions determines the force transmitted to the extracellular matrix and the net motion of the cell. In tissues, motion may also arise from convection, driven by gradients in tissue-scale surface tensions and pressures. However, how migration coordinates with convection to determine the net motion of cellular ensembles is unclear. To explore this, we study the spreading of cell aggregates on adhesive micropatterns on compliant substrates. During spreading, a cell monolayer expands from the aggregate towards the adhesive boundary. However, cells are unable to stabilize the protrusion beyond the adhesive boundary, resulting in retraction of the protrusion and detachment of cells from the matrix. Subsequently, the cells move upwards and rearwards, yielding a bulk convective flow towards the centre of the aggregate. The process is cyclic, yielding a steady-state balance between outward (protrusive) migration along the surface, and 'retrograde' (contractile) flows above the surface. Modelling the cell aggregates as confined active droplets, we demonstrate that the interplay between surface tension-driven flows within the aggregate, radially outward monolayer flow and conservation of mass leads to an internal circulation.


Subject(s)
Cell Adhesion , Cell Movement , Models, Biological , Cell Movement/physiology , Cell Adhesion/physiology , Cell Aggregation/physiology , Animals , Humans , Actins/metabolism
20.
J Phys Condens Matter ; 36(29)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38574682

ABSTRACT

Cell-matrix adhesions connect the cytoskeleton to the extracellular environment and are essential for maintaining the integrity of tissue and whole organisms. Remarkably, cell adhesions can adapt their size and composition to an applied force such that their size and strength increases proportionally to the load. Mathematical models for the clutch-like force transmission at adhesions are frequently based on the assumption that mechanical load is applied tangentially to the adhesion plane. Recently, we suggested a molecular mechanism that can explain adhesion growth under load for planar cell adhesions. The mechanism is based on conformation changes of adhesion molecules that are dynamically exchanged with a reservoir. Tangential loading drives the occupation of some states out of equilibrium, which for thermodynamic reasons, leads to the association of further molecules with the cluster, which we refer to as self-stabilization. Here, we generalize this model to forces that pull at an oblique angle to the plane supporting the cell, and examine if this idealized model also predicts self-stabilization. We also allow for a variable distance between the parallel planes representing cytoskeletal F-actin and transmembrane integrins. Simulation results demonstrate that the binding mechanism and the geometry of the cluster have a strong influence on the response of adhesion clusters to force. For oblique angles smaller than about 40∘, we observe a growth of the adhesion site under force. However this self-stabilization is reduced as the angle between the force and substrate plane increases, with vanishing self-stabilization for normal pulling. Overall, these results highlight the fundamental difference between the assumption of pulling and shearing forces in commonly used models of cell adhesion.


Subject(s)
Extracellular Matrix , Focal Adhesions , Focal Adhesions/metabolism , Extracellular Matrix/metabolism , Cell Adhesion/physiology , Actins , Integrins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL