Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.057
Filter
1.
PLoS One ; 19(9): e0310109, 2024.
Article in English | MEDLINE | ID: mdl-39264935

ABSTRACT

Biophysical models can predict the behavior of cell cultures including 3D cell aggregates (3DCAs), thereby reducing the need for costly and time-consuming experiments. Specifically, mass transfer models enable studying the transport of nutrients, oxygen, signaling molecules, and drugs in 3DCA. These models require the defining of boundary conditions (BC) between the 3DCA and surrounding medium. However, accurately modeling the BC that relates the inner and outer boundary concentrations at the border between the 3DCA and the medium remains a challenge that this paper addresses using both theoretical and experimental methods. The provided biophysical analysis indicates that the concentration of molecules inside boundary is higher than that at the outer boundary, revealing an amplification factor that is confirmed by a particle-based simulator (PBS). Due to the amplification factor, the PBS confirms that when a 3DCA with a low concentration of target molecules is introduced to a culture medium with a higher concentration, the molecule concentration in the medium rapidly decreases. The theoretical model and PBS simulations were used to design a pilot experiment with liver spheroids as the 3DCA and glucose as the target molecule. Experimental results agree with the proposed theory and derived properties.


Subject(s)
Cell Aggregation , Spheroids, Cellular , Spheroids, Cellular/metabolism , Spheroids, Cellular/cytology , Diffusion , Humans , Models, Biological , Glucose/metabolism , Cell Culture Techniques, Three Dimensional/methods , Culture Media/chemistry
2.
Microvasc Res ; 156: 104732, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39147360

ABSTRACT

Fluorescence intravital microscopy captures large data sets of dynamic multicellular interactions within various organs such as the lungs, liver, and brain of living subjects. In medical imaging, edge detection is used to accurately identify and delineate important structures and boundaries inside the images. To improve edge sharpness, edge detection frequently requires the inclusion of low-level features. Herein, a machine learning approach is needed to automate the edge detection of multicellular aggregates of distinctly labeled blood cells within the microcirculation. In this work, the Structured Adaptive Boosting Trees algorithm (AdaBoost.S) is proposed as a contribution to overcome some of the edge detection challenges related to medical images. Algorithm design is based on the observation that edges over an image mask often exhibit special structures and are interdependent. Such structures can be predicted using the features extracted from a bigger image patch that covers the image edge mask. The proposed AdaBoost.S is applied to detect multicellular aggregates within blood vessels from the fluorescence lung intravital images of mice exposed to e-cigarette vapor. The predictive capabilities of this approach for detecting platelet-neutrophil aggregates within the lung blood vessels are evaluated against three conventional machine learning algorithms: Random Forest, XGBoost and Decision Tree. AdaBoost.S exhibits a mean recall, F-score, and precision of 0.81, 0.79, and 0.78, respectively. Compared to all three existing algorithms, AdaBoost.S has statistically better performance for recall and F-score. Although AdaBoost.S does not outperform Random Forest in precision, it remains superior to the XGBoost and Decision Tree algorithms. The proposed AdaBoost.S is widely applicable to analysis of other fluorescence intravital microscopy applications including cancer, infection, and cardiovascular disease.


Subject(s)
Algorithms , Blood Platelets , Intravital Microscopy , Lung , Machine Learning , Microscopy, Fluorescence , Neutrophils , Animals , Lung/blood supply , Lung/diagnostic imaging , Blood Platelets/metabolism , Image Interpretation, Computer-Assisted , Cell Aggregation , Mice , Reproducibility of Results , Predictive Value of Tests , Mice, Inbred C57BL
3.
Stem Cell Res Ther ; 15(1): 191, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956608

ABSTRACT

BACKGROUND: Stem cell-derived therapies hold the potential for treatment of regenerative clinical indications. Static culture has a limited ability to scale up thus restricting its use. Suspension culturing can be used to produce target cells in large quantities, but also presents challenges related to stress and aggregation stability. METHODS: Utilizing a design of experiments (DoE) approach in vertical wheel bioreactors, we evaluated media additives that have versatile properties. The additives evaluated are Heparin sodium salt (HS), polyethylene glycol (PEG), poly (vinyl alcohol) (PVA), Pluronic F68 and dextran sulfate (DS). Multiple response variables were chosen to assess cell growth, pluripotency maintenance and aggregate stability in response to the additive inputs, and mathematical models were generated and tuned for maximal predictive power. RESULTS: Expansion of iPSCs using 100 ml vertical wheel bioreactor assay for 4 days on 19 different media combinations resulted in models that can optimize pluripotency, stability, and expansion. The expansion optimization resulted in the combination of PA, PVA and PEG with E8. This mixture resulted in an expansion doubling time that was 40% shorter than that of E8 alone. Pluripotency optimizer highlighted the importance of adding 1% PEG to the E8 medium. Aggregate stability optimization that minimizes aggregate fusion in 3D culture indicated that the interaction of both Heparin and PEG can limit aggregation as well as increase the maintenance capacity and expansion of hiPSCs, suggesting that controlling fusion is a critical parameter for expansion and maintenance. Validation of optimized solution on two cell lines in bioreactors with decreased speed of 40 RPM, showed consistency and prolonged control over aggregates that have high frequency of pluripotency markers of OCT4 and SOX2 (> 90%). A doubling time of around 1-1.4 days was maintained after passaging as clumps in the optimized medium. Controlling aggregate fusion allowed for a decrease in bioreactor speed and therefore shear stress exerted on the cells in a large-scale expansion. CONCLUSION: This study resulted in a control of aggregate size within suspension cultures, while informing about concomitant state control of the iPSC state. Wider application of this approach can address media optimization complexity and bioreactor scale-up challenges.


Subject(s)
Bioreactors , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Cell Culture Techniques/methods , Cell Proliferation , Cell Aggregation/drug effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Cell Differentiation
4.
J Vis Exp ; (208)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39007618

ABSTRACT

The spleen is an immune organ that plays a key role in blood-borne immune responses. The anatomical or functional loss of this tissue increases susceptibility to severe blood infections and sepsis. Auto-transplantation of spleen slices has been used clinically to replace lost tissue and restore immune function. However, the mechanism driving robust and immunologically functional spleen tissue regeneration has not been fully elucidated. Here, we aim to develop a method for aggregating and encapsulating spleen cells within a semi-solid matrix in order to investigate the cellular requirements for spleen tissue formation. Basement membrane matrix encapsulated cell constructs are amenable to both in vitro tissue culture of three-dimensional organoids as well as transplantation under the kidney capsule to directly assess in vivo tissue formation. By manipulating the input cells for aggregation and encapsulation, we demonstrate that graft-derived PDGFRß+MAdCAM-1- neonatal stromal cells are required for spleen tissue regeneration under animal transplantation models.


Subject(s)
Basement Membrane , Spleen , Animals , Mice , Spleen/cytology , Basement Membrane/cytology , Cell Aggregation/physiology
5.
J Transl Med ; 22(1): 551, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851695

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a highly heterogeneous, recurrent and aggressively invasive primary malignant brain tumor. The heterogeneity of GBM results in poor targeted therapy. Therefore, the aim of this study is to depict the cellular landscape of GBM and its peritumor from a single-cell perspective. Discovering new cell subtypes and biomarkers, and providing a theoretical basis for precision therapy. METHODS: We collected 8 tissue samples from 4 GBM patients to perform 10 × single-cell transcriptome sequencing. Quality control and filtering of data by Seurat package for clustering. Inferring copy number variations to identify malignant cells via the infercnv package. Functional enrichment analysis was performed by GSVA and clusterProfiler packages. STRING database and Cytoscape software were used to construct protein interaction networks. Inferring transcription factors by pySCENIC. Building cell differentiation trajectories via the monocle package. To infer intercellular communication networks by CellPhoneDB software. RESULTS: We observed that the tumor microenvironment (TME) varies among different locations and different GBM patients. We identified a proliferative cluster of oligodendrocytes with high expression of mitochondrial genes. We also identified two clusters of myeloid cells, one primarily located in the peritumor exhibiting an M1 phenotype with elevated TNFAIP8L3 expression, and another in the tumor and peritumor showing a proliferative tendency towards an M2 phenotype with increased DTL expression. We identified XIST, KCNH7, SYT1 and DIAPH3 as potential factors associated with the proliferation of malignant cells in GBM. CONCLUSIONS: These biomarkers and cell clusters we discovered may serve as targets for treatment. Targeted drugs developed against these biomarkers and cell clusters may enhance treatment efficacy, optimize immune therapy strategies, and improve the response rates of GBM patients to immunotherapy. Our findings provide a theoretical basis for the development of individualized treatment and precision medicine for GBM, which may be used to improve the survival of GBM patients.


Subject(s)
Biomarkers, Tumor , Glioblastoma , Single-Cell Analysis , Tumor Microenvironment , Humans , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cluster Analysis , Protein Interaction Maps , DNA Copy Number Variations/genetics , Cell Aggregation , Gene Expression Profiling
6.
ACS Nano ; 18(24): 15815-15830, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38833572

ABSTRACT

Amyloid-like fibrils are garnering keen interest in biotechnology as supramolecular nanofunctional units to be used as biomimetic platforms to control cell behavior. Recent insights into fibril functionality have highlighted their importance in tissue structure, mechanical properties, and improved cell adhesion, emphasizing the need for scalable and high-kinetics fibril synthesis. In this study, we present the instantaneous and bulk formation of amyloid-like nanofibrils from human platelet lysate (PL) using the ionic liquid cholinium tosylate as a fibrillating agent. The instant fibrillation of PL proteins upon supramolecular protein-ionic liquid interactions was confirmed from the protein conformational transition toward cross-ß-sheet-rich structures. These nanofibrils were utilized as building blocks for the formation of thin and flexible free-standing membranes via solvent casting to support cell self-aggregation. These PL-derived fibril membranes reveal a nanotopographically rough surface and high stability over 14 days under cell culture conditions. The culture of mesenchymal stem cells or tumor cells on the top of the membrane demonstrated that cells are able to adhere and self-organize in a three-dimensional (3D) spheroid-like microtissue while tightly folding the fibril membrane. Results suggest that nanofibril membrane incorporation in cell aggregates can improve cell viability and metabolic activity, recreating native tissues' organization. Altogether, these PL-derived nanofibril membranes are suitable bioactive platforms to generate 3D cell-guided microtissues, which can be explored as bottom-up strategies to faithfully emulate native tissues in a fully human microenvironment.


Subject(s)
Blood Platelets , Nanofibers , Humans , Blood Platelets/metabolism , Blood Platelets/chemistry , Nanofibers/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Cell Aggregation/drug effects , Cell Adhesion/drug effects , Amyloid/chemistry , Amyloid/metabolism , Membranes, Artificial
7.
Dev Comp Immunol ; 159: 105219, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38925431

ABSTRACT

An infection induces the migration of immune cells called hemocytes to the insect heart, where they aggregate around heart valves called ostia and phagocytose pathogens in areas of high hemolymph flow. Here, we investigated whether the cardiac extracellular matrix proteins, Pericardin (Prc) and Lonely heart (Loh), regulate the infection-induced aggregation of periostial hemocytes in the mosquito, An. gambiae. We discovered that RNAi-based post-transcriptional silencing of Prc or Loh did not affect the resident population of periostial hemocytes in uninfected mosquitoes, but that knocking down these genes decreases the infection-induced migration of hemocytes to the heart. Knocking down Prc or Loh did not affect the proportional distribution of periostial hemocytes along the periostial regions. Moreover, knocking down Prc or Loh did not affect the number of sessile hemocytes outside the periostial regions, suggesting that the role of these proteins is cardiac-specific. Finally, knocking down Prc or Loh did not affect the amount of melanin at the periostial regions, or the intensity of an infection at 24 h after challenge. Overall, we demonstrate that Prc and Loh are positive regulators of the infection-induced migration of hemocytes to the heart of mosquitoes.


Subject(s)
Anopheles , Hemocytes , Insect Proteins , Animals , Hemocytes/metabolism , Hemocytes/physiology , Hemocytes/immunology , Insect Proteins/metabolism , Insect Proteins/genetics , Anopheles/immunology , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Cell Movement , RNA Interference , Cell Aggregation/immunology , Phagocytosis , Melanins/metabolism
8.
PLoS Comput Biol ; 20(5): e1012089, 2024 May.
Article in English | MEDLINE | ID: mdl-38743660

ABSTRACT

Cell rearrangements are fundamental mechanisms driving large-scale deformations of living tissues. In three-dimensional (3D) space-filling cell aggregates, cells rearrange through local topological transitions of the network of cell-cell interfaces, which is most conveniently described by the vertex model. Since these transitions are not yet mathematically properly formulated, the 3D vertex model is generally difficult to implement. The few existing implementations rely on highly customized and complex software-engineering solutions, which cannot be transparently delineated and are thus mostly non-reproducible. To solve this outstanding problem, we propose a reformulation of the vertex model. Our approach, called Graph Vertex Model (GVM), is based on storing the topology of the cell network into a knowledge graph with a particular data structure that allows performing cell-rearrangement events by simple graph transformations. Importantly, when these same transformations are applied to a two-dimensional (2D) polygonal cell aggregate, they reduce to a well-known T1 transition, thereby generalizing cell-rearrangements in 2D and 3D space-filling packings. This result suggests that the GVM's graph data structure may be the most natural representation of cell aggregates and tissues. We also develop a Python package that implements GVM, relying on a graph-database-management framework Neo4j. We use this package to characterize an order-disorder transition in 3D cell aggregates, driven by active noise and we find aggregates undergoing efficient ordering close to the transition point. In all, our work showcases knowledge graphs as particularly suitable data models for structured storage, analysis, and manipulation of tissue data.


Subject(s)
Cell Aggregation , Models, Biological , Cell Aggregation/physiology , Computational Biology , Algorithms , Humans , Animals , Computer Simulation , Software
9.
Sci Rep ; 14(1): 10345, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710795

ABSTRACT

Skeletal bone function relies on both cells and cellular niches, which, when combined, provide guiding cues for the control of differentiation and remodeling processes. Here, we propose an in vitro 3D model based on human fetal osteoblasts, which eases the study of osteocyte commitment in vitro and thus provides a means to examine the influences of biomaterials, substances or cells on the regulation of these processes. Aggregates were formed from human fetal osteoblasts (hFOB1.19) and cultivated under proliferative, adipo- and osteoinductive conditions. When cultivated under osteoinductive conditions, the vitality of the aggregates was compromised, the expression levels of the mineralization-related gene DMP1 and the amount of calcification and matrix deposition were lower, and the growth of the spheroids stalled. However, within spheres under growth conditions without specific supplements, self-organization processes occur, which promote extracellular calcium deposition, and osteocyte-like cells develop. Long-term cultivated hFOB aggregates were free of necrotic areas. Moreover, hFOB aggregates cultivated under standard proliferative conditions supported the co-cultivation of human monocytes, microvascular endothelial cells and stromal cells. Overall, the model presented here comprises a self-organizing and easily accessible 3D osteoblast model for studying bone marrow formation and in vitro remodeling and thus provides a means to test druggable molecular pathways with the potential to promote life-long bone formation and remodeling.


Subject(s)
Cell Differentiation , Coculture Techniques , Osteoblasts , Humans , Osteoblasts/metabolism , Osteoblasts/cytology , Cellular Microenvironment , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Osteogenesis , Cell Aggregation , Cells, Cultured
10.
J R Soc Interface ; 21(214): 20240105, 2024 May.
Article in English | MEDLINE | ID: mdl-38774959

ABSTRACT

During mesenchymal migration, F-actin protrusion at the leading edge and actomyosin contraction determine the retrograde flow of F-actin within the lamella. The coupling of this flow to integrin-based adhesions determines the force transmitted to the extracellular matrix and the net motion of the cell. In tissues, motion may also arise from convection, driven by gradients in tissue-scale surface tensions and pressures. However, how migration coordinates with convection to determine the net motion of cellular ensembles is unclear. To explore this, we study the spreading of cell aggregates on adhesive micropatterns on compliant substrates. During spreading, a cell monolayer expands from the aggregate towards the adhesive boundary. However, cells are unable to stabilize the protrusion beyond the adhesive boundary, resulting in retraction of the protrusion and detachment of cells from the matrix. Subsequently, the cells move upwards and rearwards, yielding a bulk convective flow towards the centre of the aggregate. The process is cyclic, yielding a steady-state balance between outward (protrusive) migration along the surface, and 'retrograde' (contractile) flows above the surface. Modelling the cell aggregates as confined active droplets, we demonstrate that the interplay between surface tension-driven flows within the aggregate, radially outward monolayer flow and conservation of mass leads to an internal circulation.


Subject(s)
Cell Adhesion , Cell Movement , Models, Biological , Cell Movement/physiology , Cell Adhesion/physiology , Cell Aggregation/physiology , Animals , Humans , Actins/metabolism
12.
Cancer Res Commun ; 4(4): 1150-1164, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38598843

ABSTRACT

Multiple myeloma involves early dissemination of malignant plasma cells across the bone marrow; however, the initial steps of dissemination remain unclear. Human bone marrow-derived mesenchymal stromal cells (hMSC) stimulate myeloma cell expansion (e.g., IL6) and simultaneously retain myeloma cells via chemokines (e.g., CXCL12) and adhesion factors. Hence, we hypothesized that the imbalance between cell division and retention drives dissemination. We present an in vitro model using primary hMSCs cocultured with INA-6 myeloma cells. Time-lapse microscopy revealed proliferation and attachment/detachment dynamics. Separation techniques (V-well adhesion assay and well plate sandwich centrifugation) were established to isolate MSC-interacting myeloma subpopulations that were characterized by RNA sequencing, cell viability, and apoptosis. Results were correlated with gene expression data (n = 837) and survival of patients with myeloma (n = 536). On dispersed hMSCs, INA-6 saturate hMSC surface before proliferating into large homotypic aggregates, from which single cells detached completely. On confluent hMSCs, aggregates were replaced by strong heterotypic hMSC-INA-6 interactions, which modulated apoptosis time dependently. Only INA-6 daughter cells (nMA-INA6) detached from hMSCs by cell division but sustained adherence to hMSC-adhering mother cells (MA-INA6). Isolated nMA-INA6 indicated hMSC autonomy through superior viability after IL6 withdrawal and upregulation of proliferation-related genes. MA-INA6 upregulated adhesion and retention factors (CXCL12), that, intriguingly, were highly expressed in myeloma samples from patients with longer overall and progression-free survival, but their expression decreased in relapsed myeloma samples. Altogether, in vitro dissemination of INA-6 is driven by detaching daughter cells after a cycle of hMSC-(re)attachment and proliferation, involving adhesion factors that represent a bone marrow-retentive phenotype with potential clinical relevance. SIGNIFICANCE: Novel methods describe in vitro dissemination of myeloma cells as detachment of daughter cells after cell division. Myeloma adhesion genes were identified that counteract in vitro detachment with potential clinical relevance.


Subject(s)
Cell Adhesion , Cell Proliferation , Mesenchymal Stem Cells , Multiple Myeloma , Humans , Multiple Myeloma/pathology , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Apoptosis , Coculture Techniques , Cell Line, Tumor , Cell Aggregation , Cell Survival
13.
Nat Commun ; 15(1): 2018, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38443393

ABSTRACT

Matrix-encapsulated communities of bacteria, called biofilms, are ubiquitous in the environment and are notoriously difficult to eliminate in clinical and industrial settings. Biofilm formation likely evolved as a mechanism to protect resident cells from environmental challenges, yet how bacteria undergo threat assessment to inform biofilm development remains unclear. Here we find that population-level cell lysis events induce the formation of biofilms by surviving Vibrio cholerae cells. Survivors detect threats by sensing a cellular component released through cell lysis, which we identify as norspermidine. Lysis sensing occurs via the MbaA receptor with genus-level specificity, and responsive biofilm cells are shielded from phage infection and attacks from other bacteria. Thus, our work uncovers a connection between bacterial lysis and biofilm formation that may be broadly conserved among microorganisms.


Subject(s)
Bacteriophages , Vibrio cholerae , Biofilms , Cell Aggregation , Cell Death
14.
Adv Healthc Mater ; 13(18): e2304529, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38465888

ABSTRACT

There is a paradigm shift in biomanufacturing toward continuous bioprocessing but cell-based manufacturing using adherent and suspension cultures, including microcarriers, hydrogel microparticles, and 3D cell aggregates, remains challenging due to the lack of efficient in-line bioprocess monitoring and cell harvesting tools. Herein, a novel label-free microfluidic platform for high throughput (≈50 particles/sec) impedance bioanalysis of biomass, cell viability, and stem cell differentiation at single particle resolution is reported. The device is integrated with a real-time piezo-actuated particle sorter based on user-defined multi-frequency impedance signatures. Biomass profiling of Cytodex-3 microcarriers seeded with adipose-derived mesenchymal stem cells (ADSCs) is first performed to sort well-seeded or confluent microcarriers for downstream culture or harvesting, respectively. Next, impedance-based isolation of microcarriers with osteogenic differentiated ADSCs is demonstrated, which is validated with a twofold increase of calcium content in sorted ADSCs. Impedance profiling of heterogenous ADSCs-encapsulated hydrogel (alginate) microparticles and 3D ADSC aggregate mixtures is also performed to sort particles with high biomass and cell viability to improve cell quality. Overall, the scalable microfluidic platform technology enables in-line sample processing from bioreactors directly and automated analysis of cell quality attributes to maximize cell yield and improve the control of cell quality in continuous cell-based manufacturing.


Subject(s)
Mesenchymal Stem Cells , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Humans , Cell Differentiation , Cell Survival , Hydrogels/chemistry , Cell Aggregation , Cell Separation/methods , Alginates/chemistry , Adipose Tissue/cytology , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation
15.
J Allergy Clin Immunol ; 153(5): 1306-1318, 2024 May.
Article in English | MEDLINE | ID: mdl-38181841

ABSTRACT

BACKGROUND: Airway obstruction caused by viscous mucus is an important pathophysiologic characteristic of persistent inflammation, which can result in organ damage. OBJECTIVE: We investigated the hypothesis that the biophysical characteristics of accumulating granulocytes affect the clinical properties of mucus. METHODS: Surgically acquired nasal mucus samples from patients with eosinophilic chronic rhinosinusitis and neutrophil-dominant, noneosinophilic chronic rhinosinusitis were evaluated in terms of computed tomography density, viscosity, water content, wettability, and protein composition. Isolated human eosinophils and neutrophils were stimulated to induce the formation of extracellular traps, followed by the formation of aggregates. The biophysical properties of the aggregated cells were also examined. RESULTS: Mucus from patients with eosinophilic chronic rhinosinusitis had significantly higher computed tomography density, viscosity, dry weight, and hydrophobicity compared to mucus from patients with noneosinophilic chronic rhinosinusitis. The levels of eosinophil-specific proteins in mucus correlated with its physical properties. Eosinophil and neutrophil aggregates showed physical and pathologic characteristics resembling those of mucus. Cotreatment with deoxyribonuclease and heparin, which slenderizes the structure of eosinophil extracellular traps, efficiently induced reductions in the viscosity and hydrophobicity of both eosinophil aggregates and eosinophilic mucus. CONCLUSIONS: The present study elucidated the pathogenesis of mucus stasis in infiltrated granulocyte aggregates from a novel perspective. These findings may contribute to the development of treatment strategies for eosinophilic airway diseases.


Subject(s)
Eosinophils , Extracellular Traps , Mucus , Neutrophils , Rhinosinusitis , Adult , Aged , Female , Humans , Male , Middle Aged , Cell Aggregation , Chronic Disease , Eosinophils/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Mucus/metabolism , Nasal Mucosa/immunology , Nasal Mucosa/pathology , Neutrophils/immunology , Rhinosinusitis/immunology , Rhinosinusitis/pathology , Viscosity
16.
Methods Mol Biol ; 2751: 71-79, 2024.
Article in English | MEDLINE | ID: mdl-38265710

ABSTRACT

Acidovorax avenae subsp. avenae (Aaa) is the causal agent of red stripe in sugarcane, a disease characterized by two forms: leaf stripe and top rot. Despite the importance of this disease, little is known about Aaa virulence factors (VFs) and their function in the infection process. Among the different array of VFs exerted by phytopathogenic bacteria, exopolysaccharides (EPSs) often confer a survival advantage by protecting the cell against abiotic and biotic stresses, including host defensive factors. They are also main components of the extracellular matrix involved in cell-cell recognition, surface adhesion, and biofilm formation. EPS composition and properties have been well studied for some plant pathogenic bacteria; nevertheless, there is no knowledge about Aaa-EPS. In this work, we describe a simple and reliable method for EPS production, precipitation, and quantification based on cold precipitation after ethanol addition, which will allow to study EPS characteristics of different Aaa strains and to evaluate the association among EPS (e.g., amount, composition, viscosity) and Aaa pathogenicity.


Subject(s)
Comamonadaceae , Virulence Factors , Cell Aggregation , Cell Communication
17.
Molecules ; 29(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38202855

ABSTRACT

The isoquinoline alkaloid berberine, derived from Coptidis rhizoma, exhibits antibacterial, hypoglycemic, and anti-inflammatory properties. Canagliflozin is a sodium-glucose cotransporter 2 (SGLT2) inhibitor. We synthesized compounds B9OC and B9OBU by conjugating canagliflozin and n-butane at the C9 position of berberine, aiming to develop antimicrobial agents for combating bacterial infections worldwide. We utilized clinically prevalent pathogenic bacteria, namely Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, to investigate the antibacterial efficacy of B9OC. This was accomplished through the determination of the MIC80 values, analysis of bacterial growth curves, evaluation of biofilm formation using crystal violet staining, assessment of impact on bacterial proteins via SDS-PAGE analysis, and observation of alterations in bacterial morphology utilizing field emission scanning electron microscopy. Meanwhile, the ADMET of compound B9OC was predicted using a computer-aided method. The findings revealed that B9OC exhibited lower minimal inhibitory concentrations against all three bacteria compared to berberine alone or in combination with canagliflozin. The minimal inhibitory concentrations (MICs) of B9OC against the three experimental strains were determined to be 0.035, 0.258, and 0.331 mM. However, B9OBu exhibited a lower level of antimicrobial activity compared to berberine. The compound B9OC exhibits a broad spectrum of antibacterial activity by disrupting the integrity of bacterial cell walls, leading to cellular rupture and the subsequent degradation of intracellular proteins.


Subject(s)
Berberine , Berberine/pharmacology , Canagliflozin/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Cell Aggregation , Escherichia coli
18.
Soft Matter ; 19(42): 8136-8149, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37847026

ABSTRACT

Reproducing bacteria self-organize to develop patterned biofilms in various conditions. Various factors contribute to the shaping of a multicellular bacterial organization. Here we investigate how motility force and self-secreted extracellular polymeric substances (EPS) influence bacterial cell aggregation, leading to phase-separated colonies using a particle-based/individual-based model. Our findings highlight the critical role of the interplay between motility force and depletion effects in regulating phase separation within a growing colony under far-from-equilibrium conditions. We observe that increased motility force hinders depletion-induced cell aggregation and phase segregation, necessitating a higher depletion effect for highly motile bacteria to undergo phase separation within a growing biofilm. We present a phase diagram illustrating the systematic variation of motility force and repulsive mechanical force, shedding light on the combined contributions of these two factors: self-propulsive motion and aggregation due to the depletion effect, resulting in the presence of small to large bacterial aggregates. Furthermore, our study reveals the dynamic nature of clustering, marked by changes in cluster size over time. Additionally, our findings suggest that differential dispersion among the components can lead to the localization of EPS at the periphery of a growing colony. Our study enhances the understanding of the collective dynamics of motile bacterial cells within a growing colony, particularly in the presence of a self-secreted polymer-driven depletion effect.


Subject(s)
Biofilms , Extracellular Polymeric Substance Matrix , Bacteria , Polymers , Cell Aggregation
19.
J Biol Chem ; 299(12): 105377, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866630

ABSTRACT

Lipid rafts are highly ordered membrane domains that are enriched in cholesterol and glycosphingolipids and serve as major platforms for signal transduction. Cell detachment from the extracellular matrix (ECM) triggers lipid raft disruption and anoikis, which is a barrier for cancer cells to metastasize. Compared to single circulating tumor cells (CTCs), our recent studies have demonstrated that CD44-mediatd cell aggregation enhances the stemness, survival and metastatic ability of aggregated cells. Here, we investigated whether and how lipid rafts are involved in CD44-mediated cell aggregation. We found that cell detachment, which mimics the condition when tumor cells detach from the ECM to metastasize, induced lipid raft disruption in single cells, but lipid raft integrity was maintained in aggregated cells. We further found that lipid raft integrity in aggregated cells was required for Rac1 activation to prevent anoikis. In addition, CD44 and γ-secretase coexisted at lipid rafts in aggregated cells, which promoted CD44 cleavage and generated CD44 intracellular domain (CD44 ICD) to enhance stemness of aggregated cells. Consequently, lipid raft disruption inhibited Rac1 activation, CD44 ICD generation, and metastasis. Our findings reveal two new pathways regulated by CD44-mediated cell aggregation via maintaining lipid raft integrity. These findings also suggest that targeting cell aggregation-mediated pathways could be a novel therapeutic strategy to prevent CTC cluster-initiated metastasis.


Subject(s)
Hyaluronan Receptors , Membrane Microdomains , Monomeric GTP-Binding Proteins , rac1 GTP-Binding Protein , Cell Aggregation , Extracellular Matrix/metabolism , Membrane Microdomains/metabolism , Monomeric GTP-Binding Proteins/metabolism , Signal Transduction , MDA-MB-231 Cells , Humans , Animals , Mice , Cell Line, Tumor , Mice, Inbred BALB C , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , Anoikis , Enzyme Activation , Neoplasm Metastasis
20.
Soft Matter ; 19(36): 6920-6928, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37664878

ABSTRACT

Bacteria often form biofilms in porous environments where an external flow is present, such as soil or filtration systems. To understand the initial stages of biofilm formation, one needs to study the interactions between cells, the fluid and the confining geometries. Here, we present an agent based numerical model for bacteria that takes into account the planktonic stage of motile cells as well as surface attachment and biofilm growth in a lattice Boltzmann fluid. In the planktonic stage we show the importance of the interplay between complex flow and cell motility when determining positions of surface attachment. In the growth stage we show the applicability of our model by investigating how external flow and biofilm stiffness determine qualitative colony morphologies as well as quantitative measurements of, e.g., permeability.


Subject(s)
Biofilms , Porosity , Cell Aggregation , Cell Movement , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL