Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22.468
1.
Sci Rep ; 14(1): 10503, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714844

Diesel exhaust particles (DEPs) are very small (typically < 0.2 µm) fragments that have become major air pollutants. DEPs are comprised of a carbonaceous core surrounded by organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs. Inhaled DEPs reach the deepest sites in the respiratory system where they could induce respiratory/cardiovascular dysfunction. Additionally, a previous study has revealed that a portion of inhaled DEPs often activate immune cells and subsequently induce somatic inflammation. Moreover, DEPs are known to localize in lymph nodes. Therefore, in this study we explored the effect of DEPs on the lymphatic endothelial cells (LECs) that are a constituent of the walls of lymph nodes. DEP exposure induced cell death in a reactive oxygen species (ROS)-dependent manner. Following exposure to DEPs, next-generation sequence (NGS) analysis identified an upregulation of the integrated stress response (ISR) pathway and cell death cascades. Both the soluble and insoluble components of DEPs generated intracellular ROS. Three-dimensional Raman imaging revealed that DEPs are taken up by LECs, which suggests internalized DEP cores produce ROS, as well as soluble DEP components. However, significant cell death pathways such as apoptosis, necroptosis, ferroptosis, pyroptosis, and parthanatos seem unlikely to be involved in DEP-induced cell death in LECs. This study clarifies how DEPs invading the body might affect the lymphatic system through the induction of cell death in LECs.


Endothelial Cells , Reactive Oxygen Species , Vehicle Emissions , Vehicle Emissions/toxicity , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Reactive Oxygen Species/metabolism , Humans , Particulate Matter/toxicity , Apoptosis/drug effects , Air Pollutants/toxicity , Cell Death/drug effects
2.
J Neurosci Res ; 102(5): e25355, 2024 May.
Article En | MEDLINE | ID: mdl-38808645

Gamma aminobutyric acid (GABA) is a critical inhibitory neurotransmitter in the central nervous system that plays a vital role in modulating neuronal excitability. Dysregulation of GABAergic signaling, particularly involving the cotransporters NKCC1 and KCC2, has been implicated in various pathologies, including epilepsy, schizophrenia, autism spectrum disorder, Down syndrome, and ischemia. NKCC1 facilitates chloride influx, whereas KCC2 mediates chloride efflux via potassium gradient. Altered expression and function of these cotransporters have been associated with excitotoxicity, inflammation, and cellular death in ischemic events characterized by reduced cerebral blood flow, leading to compromised tissue metabolism and subsequent cell death. NKCC1 inhibition has emerged as a potential therapeutic approach to attenuate intracellular chloride accumulation and mitigate neuronal damage during ischemic events. Similarly, targeting KCC2, which regulates chloride efflux, holds promise for improving outcomes and reducing neuronal damage under ischemic conditions. This review emphasizes the critical roles of GABA, NKCC1, and KCC2 in ischemic pathologies and their potential as therapeutic targets. Inhibiting or modulating the activity of these cotransporters represents a promising strategy for reducing neuronal damage, preventing excitotoxicity, and improving neurological outcomes following ischemic events. Furthermore, exploring the interactions between natural compounds and NKCC1/KCC2 provides additional avenues for potential therapeutic interventions for ischemic injury.


Brain Ischemia , Cell Death , K Cl- Cotransporters , Solute Carrier Family 12, Member 2 , Symporters , gamma-Aminobutyric Acid , Animals , Humans , gamma-Aminobutyric Acid/metabolism , Symporters/metabolism , Solute Carrier Family 12, Member 2/metabolism , Cell Death/physiology , Cell Death/drug effects , Brain Ischemia/metabolism , Brain Ischemia/drug therapy
3.
Biomolecules ; 14(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38785950

Limited substrate availability because of the blood-brain barrier (BBB) has made the brain develop specific molecular mechanisms to survive, using lactate synthesized by astrocytes as a source of energy in neurons. To understand if lactate improves cellular viability and susceptibility to glutamate toxicity, primary cortical cells were incubated in glucose- or lactate-containing media and toxic concentrations of glutamate for 24 h. Cell death was determined by immunostaining and lactate dehydrogenase (LDH) release. Mitochondrial membrane potential and nitric oxide (NO) levels were measured using Tetramethylrhodamine, methyl ester (TMRM) and 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate (DAF-FM) live staining, respectively. LDH activity was quantified in single cells in the presence of lactate (LDH substrate) and oxamate (LDH inhibitor). Nuclei of cells were stained with DAPI and neurons with MAP2. Based on the distance between neurons and glial cells, they were classified as linked (<10 µm) and non-linked (>10 µm) neurons. Lactate increased cell death rate and the mean value of endogenous NO levels compared to glucose incubations. Mitochondrial membrane potential was lower in the cells cultured with lactate, but this effect was reversed when glutamate was added to the lactate medium. LDH activity was higher in linked neurons compared to non-linked neurons, supporting the hypothesis of the existence of the lactate shuttle between astrocytes and at least a portion of neurons. In conclusion, glucose or lactate can equally preserve primary cortical neurons, but those neurons having a low level of LDH activity and incubated with lactate cannot cover high energetic demand solely with lactate and become more susceptible to glutamate toxicity.


Glucose , Glutamic Acid , L-Lactate Dehydrogenase , Lactic Acid , Membrane Potential, Mitochondrial , Neurons , Animals , Glutamic Acid/metabolism , Glutamic Acid/toxicity , Membrane Potential, Mitochondrial/drug effects , Neurons/metabolism , Neurons/drug effects , L-Lactate Dehydrogenase/metabolism , Cells, Cultured , Lactic Acid/metabolism , Glucose/metabolism , Energy Metabolism/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/cytology , Nitric Oxide/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Cell Survival/drug effects , Rats , Cell Death/drug effects
4.
J Vis Exp ; (207)2024 May 03.
Article En | MEDLINE | ID: mdl-38767387

Cell death is a fundamental process in all living organisms. The protocol establishes a lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-induced phorbol-12-myristate-13-acetate (PMA)-differentiated lipid deposition in human monocyte (THP-1) macrophage model to observe cell death. LPS combined with ATP is a classic inflammatory induction method, often used to study pyroptosis, but apoptosis and necroptosis also respond to stimulation by LPS/ATP. Under normal circumstances, phosphatidylserine is only localized in the inner leaflet of the plasma membrane. However, in the early stages of pyroptosis, apoptosis, and necroptosis, the cell membrane remains intact and exposed to phosphatidylserine, and in the later stages, the cell membrane loses its integrity. Here, flow cytometry was used to analyze Annexin V and 7-Aminoactinomycin D (AAD) double staining to detect the cell death from the whole cells. The results show that substantial cells died after stimulation with LPS/ATP. Using scanning electron microscopy, we observe the possible forms of cell death in individual cells. The results indicate that cells may undergo pyroptosis, apoptosis, or necroptosis after stimulation with LPS/ATP. This protocol focuses on observing the death of macrophages after stimulation with LPS/ATP. The results showed that cell death after LPS and ATP stimulation is not limited to pyroptosis and that apoptosis and necrotic apoptosis can also occur, helping researchers better understand cell death after LPS and ATP stimulation and choose a better experimental method.


Adenosine Triphosphate , Lipopolysaccharides , Macrophages , Humans , Macrophages/drug effects , Macrophages/cytology , Adenosine Triphosphate/metabolism , Lipopolysaccharides/pharmacology , THP-1 Cells , Tetradecanoylphorbol Acetate/pharmacology , Cell Death/drug effects , Pyroptosis/drug effects , Pyroptosis/physiology , Flow Cytometry/methods , Cell Differentiation/drug effects
5.
Cell Death Dis ; 15(5): 328, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734740

We created valrubicin-loaded immunoliposomes (Val-ILs) using the antitumor prodrug valrubicin, a hydrophobic analog of daunorubicin. Being lipophilic, valrubicin readily incorporated Val-lLs that were loaded with specific antibodies. Val-ILs injected intravenously rapidly reached the bone marrow and spleen, indicating their potential to effectively target cancer cells in these areas. Following the transplantation of human pediatric B-cell acute lymphoblastic leukemia (B-ALL), T-cell acute lymphoblastic leukemia (T-ALL), or acute myeloid leukemia (AML) in immunodeficient NSG mice, we generated patient-derived xenograft (PDX) models, which were treated with Val-ILs loaded with antibodies to target CD19, CD7 or CD33. Only a small amount of valrubicin incorporated into Val-ILs was needed to induce leukemia cell death in vivo, suggesting that this approach could be used to efficiently treat acute leukemia cells. We also demonstrated that Val-ILs could reduce the risk of contamination of CD34+ hematopoietic stem cells by acute leukemia cells during autologous peripheral blood stem cell transplantation, which is a significant advantage for clinical applications. Using EL4 lymphoma cells on immunocompetent C57BL/6 mice, we also highlighted the potential of Val-ILs to target immunosuppressive cell populations in the spleen, which could be valuable in impairing cancer cell expansion, particularly in lymphoma cases. The most efficient Val-ILs were found to be those loaded with CD11b or CD223 antibodies, which, respectively, target the myeloid-derived suppressor cells (MDSC) or the lymphocyte-activation gene 3 (LAG-3 or CD223) on T4 lymphocytes. This study provides a promising preclinical demonstration of the effectiveness and ease of preparation of Val-ILs as a novel nanoparticle technology. In the context of hematological cancers, Val-ILs have the potential to be used as a precise and effective therapy based on targeted vesicle-mediated cell death.


Liposomes , Animals , Humans , Mice , Xenograft Model Antitumor Assays , Cell Death/drug effects , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Hematologic Neoplasms/therapy , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/immunology , Cell Line, Tumor , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
6.
Cells ; 13(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38727269

The histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.


Brain Injuries, Traumatic , Inflammation , Lysophosphatidylcholines , Mice, Inbred C57BL , Neurons , Valproic Acid , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/complications , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Mice , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Inflammation/pathology , Inflammation/drug therapy , Lysophosphatidylcholines/blood , Cell Death/drug effects , Disease Models, Animal , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Repressor Proteins/metabolism , Repressor Proteins/genetics
7.
Cells ; 13(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38727304

We have described the influence of selected factors that increase the toxicity of nanoplastics (NPs) and microplastics (MPs) with regard to cell viability, various types of cell death, reactive oxygen species (ROS) induction, and genotoxicity. These factors include plastic particle size (NPs/MPs), zeta potential, exposure time, concentration, functionalization, and the influence of environmental factors and cell type. Studies have unequivocally shown that smaller plastic particles are more cytotoxic, penetrate cells more easily, increase ROS formation, and induce oxidative damage to proteins, lipids, and DNA. The toxic effects also increase with concentration and incubation time. NPs with positive zeta potential are also more toxic than those with a negative zeta potential because the cells are negatively charged, inducing stronger interactions. The deleterious effects of NPs and MPs are increased by functionalization with anionic or carboxyl groups, due to greater interaction with cell membrane components. Cationic NPs/MPs are particularly toxic due to their greater cellular uptake and/or their effects on cells and lysosomal membranes. The effects of polystyrene (PS) vary from one cell type to another, and normal cells are more sensitive to NPs than cancerous ones. The toxicity of NPs/MPs can be enhanced by environmental factors, including UV radiation, as they cause the particles to shrink and change their shape, which is a particularly important consideration when working with environmentally-changed NPs/MPs. In summary, the cytotoxicity, oxidative properties, and genotoxicity of plastic particles depends on their concentration, duration of action, and cell type. Also, NPs/MPs with a smaller diameter and positive zeta potential, and those exposed to UV and functionalized with amino groups, demonstrate higher toxicity than larger, non-functionalized and environmentally-unchanged particles with a negative zeta potential.


Cell Death , DNA Damage , Microplastics , Nanoparticles , Oxidative Stress , Oxidative Stress/drug effects , Microplastics/toxicity , Humans , Nanoparticles/toxicity , Nanoparticles/chemistry , Cell Death/drug effects , Reactive Oxygen Species/metabolism , Animals , Particle Size
8.
PLoS One ; 19(5): e0302701, 2024.
Article En | MEDLINE | ID: mdl-38728286

Although the toxicity of arsenic depends on its chemical forms, few studies have taken into account the ambiguous phenomenon that sodium arsenite (NaAsO2) acts as a potent carcinogen while arsenic trioxide (ATO, As2O3) serves as an effective therapeutic agent in lymphoma, suggesting that NaAsO2 and As2O3 may act via paradoxical ways to either promote or inhibit cancer pathogenesis. Here, we compared the cellular response of the two arsenical compounds, NaAsO2 and As2O3, on the Burkitt lymphoma cell model, the Epstein Barr Virus (EBV)-positive P3HR1 cells. Using flow cytometry and biochemistry analyses, we showed that a NaAsO2 treatment induces P3HR1 cell death, combined with drastic drops in ΔΨm, NAD(P)H and ATP levels. In contrast, As2O3-treated cells resist to cell death, with a moderate reduction of ΔΨm, NAD(P)H and ATP. While both compounds block cells in G2/M and affect their protein carbonylation and lipid peroxidation, As2O3 induces a milder increase in superoxide anions and H2O2 than NaAsO2, associated to a milder inhibition of antioxidant defenses. By electron microscopy, RT-qPCR and image cytometry analyses, we showed that As2O3-treated cells display an overall autophagic response, combined with mitophagy and an unfolded protein response, characteristics that were not observed following a NaAsO2 treatment. As previous works showed that As2O3 reactivates EBV in P3HR1 cells, we treated the EBV- Ramos-1 cells and showed that autophagy was not induced in these EBV- cells upon As2O3 treatment suggesting that the boost of autophagy observed in As2O3-treated P3HR1 cells could be due to the presence of EBV in these cells. Overall, our results suggest that As2O3 is an autophagic inducer which action is enhanced when EBV is present in the cells, in contrast to NaAsO2, which induces cell death. That's why As2O3 is combined with other chemicals, as all-trans retinoic acid, to better target cancer cells in therapeutic treatments.


Arsenic Trioxide , Arsenicals , Arsenites , Autophagy , Mitochondria , Oxidative Stress , Oxides , Sodium Compounds , Arsenic Trioxide/pharmacology , Arsenites/pharmacology , Arsenites/toxicity , Humans , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Sodium Compounds/pharmacology , Arsenicals/pharmacology , Autophagy/drug effects , Cell Line, Tumor , Oxides/pharmacology , Cell Death/drug effects , Membrane Potential, Mitochondrial/drug effects , Herpesvirus 4, Human/drug effects , Adenosine Triphosphate/metabolism , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Burkitt Lymphoma/virology , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Burkitt Lymphoma/drug therapy
9.
Cell Death Dis ; 15(5): 309, 2024 May 02.
Article En | MEDLINE | ID: mdl-38697978

Sigma-2-ligands (S2L) are characterized by high binding affinities to their cognate sigma-2 receptor, overexpressed in rapidly proliferating tumor cells. As such, S2L were developed as imaging probes (ISO1) or as cancer therapeutics, alone (SV119 [C6], SW43 [C10]) and as delivery vehicles for cytotoxic drug cargoes (C6-Erastin, C10-SMAC). However, the exact mechanism of S2L-induced cytotoxicity remains to be fully elucidated. A series of high-affinity S2L were evaluated regarding their cytotoxicity profiles across cancer cell lines. While C6 and C10 displayed distinct cytotoxicities, C0 and ISO1 were essentially non-toxic. Confocal microscopy and lipidomics analysis in cellular and mouse models revealed that C10 induced increases in intralysosomal free cholesterol and in cholesterol esters, suggestive of unaltered intracellular cholesterol trafficking. Cytotoxicity was caused by cholesterol excess, a phenomenon that contrasts the effects of NPC1 inhibition. RNA-sequencing revealed gene clusters involved in cholesterol homeostasis and ER stress response exclusively by cytotoxic S2L. ER stress markers were confirmed by qPCR and their targeted modulation inhibited or enhanced cytotoxicity of C10 in a predicted manner. Moreover, C10 increased sterol regulatory element-binding protein 2 (SREBP2) and low-density lipoprotein receptor (LDLR), both found to be pro-survival factors activated by ER stress. Furthermore, inhibition of downstream processes of the adaptive response to S2L with simvastatin resulted in synergistic treatment outcomes in combination with C10. Of note, the S2L conjugates retained the ER stress response of the parental ligands, indicative of cholesterol homeostasis being involved in the overall cytotoxicity of the drug conjugates. Based on these findings, we conclude that S2L-mediated cell death is due to free cholesterol accumulation that leads to ER stress. Consequently, the cytotoxic profiles of S2L drug conjugates are proposed to be enhanced via concurrent ER stress inducers or simvastatin, strategies that could be instrumental on the path toward tumor eradication.


Cholesterol , Endoplasmic Reticulum Stress , Receptors, sigma , Cholesterol/metabolism , Receptors, sigma/metabolism , Receptors, sigma/genetics , Humans , Animals , Mice , Endoplasmic Reticulum Stress/drug effects , Ligands , Cell Line, Tumor , Cell Death/drug effects , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology
10.
J Transl Med ; 22(1): 441, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730481

Microtubule targeting agents (MTAs) are commonly prescribed to treat cancers and predominantly kill cancer cells in mitosis. Significantly, some MTA-treated cancer cells escape death in mitosis, exit mitosis and become malignant polyploid giant cancer cells (PGCC). Considering the low number of cancer cells undergoing mitosis in tumor tissues, killing them in interphase may represent a favored antitumor approach. We discovered that ST-401, a mild inhibitor of microtubule (MT) assembly, preferentially kills cancer cells in interphase as opposed to mitosis, a cell death mechanism that avoids the development of PGCC. Single cell RNA sequencing identified mRNA transcripts regulated by ST-401, including mRNAs involved in ribosome and mitochondrial functions. Accordingly, ST-401 induces a transient integrated stress response, reduces energy metabolism, and promotes mitochondria fission. This cell response may underly death in interphase and avoid the development of PGCC. Considering that ST-401 is a brain-penetrant MTA, we validated these results in glioblastoma cell lines and found that ST-401 also reduces energy metabolism and promotes mitochondria fission in GBM sensitive lines. Thus, brain-penetrant mild inhibitors of MT assembly, such as ST-401, that induce death in interphase through a previously unanticipated antitumor mechanism represent a potentially transformative new class of therapeutics for the treatment of GBM.


Cell Death , Giant Cells , Interphase , Microtubules , Polyploidy , Humans , Interphase/drug effects , Microtubules/metabolism , Microtubules/drug effects , Cell Line, Tumor , Cell Death/drug effects , Giant Cells/drug effects , Giant Cells/metabolism , Giant Cells/pathology , Mitochondrial Dynamics/drug effects , Energy Metabolism/drug effects , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/genetics , Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Gene Expression Regulation, Neoplastic/drug effects
11.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791385

Natural products are generally considered safe for human consumption, but this classification is often based on ethnobotanical surveys or their use in traditional medicine over a long period of time. However, edaphoclimatic factors are known to produce different chemotypes, which may affect the safety profile and bioactivities, and are not commonly considered for plants exploited as crops worldwide. Thymus carnosus Boiss., a thyme species with various health-promoting effects, has potential pharmaceutical applications, but edaphoclimatic factors were found to significantly impact its phytochemical composition. Thus, we aimed to assess the safety profile of T. carnosus extracts obtained from plants harvested in two locations over three consecutive years and to establish an association with specific components, an essential study in the search for new sources of nutraceuticals. Thus, the antiproliferative effect of an aqueous decoction (AD), hydroethanolic (HE) extracts, and major extracts' components of T. carnosus was evaluated on intestinal (Caco-2) and hepatic (HepG2) cell models, revealing effects dependent on extract type, cell line, and tested compounds. Flavonoids induced different cytotoxic patterns, which could be attributed to molecular structural differences. Flow cytometry analysis showed apoptosis and necrosis induction, mediated by the modulation of intracellular reactive oxygen species and mitochondrial membrane potential, effects that were dependent on the cell line and phytochemical composition and on the synergism between extracts components, rather than on the activity of an isolated compound. While ursolic acid was the component with the strongest impact on the difference between extraction methods, flavonoids assumed a pivotal role in the response of different cell lines to the extracts. We report for the first time, for Thymus spp. extracts, that variations in the phytochemical composition clearly influence the cellular response, thus highlighting the need for extract standardization for medicinal applications.


Oxidative Stress , Phytochemicals , Plant Extracts , Thymus Plant , Thymus Plant/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Oxidative Stress/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/analysis , Caco-2 Cells , Hep G2 Cells , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Death/drug effects , Reactive Oxygen Species/metabolism , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/analysis , Biomarkers
12.
Drug Dev Res ; 85(3): e22200, 2024 May.
Article En | MEDLINE | ID: mdl-38747107

In this study, we analyzed and verified differentially expressed genes (DEGs) in ROS and KEAP1 crosstalk in oncogenic signatures using GEO data sets (GSE4107 and GSE41328). Multiple pathway enrichment analyses were finished based on DEGs. The genetic signature for colorectal adenocarcinoma (COAD) was identified by using the Cox regression analysis. Kaplan-Meier survival and receiver operating characteristic curve analysis were used to explore the prognosis value of specific genes in COAD. The potential immune signatures and drug sensitivity prediction were also analyzed. Promising small-molecule agents were identified and predicted targets of α-hederin in SuperPred were validated by molecular docking. Also, expression levels of genes and Western blot analysis were conducted. In total, 48 genes were identified as DEGs, and the hub genes such as COL1A1, CXCL12, COL1A2, FN1, CAV1, TIMP3, and IGFBP7 were identified. The ROS and KEAP1-associated gene signatures comprised of hub key genes were developed for predicting the prognosis and evaluating the immune cell responses and immune infiltration in COAD. α-hederin, a potential anti-colorectal cancer (CRC) agent, was found to enhance the sensitivity of HCT116 cells, regulate CAV1 and COL1A1, and decrease KEAP1, Nrf2, and HO-1 expression significantly. KEAP1-related genes could be an essential mediator of ROS in CRC, and KEAP1-associated genes were effective in predicting prognosis and evaluating individualized CRC treatment. Therefore, α-hederin may be an effective chemosensitizer for CRC treatments in clinical settings.


Colorectal Neoplasms , Kelch-Like ECH-Associated Protein 1 , Reactive Oxygen Species , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Oleanolic Acid/pharmacology , Oleanolic Acid/analogs & derivatives , Molecular Docking Simulation , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Cell Death/drug effects , Cell Line, Tumor , Prognosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
13.
Free Radic Res ; 58(3): 217-228, 2024 Mar.
Article En | MEDLINE | ID: mdl-38572725

Ferroptosis has been characterized as a form of iron-dependent regulated cell death accompanied by an accumulation of reactive oxygen species and lipid oxidation products along with typical morphological alterations in mitochondria. Ferroptosis is activated by diverse triggers and inhibited by ferrostatin-1 and liproxstatin-1, apart from iron chelators and several antioxidants, and the process is implicated in multiple pathological conditions. There are, however, certain ambiguities about ferroptosis, especially regarding the final executioner of cell death subsequent to the accumulation of ROS. This study uses a typical inducer of ferroptosis such as erastin on SH-SY5Y cells, and shows clearly that ferroptotic death of cells is accompanied by the loss of mitochondrial membrane potential and intracellular ATP content along with an accumulation of oxidative stress markers. All these are prevented by ferrostatin-1 and liproxstatin-1. Additionally, cyclosporine A prevents mitochondrial alterations and cell death induced by erastin implying the crucial role of mitochondrial permeability transition pore (mPTP) activation in ferroptotic death. Furthermore, an accumulation of α-synuclein occurs during erastin induced ferroptosis which can be inhibited by ferrostatin-1 and liproxstatin-1. When the knock-down of α-synuclein expression is performed by specific siRNA treatment of SH-SY5Y cells, the mitochondrial impairment and ferroptotic death of the cells induced by erastin are markedly prevented. Thus, α-synuclein through the involvement of mPTP appears to be the key executioner protein of ferroptosis induced by erastin, but it needs to be verified if it is a generalized mechanism of ferroptosis by using other inducers and cell lines.


Ferroptosis , Mitochondria , Piperazines , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Cell Death/drug effects , Cell Line, Tumor , Ferroptosis/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Piperazines/pharmacology , Reactive Oxygen Species/metabolism
14.
J Neurosci Res ; 102(5): e25337, 2024 May.
Article En | MEDLINE | ID: mdl-38680084

Hepatic encephalopathy (HE) is defined as decline in neurological function during chronic liver disease (CLD). Alcohol is a major etiological factor in the pathogenesis of fibrosis/cirrhosis and has also been documented to directly impact the brain. However, the role of alcohol in the development of HE in CLD remains unclear. Here, we investigated the impact of excessive alcohol administration on neurological deterioration in rats with CLD. Starting day 7 post-BDL surgery, rats were administered alcohol twice daily (51% v/v ethanol, 3 g/kg, via gavage) for 4 weeks. Motor coordination was assessed weekly using rotarod and anxiety-like behavior was evaluated with open field and elevated plus maze at 5 weeks. Upon sacrifice, brains were collected for western blot and immunohistochemical analyses to investigate neuronal integrity and oxidative stress status. Alcohol worsened motor coordination performance and increased anxiety-like behavior in BDL rats. Impairments were associated with decreased neuronal markers of NeuN and SMI311, increased apoptotic markers of cleaved/pro-caspase-3 and Bax/Bcl2, increased necroptosis markers of pRIP3 and pMLKL, decreased total antioxidant capacity (TAC), and increased 4-hydroxynonenal (4-HNE)modified proteins in the cerebellum of BDL-alcohol rats when compared to respective controls. Immunofluorescence confirmed the colocalization of cleaved caspase-3 and pMLKL in the granular neurons of the cerebellum of BDL-alcohol rats. Excessive alcohol consumption exacerbates HE which leads to associated apoptotic and necroptotic neuronal loss in the cerebellum of BDL-alcohol rats. Additionally, higher levels of 4-HNE and decreased TAC in the cerebellum of BDL-alcohol rats suggest oxidative stress is the triggering factor of apoptotic and necroptotic neuronal loss/injury.


Ethanol , Hepatic Encephalopathy , Neurons , Oxidative Stress , Animals , Male , Hepatic Encephalopathy/pathology , Hepatic Encephalopathy/chemically induced , Hepatic Encephalopathy/metabolism , Ethanol/toxicity , Ethanol/adverse effects , Rats , Neurons/pathology , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Cell Death/drug effects , Rats, Sprague-Dawley , Apoptosis/drug effects , Anxiety/etiology
15.
Front Immunol ; 15: 1328263, 2024.
Article En | MEDLINE | ID: mdl-38650948

Background: Despite therapy advances, one of the leading causes of cancer deaths still remains lung cancer. To improve current treatments or prevent non-small cell lung cancer (NSCLC), the role of the nutrition in cancer onset and progression needs to be understood in more detail. While in colorectal cancer, the influence of local microbiota derived SCFAs have been well investigated, the influence of SCFA on lung cancer cells via peripheral blood immune system should be investigated more deeply. In this respect, nutrients absorbed via the gut might affect the tumor microenvironment (TME) and thus play an important role in tumor cell growth. Objective: This study focuses on the impact of the short-chain fatty acid (SCFA) Sodium Butyrate (SB), on lung cancer cell survival. We previously described a pro-tumoral role of glucose on A549 lung adenocarcinoma cell line. In this study, we wanted to know if SB would counteract the effect of glucose and thus cultured A549 and H520 in vitro with and without SB in the presence or absence of glucose and investigated how the treatment with SB affects the survival of lung cancer cells and its influence on immune cells fighting against lung cancer. Methods: In this study, we performed cell culture experiments with A549, H520 and NSCLC-patient-derived epithelial cells under different SB levels. To investigate the influence on the immune system, we performed in vitro culture of peripheral mononuclear blood cells (PBMC) from control, smoker and lung cancer patients with increasing SB concentrations. Results: To investigate the effect of SB on lung tumor cells, we first analyzed the effect of 6 different concentrations of SB on A549 cells at 48 and 72 hours cell culture. Here we found that, SB treatment reduced lung cancer cell survival in a concentration dependent manner. We next focused our deeper analysis on the two concentrations, which caused the maximal reduction in cell survival. Here, we observed that SB led to cell cycle arrest and induced early apoptosis in A549 lung cancer cells. The expression of cell cycle regulatory proteins and A549 lung cancer stem cell markers (CD90) was induced. Additionally, this study explored the role of interferon-gamma (IFN-γ) and its receptor (IFN-γ-R1) in combination with SB treatment, revealing that, although IFN-γ-R1 expression was increased, IFN-γ did not affect the efficacy of SB in reducing tumor cell viability. Furthermore, we examined the effects of SB on immune cells, specifically CD8+ T cells and natural killer (NK) cells from healthy individuals, smokers, and NSCLC patients. SB treatment resulted in a decreased production of IFN-γ and granzyme B in CD8+ T cells and NK cells. Moreover, SB induced IFN-γ-R1 in NK cells and CD4+ T cells in the absence of glucose both in PBMCs from controls and NSCLC subjects. Conclusion: Overall, this study highlights the potential of SB in inhibiting lung cancer cell growth, triggering apoptosis, inducing cell cycle arrest, and modulating immune responses by activating peripheral blood CD4+ T cells while selectively inducing IFN-γ-R1 in NK cells in peripheral blood and inhibiting peripheral blood CD8+ T cells and NK cells. Thus, understanding the mechanisms of action of SB in the TME and its influence on the immune system provide valuable insights of potentially considering SB as a candidate for adjunctive therapies in NSCLC.


CD4-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/metabolism , Male , Female , A549 Cells , Middle Aged , Aged , Tumor Microenvironment/immunology , Butyric Acid/pharmacology , Cell Line, Tumor , Cell Death/drug effects , Cell Survival/drug effects , Interferon-gamma/metabolism
16.
Eur J Pharmacol ; 972: 176558, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38614382

Inhibitors of polo-like kinase (PLK) are currently being evaluated as anticancer drugs. However, the molecular mechanism of PLK inhibitor-induced cell death is not fully understood. In this study, we found that GW843682X and BI2536, two inhibitors of PLK1, significantly induced cell death in multiple type cells. The induction of cell death was related to the preferring expression of PLK1. However, in human umbilical vascular endothelial cells (HUVEC) and human colorectal carcinoma cells, which expressed higher levels of both PLK1 and PLK2, PLK1 inhibitors induced very low levels of cell death. Clinical analysis reveals PLK1 presence in 26 of 30 NPC tumor tissues. In in vivo NPC lung metastasis nude mouse models, PLK1 inhibitors decreased NPC progress. Mechanistically, the PLK1 inhibitor did not activate p53, and the cell death was not reversed by p53 inhibition. Moreover, PLK1 inhibitor-induced cell death was PARP- and caspase-independent. Although PLK1 inhibitors induced down-regulation of calpain inhibitor calpastatin and calpain was activated by PLK1 inhibition, calpain blocking did not reverse cell death induced by PLK1 inhibitors, suggesting the non-involvement of calpain. Surprisingly, we found that PLK1 inhibitors induced the activation of proteasome, and the treatment of cells with PLK1 inhibitors reduced the levels of ubiquitinated proteins. And proteasome inhibitors reversed cell death induced by PLK1 inhibitors in various cell types in which PLK1 was preferentially expressed. Moreover, PLK1 inhibition reversed the degradation of proteins including p53, caspase 8, PARP and calpastatin. These results suggest that the activation of proteasome is critical for cell death induced by PLK1 inhibition.


Cell Cycle Proteins , Cell Death , Polo-Like Kinase 1 , Proteasome Endopeptidase Complex , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Humans , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Animals , Proteasome Endopeptidase Complex/metabolism , Cell Death/drug effects , Mice , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Mice, Nude , Pteridines/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Calpain/antagonists & inhibitors , Calpain/metabolism , Enzyme Activation/drug effects , Xenograft Model Antitumor Assays , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/pharmacology
17.
Mar Drugs ; 22(4)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38667791

Cholestane-3ß,5α,6ß-triol (CT) and its analogues are abundant in natural sources and are reported to demonstrate cytotoxicity toward different kinds of tumor cells without a deep probe into their mechanism of action. CT is also one of the major metabolic oxysterols of cholesterol in mammals and is found to accumulate in various diseases. An extensive exploration of the biological roles of CT over the past few decades has established its identity as an apoptosis inducer. In this study, the effects of CT on A549 cell death were investigated through cell viability assays. RNA-sequencing analysis and western blot of CT-treated A549 cells revealed the role of CT in inducing endoplasmic reticulum (ER) stress response and enhancing autophagy flux, suggesting a putative mechanism of CT-induced cell-death activation involving reactive oxygen species (ROS)-mediated ER stress and autophagy. It is reported for the first time that the upregulation of autophagy induced by CT can serve as a cellular cytotoxicity response in accelerating CT-induced cell death in A549 cells. This research provides evidence for the effect of CT as an oxysterol in cell response to oxidative damage and allows for a deep understanding of cholesterol in its response in an oxidative stress environment that commonly occurs in the progression of various diseases.


Autophagy , Cell Survival , Cholestanols , Endoplasmic Reticulum Stress , Reactive Oxygen Species , Humans , Endoplasmic Reticulum Stress/drug effects , Autophagy/drug effects , A549 Cells , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Apoptosis/drug effects , Cholesterol/metabolism , Cholestanes/pharmacology , Cell Death/drug effects , Oxidative Stress/drug effects
18.
J Pharmacol Sci ; 155(2): 44-51, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677785

Subretinal hemorrhages result in poor vision and visual field defects. During hemorrhage, several potentially toxic substances are released from iron-based hemoglobin and hemin, inducing cellular damage, the detailed mechanisms of which remain unknown. We examined the effects of excess intracellular iron on retinal pigment epithelial (RPE) cells. A Fe2+ probe, SiRhoNox-1 was used to investigate Fe2+ accumulation after treatment with hemoglobin or hemin in the human RPE cell line ARPE-19. We also evaluated the production of reactive oxygen species (ROS) and lipid peroxidation. Furthermore, the protective effect of-an iron chelator, 2,2'-bipyridyl (BP), and ferrostatin-1 (Fer-1) on the cell damage, was evaluated. Fe2+ accumulation increased in the hemoglobin- or hemin-treated groups, as well as intracellular ROS production and lipid peroxidation. In contrast, BP treatment suppressed RPE cell death, ROS production, and lipid peroxidation. Pretreatment with Fer-1 ameliorated cell death in a concentration-dependent manner and suppressed ROS production and lipid peroxidation. Taken together, these findings indicate that hemoglobin and hemin, as well as subretinal hemorrhage, may induce RPE cell damage and visual dysfunction via intracellular iron accumulation.


Hemin , Hemoglobins , Iron , Retinal Pigment Epithelium , Humans , Cell Death/drug effects , Cell Line , Cyclohexylamines/pharmacology , Hemin/pharmacology , Hemoglobins/metabolism , Iron/metabolism , Iron Chelating Agents/pharmacology , Lipid Peroxidation/drug effects , Phenylenediamines/pharmacology , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology
19.
Cancer Lett ; 591: 216867, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38593919

Autophagy, a self-digestion mechanism, has emerged as a promising target in the realm of cancer therapy, particularly in bladder cancer (BCa), a urological malignancy characterized by dysregulated biological processes contributing to its progression. This highly conserved catabolic mechanism exhibits aberrant activation in pathological events, prominently featured in human cancers. The nuanced role of autophagy in cancer has been unveiled as a double-edged sword, capable of functioning as both a pro-survival and pro-death mechanism in a context-dependent manner. In BCa, dysregulation of autophagy intertwines with cell death mechanisms, wherein pro-survival autophagy impedes apoptosis and ferroptosis, while pro-death autophagy diminishes tumor cell survival. The impact of autophagy on BCa progression is multifaceted, influencing metastasis rates and engaging with the epithelial-mesenchymal transition (EMT) mechanism. Pharmacological modulation of autophagy emerges as a viable strategy to impede BCa progression and augment cell death. Notably, the introduction of nanoparticles for targeted autophagy regulation holds promise as an innovative approach in BCa suppression. This review underscores the intricate interplay of autophagy with cell death pathways and its therapeutic implications in the nuanced landscape of bladder cancer.


Autophagy , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Nanoparticles , Apoptosis/drug effects , Animals , Ferroptosis/drug effects , Cell Death/drug effects
20.
Nutrients ; 16(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674891

The complex and multi-stage processes of carcinogenesis are accompanied by a number of phenomena related to the potential involvement of various chemopreventive factors, which include, among others, compounds of natural origin such as flavonols. The use of flavonols is not only promising but also a recognized strategy for cancer treatment. The chemopreventive impact of flavonols on cancer arises from their ability to act as antioxidants, impede proliferation, promote cell death, inhibit angiogenesis, and regulate the immune system through involvement in diverse forms of cellular death. So far, the molecular mechanisms underlying the regulation of apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis occurring with the participation of flavonols have remained incompletely elucidated, and the results of the studies carried out so far are ambiguous. For this reason, one of the therapeutic goals is to initiate the death of altered cells through the use of quercetin, kaempferol, myricetin, isorhamnetin, galangin, fisetin, and morin. This article offers an extensive overview of recent research on these compounds, focusing particularly on their role in combating cancer and elucidating the molecular mechanisms governing apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Assessment of the mechanisms underlying the anticancer effects of compounds in therapy targeting various types of cell death pathways may prove useful in developing new therapeutic regimens and counteracting resistance to previously used treatments.


Apoptosis , Autophagy , Ferroptosis , Flavonols , Necroptosis , Neoplasms , Pyroptosis , Humans , Flavonols/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Ferroptosis/drug effects , Autophagy/drug effects , Pyroptosis/drug effects , Apoptosis/drug effects , Necroptosis/drug effects , Animals , Cell Death/drug effects
...