Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.008
1.
CNS Neurosci Ther ; 30(6): e14784, 2024 Jun.
Article En | MEDLINE | ID: mdl-38828669

INTRODUCTION: Programmed death-ligand 1 (PD-L1) expression is an immune evasion mechanism that has been demonstrated in many tumors and is commonly associated with a poor prognosis. Over the years, anti-PD-L1 agents have gained attention as novel anticancer therapeutics that induce durable tumor regression in numerous malignancies. They may be a new treatment choice for neurofibromatosis type 2 (NF2) patients. AIMS: The aims of this study were to detect the expression of PD-L1 in NF2-associated meningiomas, explore the effect of PD-L1 downregulation on tumor cell characteristics and T-cell functions, and investigate the possible pathways that regulate PD-L1 expression to further dissect the possible mechanism of immune suppression in NF2 tumors and to provide new treatment options for NF2 patients. RESULTS: PD-L1 is heterogeneously expressed in NF2-associated meningiomas. After PD-L1 knockdown in NF2-associated meningioma cells, tumor cell proliferation was significantly inhibited, and the apoptosis rate was elevated. When T cells were cocultured with siPD-L1-transfected NF2-associated meningioma cells, the expression of CD69 on both CD4+ and CD8+ T cells was partly reversed, and the capacity of CD8+ T cells to kill siPD-L1-transfected tumor cells was partly restored. Results also showed that the PI3K-AKT-mTOR pathway regulates PD-L1 expression, and the mTOR inhibitor rapamycin rapidly and persistently suppresses PD-L1 expression. In vivo experimental results suggested that anti-PD-L1 antibody may have a synergetic effect with the mTOR inhibitor in reducing tumor cell proliferation and that reduced PD-L1 expression could contribute to antitumor efficacy. CONCLUSIONS: Targeting PD-L1 could be helpful for restoring the function of tumor-infiltrating lymphocytes and inducing apoptosis to inhibit tumor proliferation in NF2-associated meningiomas. Dissecting the mechanisms of the PD-L1-driven tumorigenesis of NF2-associated meningioma will help to improve our understanding of the mechanisms underlying tumor progression and could facilitate further refinement of current therapies to improve the treatment of NF2 patients.


B7-H1 Antigen , Cell Proliferation , Meningeal Neoplasms , Meningioma , Neurofibromatosis 2 , T-Lymphocytes , Meningioma/metabolism , Meningioma/immunology , Meningioma/pathology , Humans , B7-H1 Antigen/metabolism , Cell Proliferation/drug effects , Cell Proliferation/physiology , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/pathology , Meningeal Neoplasms/immunology , Animals , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects , Neurofibromatosis 2/metabolism , Mice , Male , Female , Neurofibromin 2/metabolism , Neurofibromin 2/genetics , Cell Line, Tumor , Middle Aged , Mice, Nude , Apoptosis/drug effects , Apoptosis/physiology
2.
J Cardiothorac Surg ; 19(1): 314, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824534

BACKGROUND: Asthma is a respiratory disease characterized by airway remodeling. We aimed to find out the role and mechanism of lncRNA MEG3 in asthma. METHODS: We established a cellular model of asthma by inducing human airway smooth muscle cells (HASMCs) with PDGF-BB, and detected levels of lncRNA MEG3, miR-143-3p and FGF9 in HASMCs through qRT-PCR. The functions of lncRNA MEG3 or miR-143-3p on HASMCs were explored by cell transfection. The binding sites of miR-143-3p and FGF9 were subsequently analyzed with bioinformatics software, and validated with dual-luciferase reporter assay. MTT, 5-Ethynyl-2'-deoxyuridine (EdU) assay, and Transwell were used to detect the effects of lncRNA MEG3 or miR-143-3p on proliferation and migration of HASMCs. QRT-PCR and western blot assay were used to evaluate the level of proliferation-related marker PCNA in HASMCs. RESULTS: The study found that lncRNA MEG3 negatively correlated with miR-143-3p, and miR-143-3p could directly target with FGF9. Silence of lncRNA MEG3 can suppress migration and proliferation of PDGF-BB-induced HASMCs via increasing miR-143-3p. Further mechanistic studies revealed that miR-143-3p negatively regulated FGF9 expression in HASMCs. MiR-143-3p could inhibit PDGF-BB-induced HASMCs migration and proliferation through downregulating FGF9. CONCLUSION: LncRNA MEG3 silencing could inhibit the migration and proliferation of HASMCs through regulating miR-143-3p/FGF9 signaling axis. These results imply that lncRNA MEG3 plays a protective role against asthma.


Asthma , Cell Movement , Cell Proliferation , Fibroblast Growth Factor 9 , MicroRNAs , Myocytes, Smooth Muscle , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Movement/physiology , Cell Proliferation/physiology , Cell Proliferation/genetics , Asthma/genetics , Asthma/metabolism , Myocytes, Smooth Muscle/metabolism , Fibroblast Growth Factor 9/genetics , Fibroblast Growth Factor 9/metabolism , Cells, Cultured , Airway Remodeling/physiology , Airway Remodeling/genetics
3.
NPJ Syst Biol Appl ; 10(1): 65, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834572

Understanding the dynamics of intracellular signaling pathways, such as ERK1/2 (ERK) and Akt1/2 (Akt), in the context of cell fate decisions is important for advancing our knowledge of cellular processes and diseases, particularly cancer. While previous studies have established associations between ERK and Akt activities and proliferative cell fate, the heterogeneity of single-cell responses adds complexity to this understanding. This study employed a data-driven approach to address this challenge, developing machine learning models trained on a dataset of growth factor-induced ERK and Akt activity time courses in single cells, to predict cell division events. The most predictive models were developed by applying discrete wavelet transforms (DWTs) to extract low-frequency features from the time courses, followed by using Ensemble Integration, a data integration and predictive modeling framework. The results demonstrated that these models effectively predicted cell division events in MCF10A cells (F-measure=0.524, AUC=0.726). ERK dynamics were found to be more predictive than Akt, but the combination of both measurements further enhanced predictive performance. The ERK model`s performance also generalized to predicting division events in RPE cells, indicating the potential applicability of these models and our data-driven methodology for predicting cell division across different biological contexts. Interpretation of these models suggested that ERK dynamics throughout the cell cycle, rather than immediately after growth factor stimulation, were associated with the likelihood of cell division. Overall, this work contributes insights into the predictive power of intra-cellular signaling dynamics for cell fate decisions, and highlights the potential of machine learning approaches in unraveling complex cellular behaviors.


Cell Division , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , Humans , Cell Division/physiology , Machine Learning , Signal Transduction/physiology , Models, Biological , Stochastic Processes , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System/physiology , Cell Proliferation/physiology
4.
Invest Ophthalmol Vis Sci ; 65(6): 14, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38848077

Purpose: The integrity of the corneal epithelium is essential in maintaining normal corneal function. Conditions disrupting the corneal epithelial layer range from chemical burns to dry eye disease and may result in impairment of both corneal transparency and sensation. Identifying factors that regulate corneal wound healing is key for the development of new treatment strategies. Here, we investigated a direct role of mitochondria in corneal wound healing via mitochondria transplantation. Methods: Human corneal epithelial cells (hCECs) were isolated from human corneas and incubated with mitochondria which were isolated from human ARPE-19 cells. We determined the effect of mitochondria transplantation on wound healing and proliferation of hCECs. In vivo, we used a mouse model of corneal chemical injury. Mitochondria were isolated from mouse livers and topically applied to the ocular surface following injury. We evaluated the time of wound repair, corneal re-epithelization, and stromal abnormalities. Results: Mitochondria transplantation induced the proliferation and wound healing of primary hCECs. Further, mitochondria transplantation promoted wound healing in vivo. Specifically, mice receiving mitochondria recovered twice as fast as control mice following corneal injury, presenting both enhanced and improved repair. Corneas treated with mitochondria demonstrated the re-epithelization of the wound area to a multi-layer appearance, compared to thinning and complete loss of the epithelium in control mice. Mitochondria transplantation also prevented the thickening and disorganization of the corneal stromal lamella, restoring normal corneal dehydration. Conclusions: Mitochondria promote corneal re-epithelization and wound healing. Augmentation of mitochondria levels via mitochondria transplantation may serve as an effective treatment for inducing the rapid repair of corneal epithelial defects.


Cell Proliferation , Disease Models, Animal , Epithelium, Corneal , Mitochondria , Wound Healing , Animals , Mice , Wound Healing/physiology , Humans , Cell Proliferation/physiology , Burns, Chemical/surgery , Burns, Chemical/physiopathology , Mice, Inbred C57BL , Corneal Injuries , Cells, Cultured , Eye Burns/chemically induced
5.
Neurosurg Focus ; 56(5): E17, 2024 May.
Article En | MEDLINE | ID: mdl-38691868

OBJECTIVE: There is a lack of effective drugs to treat the progression and recurrence of chordoma, which is widely resistant to treatment in chemotherapy. The authors investigated the functional and therapeutic relevance of the E1A-binding protein p300 (EP300) in chordoma. METHODS: The expression of EP300 and vimentin was examined in specimens from 9 patients with primary and recurrent chordoma with immunohistochemistry. The biological functions of EP300 were evaluated with Cell Counting Kit-8, clonogenic assays, and transwell assays. The effects of EP300 inhibitors (C646 and SGC-CBP30) on chordoma cell motility were assessed with these assays. The effect of the combination of EP300 inhibitors and cisplatin on chordoma cells was evaluated with clonogenic assays. Reverse transcription quantitative polymerase chain reaction and Western blot techniques were used to explore the potential mechanism of EP300 through upregulation of the expression of vimentin to promote the progression of chordoma. RESULTS: Immunohistochemistry analysis revealed a positive correlation between elevated EP300 expression levels and recurrence. The upregulation of EP300 stimulated the growth of and increased the migratory and invasive capabilities of chordoma cells, along with upregulating vimentin expression and consequently impacting their invasive properties. Conversely, EP300 inhibitors decreased cell proliferation and downregulated vimentin. Furthermore, the combination of EP300 inhibition and cisplatin exhibited an enhanced anticancer effect on chordoma cells, indicating that EP300 may influence chordoma sensitivity to chemotherapy. CONCLUSIONS: These findings indicate that EP300 functions as an oncogene in chordoma. Targeting EP300 offers a novel approach to the development and clinical treatment of chordoma.


Chordoma , Disease Progression , E1A-Associated p300 Protein , Up-Regulation , Vimentin , Humans , Chordoma/genetics , Chordoma/metabolism , Vimentin/metabolism , Vimentin/genetics , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , Male , Up-Regulation/drug effects , Female , Middle Aged , Adult , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cell Movement/drug effects , Cell Line, Tumor , Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/genetics , Gene Expression Regulation, Neoplastic/drug effects
6.
J Vis Exp ; (207)2024 May 03.
Article En | MEDLINE | ID: mdl-38767361

Schwann cells (SCs) are myelinating cells of the peripheral nervous system, playing a crucial role in peripheral nerve regeneration. Nanosecond Pulse Electric Field (nsPEF) is an emerging method applicable in nerve electrical stimulation that has been demonstrated to be effective in stimulating cell proliferation and other biological processes. Aiming to assess whether SCs undergo significant changes under nsPEF and help explore the potential for new peripheral nerve regeneration methods, cultured RSC96 cells were subjected to nsPEF stimulation at 5 kV and 10 kV, followed by continued cultivation for 3-4 days. Subsequently, some relevant factors expressed by SCs were assessed to demonstrate the successful stimulation, including the specific marker protein, neurotrophic factor, transcription factor, and myelination regulator. The representative results showed that nsPEF significantly enhanced the proliferation and migration of SCs and the ability to synthesize relevant factors that contribute positively to the regeneration of peripheral nerves. Simultaneously, lower expression of GFAP indicated the benign prognosis of peripheral nerve injuries. All these outcomes show that nsPEF has great potential as an efficient treatment method for peripheral nerve injuries by stimulating SCs.


Nerve Regeneration , Schwann Cells , Schwann Cells/cytology , Schwann Cells/physiology , Nerve Regeneration/physiology , Animals , Rats , Peripheral Nerves/physiology , Peripheral Nerves/cytology , Cell Proliferation/physiology , Electric Stimulation/methods , Peripheral Nerve Injuries/therapy
7.
Synapse ; 78(3): e22293, 2024 May.
Article En | MEDLINE | ID: mdl-38779935

The differentiation of bone marrow stromal cells (BMSCs) into Schwann-like cells (SCLCs) has the potential to promote the structural and functional restoration of injured axons. However, the optimal induction protocol and its underlying mechanisms remain unclear. This study aimed to compare the effectiveness of different induction protocols in promoting the differentiation of rat BMSCs into SCLCs and to explore their potential mechanisms. BMSCs were induced using two distinct methods: a composite factor induction approach (Protocol-1) and a conditioned culture medium induction approach (Protocol-2). The expression of Schwann cells (SCs) marker proteins and neurotrophic factors (NTFs) in the differentiated cells was assessed. Cell proliferation and apoptosis were also measured. During induction, changes in miR-21 and Sprouty RTK signaling antagonist 2 (SPRY2) mRNA were analyzed. Following the transfection of BMSCs with miR-21 agomir or miR-21 antagomir, induction was carried out using both protocols, and the expression of SPRY2, ERK1/2, and SCs marker proteins was examined. The results revealed that NTFs expression was higher in Protocol-1, whereas SCs marker proteins expression did not significantly differ between the two groups. Compared to Protocol-1, Protocol-2 exhibited enhanced cell proliferation and fewer apoptotic and necrotic cells. Both protocols showed a negative correlation between miR-21 and SPRY2 expression throughout the induction stages. After induction, the miR-21 agomir group exhibited reduced SPRY2 expression, increased ERK1/2 expression, and significantly elevated expression of SCs marker proteins. This study demonstrates that Protocol-1 yields higher NTFs expression, whereas Protocol-2 results in stronger SCLCs proliferation. Upregulating miR-21 suppresses SPRY2 expression, activates the ERK1/2 signaling pathway, and promotes BMSC differentiation into SCLCs.


Cell Differentiation , Cell Proliferation , Membrane Proteins , Mesenchymal Stem Cells , MicroRNAs , Rats, Sprague-Dawley , Schwann Cells , Animals , Schwann Cells/metabolism , Schwann Cells/cytology , MicroRNAs/metabolism , MicroRNAs/genetics , Cell Differentiation/physiology , Rats , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Proliferation/physiology , Cells, Cultured , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Apoptosis/physiology , Nerve Growth Factors/metabolism , Nerve Growth Factors/genetics , Culture Media, Conditioned/pharmacology , Nerve Tissue Proteins
8.
Placenta ; 151: 48-58, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718733

INTRODUCTION: Spontaneous miscarriage is a common complication of early pregnancy. Previous studies have shown that mitochondrial function plays an important role in establishment of a successful pregnancy. Cytochrome c oxidase subunit 4 isoform 1 (COX4I1), a component of electron transport chain complex Ⅳ, is required for coupling the rate of ATP production to energetic requirements. However, there is very limited research on its role in trophoblast biology and how its dysfunction may contribute to spontaneous miscarriage. METHODS: Placental villi (7-10 weeks gestational age) collected from either induced termination of pregnancy or after spontaneous miscarriage were examined for expression of COX4I1. COX4I1 was knocked down by siRNA transfection of primary isolates of EVT cells. Real-time cell analysis (RTCA) and 5-Ethynyl-2'-deoxyuridine (EdU) were used to detect changes in proliferation ability after COX4I1 knockdown of EVT cells. Migration and invasion indices were determined by RTCA. Mitochondrial morphology was observed via MitoTracker staining. Oxidative phosphorylation, ATP production, and glycolysis in COX4I1-deficient cells and controls were assessed by a cellular energy metabolism analyzer (Seahorse). RESULTS: In placental villous tissue, COX4I1 expression was significantly decreased in the spontaneous miscarriage group. Knockdown of COX4I1 inhibited EVT cell proliferation, increased the migration and invasion ability and mitochondrial fusion of EVT cells. Mitochondrial respiration and glycolysis were impaired in COX4I1-deficient EVT cells. Knockdown of MMP1 could rescue the increased migration and invasion induced by COX4I1 silencing. DISCUSSION: Low expression of COX4I1 leads to mitochondrial dysfunction in EVT, resulting in altered trophoblast function, and ultimately to pregnancy loss.


Abortion, Spontaneous , Cell Movement , Cell Proliferation , Electron Transport Complex IV , Mitochondria , Trophoblasts , Trophoblasts/metabolism , Female , Humans , Mitochondria/metabolism , Electron Transport Complex IV/metabolism , Cell Proliferation/physiology , Pregnancy , Cell Movement/physiology , Abortion, Spontaneous/metabolism , Abortion, Spontaneous/pathology
9.
NPJ Syst Biol Appl ; 10(1): 55, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789545

Aerobic glycolysis, or the Warburg effect, is used by cancer cells for proliferation while producing lactate. Although lactate production has wide implications for cancer progression, it is not known how this effect increases cell proliferation and relates to oxidative phosphorylation. Here, we elucidate that a negative feedback loop (NFL) is responsible for the Warburg effect. Further, we show that aerobic glycolysis works as an amplifier of oxidative phosphorylation. On the other hand, quiescence is an important property of cancer stem cells. Based on the NFL, we show that both aerobic glycolysis and oxidative phosphorylation, playing a synergistic role, are required to achieve cell quiescence. Further, our results suggest that the cells in their hypoxic niche are highly proliferative yet close to attaining quiescence by increasing their NADH/NAD+ ratio through the severity of hypoxia. The findings of this study can help in a better understanding of the link among metabolism, cell cycle, carcinogenesis, and stemness.


Cell Proliferation , Feedback, Physiological , Glycolysis , Neoplastic Stem Cells , Oxidative Phosphorylation , Warburg Effect, Oncologic , Humans , Glycolysis/physiology , Feedback, Physiological/physiology , Neoplastic Stem Cells/metabolism , Cell Proliferation/physiology , Neoplasms/metabolism , NAD/metabolism , Lactic Acid/metabolism , Models, Biological , Cell Line, Tumor , Cell Cycle/physiology
10.
Reprod Biol ; 24(2): 100860, 2024 Jun.
Article En | MEDLINE | ID: mdl-38762967

The current understanding of the role of circular RNAs (circRNAs) in regulating ovarian functions is inadequate. To assess the impact of ciR-00596 and ciR-00646 on the regulation of basic porcine ovarian granulosa cell functions, we conducted upregulation (utilizing overexpressing vectors) and downregulation (utilizing shRNA vectors) of these circRNAs. The relative expression of both circRNAs, cell viability and proliferation (accumulation of PCNA, cyclin B1, and XTT-positive cells), cytoplasmic (accumulation of bax and caspase-3) and nuclear (DNA fragmentation) apoptosis, and the release of progesterone, testosterone, estradiol, IGF-I, and oxytocin were evaluated. Transfection of cells with the ciR-00596 overexpression vector resulted in increases in cell viability and proliferation and the release of progesterone and IGF-I, while it decreased the cytoplasmic and nuclear apoptosis, testosterone, estradiol, and oxytocin output. CiR-00596 inhibition had the opposite effects. The overexpression of ciR-00646 decreased cell viability and proliferation, and the release of progesterone, IGF-I, and oxytocin, while increasing cytoplasmic and nuclear apoptosis and the output of testosterone and estradiol. Our findings are the first to show the stimulatory action of ciR-00596 and the inhibitory effect of ciR-00646 on ovarian cell functions, including the cell cycle, apoptosis, and secretory activity.


Apoptosis , Down-Regulation , Granulosa Cells , RNA, Circular , Up-Regulation , Animals , Female , RNA, Circular/metabolism , RNA, Circular/genetics , Swine , Granulosa Cells/metabolism , Granulosa Cells/physiology , Cell Proliferation/physiology , Cell Survival/physiology , Ovary/metabolism , Progesterone/metabolism , Estradiol/metabolism , Gene Expression Regulation/physiology
11.
J Mammary Gland Biol Neoplasia ; 29(1): 9, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695983

Improved screening and treatment have decreased breast cancer mortality, although incidence continues to rise. Women at increased risk of breast cancer can be offered risk reducing treatments, such as tamoxifen, but this has not been shown to reduce breast cancer mortality. New, more efficacious, risk-reducing agents are needed. The identification of novel candidates for prevention is hampered by a lack of good preclinical models. Current patient derived in vitro and in vivo models cannot fully recapitulate the complexities of the human tissue, lacking human extracellular matrix, stroma, and immune cells, all of which are known to influence therapy response. Here we describe a normal breast explant model utilising a tuneable hydrogel which maintains epithelial proliferation, hormone receptor expression, and residency of T cells and macrophages over 7 days. Unlike other organotypic tissue cultures which are often limited by hyper-proliferation, loss of hormone signalling, and short treatment windows (< 48h), our model shows that tissue remains viable over 7 days with none of these early changes. This offers a powerful and unique opportunity to model the normal breast and study changes in response to various risk factors, such as breast density and hormone exposure. Further validation of the model, using samples from patients undergoing preventive therapies, will hopefully confirm this to be a valuable tool, allowing us to test novel agents for breast cancer risk reduction preclinically.


Cell Proliferation , Humans , Female , Cell Proliferation/physiology , Breast/pathology , Breast Neoplasms/pathology , Breast Neoplasms/prevention & control , Hydrogels , Mammary Glands, Human/pathology , Macrophages/metabolism , Macrophages/immunology
12.
BMC Vet Res ; 20(1): 186, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730465

BACKGROUND: The current understanding to the mechanism of rumen development is limited. We hypothesized that the Hippo signaling pathway controlled the proliferation of rumen epithelium (RE) during postnatal development. In the present study, we firstly tested the changes of the Hippo signaling pathway in the RE during an early growing period from d5 to d25, and then we expanded the time range to the whole preweaning period (d10-38) and one week post weaning (d45). An in vitro experiment was also carried out to verify the function of Hippo signaling pathway during RE cell proliferation. RESULTS: In the RE of lambs from d5 to d25, the expression of baculoviral IAP repeat containing (BIRC3/5) was increased, while the expressions of large tumor suppressor kinase 2 (LATS2), TEA domain transcription factor 3 (TEAD3), axin 1 (AXIN1), and MYC proto-oncogene (MYC) were decreased with rumen growth. From d10 to d38, the RE expressions of BIRC3/5 were increased, while the expressions of LATS2 and MYC were decreased, which were similar with the changes in RE from d5 to d25. From d38 to d45, different changes were observed, with the expressions of LATS1/2, MOB kinase activator 1B (MOB1B), and TEAD1 increased, while the expressions of MST1 and BIRC5 decreased. Correlation analysis showed that during the preweaning period, the RE expressions of BIRC3/5 were positively correlated with rumen development variables, while LAST2 was negatively correlated with rumen development variables. The in vitro experiment validated the changes of LATS2 and BIRC3/5 in the proliferating RE cells, which supported their roles in RE proliferation during preweaning period. CONCLUSIONS: Our results suggest that the LATS2-YAP1-BIRC3/5 axis participates in the RE cell proliferation and promotes rumen growth during the preweaning period.


Cell Proliferation , Protein Serine-Threonine Kinases , Rumen , Signal Transduction , Animals , Cell Proliferation/physiology , Rumen/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Sheep , Hippo Signaling Pathway , Epithelial Cells/metabolism , Weaning
13.
Sci Rep ; 14(1): 7853, 2024 04 03.
Article En | MEDLINE | ID: mdl-38570592

Thyroid cancer is the most common endocrine carcinoma and, among its different subtypes, the papillary subtype (PTC) is the most frequent. Generally, PTCs are well differentiated, but a minor percentage of PTCs are characterized by a worse prognosis and more aggressive behavior. Phytochemicals, naturally found in plant products, represent a heterogeneous group of bioactive compounds that can interfere with cell proliferation and the regulation of the cell cycle, taking part in multiple signaling pathways that are often disrupted in tumor initiation, proliferation, and progression. In this work, we focused on 15,16-dihydrotanshinone I (DHT), a tanshinone isolated from Salvia miltiorrhiza Bunge (Danshen). We first evaluated DHT biological effect on PTC cells regarding cell viability, colony formation ability, and migration capacity. All of these parameters were downregulated by DHT treatment. We then investigated gene expression changes after DHT treatment by performing RNA-seq. The analysis revealed that DHT significantly reduced the Wnt signaling pathway, which plays a role in various diseases, including cancer. Finally, we demonstrate that DHT treatment decreases protein levels of ß-catenin, a final effector of canonical Wnt signaling pathway. Overall, our data suggest a possible use of this nutraceutical as an adjuvant in the treatment of aggressive papillary thyroid carcinoma.


Carcinoma, Papillary , Furans , Phenanthrenes , Quinones , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/drug therapy , Thyroid Cancer, Papillary/pathology , beta Catenin/genetics , beta Catenin/metabolism , Down-Regulation , Carcinoma, Papillary/drug therapy , Carcinoma, Papillary/genetics , Carcinoma, Papillary/metabolism , Cell Line, Tumor , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Wnt Signaling Pathway/genetics , Cell Proliferation/physiology , Cell Movement/genetics
14.
J Nanobiotechnology ; 22(1): 150, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575923

Dental pulp regeneration is a promising strategy for addressing tooth disorders. Incorporating this strategy involves the fundamental challenge of establishing functional vascular networks using dental pulp stem cells (DPSCs) to support tissue regeneration. Current therapeutic approaches lack efficient and stable methods for activating DPSCs. In the study, we used a chemically modified microRNA (miRNA)-loaded tetrahedral-framework nucleic acid nanostructure to promote DPSC-mediated angiogenesis and dental pulp regeneration. Incorporating chemically modified miR-126-3p into tetrahedral DNA nanostructures (miR@TDNs) represents a notable advancement in the stability and efficacy of miRNA delivery into DPSCs. These nanostructures enhanced DPSC proliferation, migration, and upregulated angiogenesis-related genes, enhancing their paracrine signaling effects on endothelial cells. This enhanced effect was substantiated by improvements in endothelial cell tube formation, migration, and gene expression. Moreover, in vivo investigations employing matrigel plug assays and ectopic dental pulp transplantation confirmed the potential of miR@TDNs in promoting angiogenesis and facilitating dental pulp regeneration. Our findings demonstrated the potential of chemically modified miRNA-loaded nucleic acid nanostructures in enhancing DPSC-mediated angiogenesis and supporting dental pulp regeneration. These results highlighted the promising role of chemically modified nucleic acid-based delivery systems as therapeutic agents in regenerative dentistry and tissue engineering.


MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Endothelial Cells , Dental Pulp , Stem Cells , Cell Differentiation , Regeneration , DNA/metabolism , Cell Proliferation/physiology
15.
Respir Res ; 25(1): 183, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664728

BACKGROUND: Previous studies have indicated that neutrophil extracellular traps (NETs) play a pivotal role in pathogenesis of pulmonary arterial hypertension (PAH). However, the specific mechanism underlying the impact of NETs on pulmonary artery smooth muscle cells (PASMCs) has not been determined. The objective of this study was to elucidate underlying mechanisms through which NETs contribute to progression of PAH. METHODS: Bioinformatics analysis was employed in this study to screen for potential molecules and mechanisms associated with occurrence and development of PAH. These findings were subsequently validated in human samples, coiled-coil domain containing 25 (CCDC25) knockdown PASMCs, as well as monocrotaline-induced PAH rat model. RESULTS: NETs promoted proliferation of PASMCs, thereby facilitating pathogenesis of PAH. This phenomenon was mediated by the activation of transmembrane receptor CCDC25 on PASMCs, which subsequently activated ILK/ß-parvin/RAC1 pathway. Consequently, cytoskeletal remodeling and phenotypic transformation occur in PASMCs. Furthermore, the level of NETs could serve as an indicator of PAH severity and as potential therapeutic target for alleviating PAH. CONCLUSION: This study elucidated the involvement of NETs in pathogenesis of PAH through their influence on the function of PASMCs, thereby highlighting their potential as promising targets for the evaluation and treatment of PAH.


Cell Proliferation , Extracellular Traps , Myocytes, Smooth Muscle , Rats, Sprague-Dawley , Animals , Rats , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Cell Proliferation/physiology , Humans , Male , Extracellular Traps/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Cells, Cultured , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology
16.
J Neuroinflammation ; 21(1): 105, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649885

BACKGROUND: NADPH oxidase (NOX), a primary source of endothelial reactive oxygen species (ROS), is considered a key event in disrupting the integrity of the blood-retinal barrier. Abnormalities in neurovascular-coupled immune signaling herald the loss of ganglion cells in glaucoma. Persistent microglia-driven inflammation and cellular innate immune system dysregulation often lead to deteriorating retinal degeneration. However, the crosstalk between NOX and the retinal immune environment remains unresolved. Here, we investigate the interaction between oxidative stress and neuroinflammation in glaucoma by genetic defects of NOX2 or its regulation via gp91ds-tat. METHODS: Ex vivo cultures of retinal explants from wildtype C57BL/6J and Nox2 -/- mice were subjected to normal and high hydrostatic pressure (Pressure 60 mmHg) for 24 h. In vivo, high intraocular pressure (H-IOP) was induced in C57BL/6J mice for two weeks. Both Pressure 60 mmHg retinas and H-IOP mice were treated with either gp91ds-tat (a NOX2-specific inhibitor). Proteomic analysis was performed on control, H-IOP, and treatment with gp91ds-tat retinas to identify differentially expressed proteins (DEPs). The study also evaluated various glaucoma phenotypes, including IOP, retinal ganglion cell (RGC) functionality, and optic nerve (ON) degeneration. The superoxide (O2-) levels assay, blood-retinal barrier degradation, gliosis, neuroinflammation, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative PCR were performed in this study. RESULTS: We found that NOX2-specific deletion or activity inhibition effectively attenuated retinal oxidative stress, immune dysregulation, the internal blood-retinal barrier (iBRB) injury, neurovascular unit (NVU) dysfunction, RGC loss, and ON axonal degeneration following H-IOP. Mechanistically, we unveiled for the first time that NOX2-dependent ROS-driven pro-inflammatory signaling, where NOX2/ROS induces endothelium-derived endothelin-1 (ET-1) overexpression, which activates the ERK1/2 signaling pathway and mediates the shift of microglia activation to a pro-inflammatory M1 phenotype, thereby triggering a neuroinflammatory outburst. CONCLUSIONS: Collectively, we demonstrate for the first time that NOX2 deletion or gp91ds-tat inhibition attenuates iBRB injury and NVU dysfunction to rescue glaucomatous RGC loss and ON axon degeneration, which is associated with inhibition of the ET-1/ERK1/2-transduced shift of microglial cell activation toward a pro-inflammatory M1 phenotype, highlighting NOX2 as a potential target for novel neuroprotective therapies in glaucoma management.


Blood-Retinal Barrier , Intraocular Pressure , Mice, Inbred C57BL , NADPH Oxidase 2 , Neuroinflammatory Diseases , Animals , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , Mice , Blood-Retinal Barrier/pathology , Blood-Retinal Barrier/metabolism , Intraocular Pressure/physiology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Mice, Knockout , Cell Proliferation/physiology , MAP Kinase Signaling System/physiology , Neuroglia/metabolism , Neuroglia/pathology , Ocular Hypertension/pathology , Ocular Hypertension/metabolism , Glaucoma/pathology , Glaucoma/metabolism , Oxidative Stress/physiology
17.
J Neurosci Res ; 102(4): e25334, 2024 Apr.
Article En | MEDLINE | ID: mdl-38656648

Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.


Astrocytes , Cell Differentiation , Iron Deficiencies , Oligodendroglia , Astrocytes/metabolism , Astrocytes/drug effects , Oligodendroglia/metabolism , Oligodendroglia/drug effects , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Cation Transport Proteins/metabolism , Coculture Techniques , Culture Media, Conditioned/pharmacology , Rats , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Deferoxamine/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Iron/metabolism
18.
PLoS Comput Biol ; 20(4): e1012054, 2024 Apr.
Article En | MEDLINE | ID: mdl-38648250

Neural organoids model the development of the human brain and are an indispensable tool for studying neurodevelopment. Whole-organoid lineage tracing has revealed the number of progenies arising from each initial stem cell to be highly diverse, with lineage sizes ranging from one to more than 20,000 cells. This high variability exceeds what can be explained by existing stochastic models of corticogenesis and indicates the existence of an additional source of stochasticity. To explain this variability, we introduce the SAN model which distinguishes Symmetrically diving, Asymmetrically dividing, and Non-proliferating cells. In the SAN model, the additional source of stochasticity is the survival time of a lineage's pool of symmetrically dividing cells. These survival times result from neutral competition within the sub-population of all symmetrically dividing cells. We demonstrate that our model explains the experimentally observed variability of lineage sizes and derive the quantitative relationship between survival time and lineage size. We also show that our model implies the existence of a regulatory mechanism which keeps the size of the symmetrically dividing cell population constant. Our results provide quantitative insight into the clonal composition of neural organoids and how it arises. This is relevant for many applications of neural organoids, and similar processes may occur in other developing tissues both in vitro and in vivo.


Organoids , Organoids/cytology , Humans , Cell Lineage/physiology , Computational Biology , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Stochastic Processes , Models, Biological , Neurons/physiology , Neurons/cytology , Brain/cytology , Brain/physiology , Cell Proliferation/physiology , Neurogenesis/physiology
19.
Immunopharmacol Immunotoxicol ; 46(3): 385-394, 2024 Jun.
Article En | MEDLINE | ID: mdl-38622049

CONTEXT: Hemangioma (HA) is a benign vascular neoplasm that can lead to permanent scarring. C-C motif chemokine ligand 2 (CCL2) plays a crucial role in facilitating growth and angiogenesis during HA progression. However, the mechanism regulating CCL2 in HA remains poorly elucidated. OBJECTIVE: To elucidate the mechanism regulating CCL2 in HA. METHODS: Quantitative real-time polymerase chain reaction (RT-qPCR) was employed to determine the expression levels of CCL2, long noncoding RNA (lncRNA) CTBP1 divergent transcript (CTBP1-AS2), and microRNAs (miRNAs). Proliferation, migration, invasion, and angiogenic abilities of human HA endothelial cells (HemECs) were assessed using cell counting kit-8 (CCK-8), colony formation, flow cytometry, transwell, and tube formation assays. Bioinformatics analysis, RNA pull-down, and luciferase reporter assays were conducted to investigate whether CCL2 targets miR-335-5p. Additionally, rescue experiments were performed in this study. RESULTS: CCL2 expression was markedly upregulated in HemECs. CCL2 promoted HA cell proliferation, migration, invasion, and angiogenesis while inhibiting apoptosis. CCL2 was directly targeted by miR-335-5p. Additionally, we found that CTBP1-AS2 could function as a competing endogenous RNA (ceRNA) to sponge miR-335-5p, thereby upregulating CCL2. CONCLUSION: Our findings suggest that targeting the CTBP1-AS2/miR-335-5p/CCL2 axis may hold promise as a therapeutic strategy for HA.


Chemokine CCL2 , Hemangioma , MicroRNAs , Neovascularization, Pathologic , Humans , MicroRNAs/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Hemangioma/genetics , Hemangioma/pathology , Hemangioma/metabolism , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chemokine CCL2/biosynthesis , Alcohol Oxidoreductases/genetics , Cell Proliferation/physiology , Cell Movement/genetics , Disease Progression , RNA, Long Noncoding/genetics , DNA-Binding Proteins/genetics , Angiogenesis
20.
Brain Res Bull ; 211: 110950, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38631651

The aim of this study was to investigate the expression and function of the transient receptor potential vanilloid 1 (TRPV1) in glioma. We found that the expression of TRPV1 mRNA and protein were upregulated in glioma compared with normal brain by qPCR and western blot analysis. In order to investigate the function of TRPV1 in glioma, short hairpin RNA (shRNA) and the inhibitor of TRPV1 were used. In vitro, the activation of TRPV1 induced cell apoptosis with decreased migration capability and inhibited proliferation, which was abolished upon TRPV1 pharmacological inhibition and silencing. Mechanistically, TRPV1 modulated glioma proliferation through the protein kinase B (Akt) signaling pathway. More importantly, in immunodeficient (NOD-SCID) mouse xenograft models, tumor size was significantly increased when TRPV1 expression was disrupted by a shRNA knockdown approach in vivo. Altogether, our findings indicate that TRPV1 negatively controls glioma cell proliferation in an Akt-dependent manner, which suggests that targeting TRPV1 may be a potential therapeutic strategy for glioma.


Brain Neoplasms , Cell Proliferation , Glioma , TRPV Cation Channels , Animals , Humans , Mice , Apoptosis/physiology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Mice, Inbred NOD , Mice, SCID , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/pharmacology , Signal Transduction/physiology , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics
...