Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.607
Filter
1.
Sci Rep ; 14(1): 19735, 2024 08 26.
Article in English | MEDLINE | ID: mdl-39183213

ABSTRACT

Meniscus-derived stem cells (MeSCs), a unique type of MSC, have outstanding advantages in meniscal cytotherapy and tissue engineering, but the effects and molecular mechanisms of PBM on MeSCs are still unclear. We used 660-nm LED light with different energy densities to irradiate six human MeSC samples and tested their proliferation rate via cell counting, chondrogenic differentiation capacity via the DMMB assay, mitochondrial activity via the MTT assay, and gene expression via qPCR. The proliferation ability, chondrogenic capacity and mitochondrial activity of the 18 J/cm2 group were greater than those of the 4 J/cm2 and control groups. The mRNA expression levels of Akt, PI3K, TGF-ß3, Ki67 and Notch-1 in the 18 J/cm2 group were greater than those in the other groups in most samples. After chondrogenic induction, the expression of Col2A1, Sox9 and Aggrecan in the 18 J/cm2 group was significantly greater than that in the 4 J/cm2 and control groups in most of the samples. The variation in the MTT values and Src, PI3K, Akt, mTOR and GSK3ß levels decreased with time. The results showed that 660-nm LED red light promoted proliferation and chondrogenic differentiation and affected the gene expression of MeSCs, and the effects on gene expression and mitochondrial activity decreased with time.


Subject(s)
Cell Differentiation , Cell Proliferation , Chondrogenesis , Meniscus , Mesenchymal Stem Cells , Chondrogenesis/radiation effects , Humans , Cell Proliferation/radiation effects , Cell Differentiation/radiation effects , Meniscus/cytology , Meniscus/metabolism , Mesenchymal Stem Cells/radiation effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Low-Level Light Therapy , Cells, Cultured , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Mitochondria/metabolism , Mitochondria/radiation effects
2.
PLoS One ; 19(8): e0308273, 2024.
Article in English | MEDLINE | ID: mdl-39088551

ABSTRACT

BACKGROUND: Exposure to ionizing radiation has been linked to cardiovascular diseases. However, the impact of moderate doses of radiation on abdominal aortic aneurysm (AAA) remains unknown. METHODS: Angiotensin II-infused Apoe-/- mice were irradiated (acute, 1 Gray) either 3 days before (Day-3) or 1 day after (Day+1) pomp implantation. Isolated primary aortic vascular smooth muscle cells (VSMCs) were irradiated (acute 1 Gray) for mechanistic studies and functional testing in vitro. RESULTS: Day-3 and Day+1 irradiation resulted in a significant reduction in aorta dilation (Control: 1.39+/-0.12; Day-3: 1.12+/-0.11; Day+1: 1.15+/-0.08 mm, P<0.001) and AAA incidence (Control: 81.0%; Day-3: 33.3%, Day+1: 53.3%) compared to the non-irradiated group. Day-3 and Day+1 irradiation led to an increase in collagen content in the adventitia (Thickness control: 23.64+/-2.9; Day-3: 54.39+/-15.5; Day+1 37.55+/-10.8 mm, P = 0.006). However, the underlying protective mechanisms were different between Day-3 and Day+1 groups. Irradiation before Angiotensin II (AngII) infusion mainly modulated vascular smooth muscle cell (VSMC) phenotype with a decrease in contractile profile and enhanced proliferative and migratory activity. Irradiation after AngII infusion led to an increase in macrophage content with a local anti-inflammatory phenotype characterized by the upregulation of M2-like gene and IL-10 expression. CONCLUSION: Moderate doses of ionizing radiation mitigate AAA either through VSCM phenotype or inflammation modulation, depending on the time of irradiation.


Subject(s)
Angiotensin II , Aortic Aneurysm, Abdominal , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Radiation, Ionizing , Animals , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/etiology , Mice , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/radiation effects , Muscle, Smooth, Vascular/pathology , Angiotensin II/pharmacology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/radiation effects , Myocytes, Smooth Muscle/pathology , Male , Disease Models, Animal , Interleukin-10/metabolism , Interleukin-10/genetics , Collagen/metabolism , Cell Proliferation/radiation effects
3.
Int J Mol Sci ; 25(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39125823

ABSTRACT

The effects of low-dose radiation exposure remain a controversial topic in radiation biology. This study compares early (0.5, 4, 24, 48, and 72 h) and late (5, 10, and 15 cell passages) post-irradiation changes in γH2AX, 53BP1, pATM, and p-p53 (Ser-15) foci, proliferation, autophagy, and senescence in primary fibroblasts exposed to 100 and 2000 mGy X-ray radiation. The results show that exposure to 100 mGy significantly increased γH2AX, 53BP1, and pATM foci only at 0.5 and 4 h post irradiation. There were no changes in p-p53 (Ser-15) foci, proliferation, autophagy, or senescence up to 15 passages post irradiation at the low dose.


Subject(s)
Autophagy , Cell Proliferation , Cellular Senescence , DNA Repair , Fibroblasts , Humans , Fibroblasts/radiation effects , Fibroblasts/metabolism , Autophagy/radiation effects , Cellular Senescence/radiation effects , DNA Repair/radiation effects , X-Rays/adverse effects , Cell Proliferation/radiation effects , Tumor Suppressor p53-Binding Protein 1/metabolism , Histones/metabolism , Dose-Response Relationship, Radiation , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Cells, Cultured , DNA Damage/radiation effects
4.
Anal Cell Pathol (Amst) ; 2024: 4218464, 2024.
Article in English | MEDLINE | ID: mdl-39157415

ABSTRACT

Background: Radiation therapy is an effective local therapy for lung cancer. However, the interaction between genes and radiotherapy is multifaceted and intricate. Therefore, we explored the role of miR-93-5p in the proliferation, apoptosis, and migration abilities of A549 cells. Simultaneously, we also investigated the interactions between miR-93-5p and ionizing radiation (IR). Methods: Cell Counting Kit-8, transwell, and apoptotic assay were performed to measure the proliferation, migration, and apoptosis abilities. The expression levels of miR-93-5p and its target gene in lung cancer were predicted using starBase v3.0. Then, data were validated using qPCR and western blot. Results: miR-93-5p significantly promoted the proliferation (P < 0.01) and migration abilities (P < 0.001) of A549 cells. Gasdermin E (GSDME) was identified to be a putative target of miR-93-5p and had a negative correlation with miR-93-5p (P < 0.001). Overexpression of miR-93-5p significantly decreased GSDME in A549 (P < 0.001). Interestingly, miR-93-5p decreased cell proliferation (P < 0.01) and cell migration (P < 0.01) and increased apoptosis (P < 0.01) in A549 cells after exposure to IR. Conclusions: miR-93-5p is presumed to play an oncogenic role in lung cancer by enhancing A549 cell proliferation and migration. It can enhance the sensitivity of radiotherapy under IR conditions. We speculate that the miR-93-5p/GSDME pathway was inhibited, activating the GSDME-related pyroptosis pathway when the cells were exposed to IR. Therefore, miR-93-5p can overcome resistance to radiotherapy and improve the efficacy of radiotherapy.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , Radiation, Ionizing , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Lung Neoplasms/radiotherapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , A549 Cells , Cell Movement/radiation effects , Cell Movement/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation/radiation effects , Cell Proliferation/genetics , Apoptosis/radiation effects , Apoptosis/genetics , Gene Expression Regulation, Neoplastic/radiation effects
5.
Lasers Med Sci ; 39(1): 205, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088075

ABSTRACT

Mesenchymal stem cells can differentiate into specific cell lineages in the tissue repair process. Photobiomodulation with laser and LED is used to treat several comorbidities, can interfere in cell proliferation and viability, in addition to promoting responses related to the physical parameters adopted. Evaluate and compare the effects of laser and LED on mesenchymal cells, with different energy doses and different wavelengths, in addition to viability and wound closure. Mesenchymal stem cells derived from human adipocytes were irradiated with laser (energy of 0.5 J, 2 J and 4 J, wavelength of 660 nm and 830 nm), and LED (energy of 0.5 J, 2 J and 4 J, where lengths are 630 nm and 850 nm). The wound closure process was evaluated through monitoring the reduction of the lesion area in vitro. Viability was determined by analysis with Hoechst and Propidium Iodide markers, and quantification of viable and non-viable cells respectively Data distributions were analyzed using the Shapiro-Wilk test. Homogeneity was analyzed using Levene's test. The comparison between the parameters used was analyzed using the Two-way ANOVA test. The T test was applied to data relating to viability and lesion area. For LED photobiomodulation, only the 630 nm wavelength obtained a significant result in 24, 48 and 72 h (p = 0,027; p = 0,024; p = 0,009). The results related to the in vitro wound closure test indicate that both photobiomodulation with laser and LED demonstrated significant results considering the time it takes to approach the edges (p < 0.05). Considering the in vitro experimental conditions of the study, it is possible to conclude that the physical parameters of photobiomodulation, such as energy and wavelength, with laser or LED in mesenchymal stem cells, can play a potential role in cell viability and wound closure.


Subject(s)
Cell Survival , Low-Level Light Therapy , Mesenchymal Stem Cells , Wound Healing , Mesenchymal Stem Cells/radiation effects , Humans , Cell Survival/radiation effects , Low-Level Light Therapy/methods , Wound Healing/radiation effects , Cells, Cultured , Lasers, Semiconductor/therapeutic use , Cell Proliferation/radiation effects , Adipocytes/radiation effects , Adipocytes/cytology
6.
Sci Rep ; 14(1): 17316, 2024 07 27.
Article in English | MEDLINE | ID: mdl-39068290

ABSTRACT

PRMT5 is a widely expressed arginine methyltransferase that regulates processes involved in tumor cell proliferation and survival. In the study described here, we investigated whether PRMT5 provides a target for tumor radiosensitization. Knockdown of PRMT5 using siRNA enhanced the radiosensitivity of a panel of cell lines corresponding to tumor types typically treated with radiotherapy. To extend these studies to an experimental therapeutic setting, the PRMT5 inhibitor LLY-283 was used. Exposure of the tumor cell lines to LLY-283 decreased PRMT5 activity and enhanced their radiosensitivity. This increase in radiosensitivity was accompanied by an inhibition of DNA double-strand break repair as determined by γH2AX foci and neutral comet analyses. For a normal fibroblast cell line, although LLY-283 reduced PRMT5 activity, it had no effect on their radiosensitivity. Transcriptome analysis of U251 cells showed that LLY-283 treatment reduced the expression of genes and altered the mRNA splicing pattern of genes involved in the DNA damage response. Subcutaneous xenografts were then used to evaluate the in vivo response to LLY-283 and radiation. Treatment of mice with LLY-283 decreased tumor PRMT5 activity and significantly enhanced the radiation-induced growth delay. These results suggest that PRMT5 is a tumor selective target for radiosensitization.


Subject(s)
Protein-Arginine N-Methyltransferases , Radiation Tolerance , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Animals , Humans , Radiation Tolerance/drug effects , Radiation Tolerance/genetics , Cell Line, Tumor , Mice , DNA Repair , Cell Proliferation/radiation effects , Xenograft Model Antitumor Assays , DNA Breaks, Double-Stranded/radiation effects , Mice, Nude
7.
Photochem Photobiol Sci ; 23(8): 1565-1571, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060841

ABSTRACT

The present study aimed to evaluate the effect of photobiomodulation therapy (PBM) on different stages of osteogenesis in vitro. For this, osteoblastic-like cells (Saos-2 cell lineage) were irradiated in two different periods: during the Proliferation phase (PP; from the second to the fourth day) and during the Differentiation phase (DP; from the seventh to the ninth day). The energy density used in the study was 1.5 J/ cm2. The following parameters were evaluated: 1) quantification of collagen type 1 (COL 1), osteopontin (OPN), and bone morphogenetic protein 2 (BMP-2); 2) quantification of alkaline phosphatase (ALP) activity; and 3) quantification of  extracellular matrix (ECM) mineralization. Non-irradiated cultures were used as controls. The data were analyzed using the Student's t-test or one-way ANOVA, considering a significance level of 5%. The results indicated that COL 1 and BMP-2 quantification was higher in Saos-2 irradiated during the DP in relation to the control group at day 10 (p < 0.05). No differences were observed for other comparisons at this time point (p > 0.05). OPN expression was greater in PP compared with the other experimental groups at day 10 (p < 0.05). Irradiation did not affect ALP activity in Saos-2 regardless of the exposure phase and the time point evaluated (p > 0.05). At day 14, ECM mineralization was higher in Saos-2 cultures irradiated during the DP in relation to the PP (p < 0.05). In conclusion, the results suggested that the effects of PBM on osteoblastic cells may be influenced by the stage of cell differentiation.


Subject(s)
Alkaline Phosphatase , Bone Morphogenetic Protein 2 , Cell Differentiation , Cell Proliferation , Collagen Type I , Low-Level Light Therapy , Osteoblasts , Osteogenesis , Osteopontin , Osteogenesis/radiation effects , Humans , Bone Morphogenetic Protein 2/metabolism , Alkaline Phosphatase/metabolism , Osteopontin/metabolism , Cell Differentiation/radiation effects , Collagen Type I/metabolism , Osteoblasts/radiation effects , Osteoblasts/cytology , Osteoblasts/metabolism , Cell Proliferation/radiation effects , Extracellular Matrix/metabolism , Extracellular Matrix/radiation effects
8.
Genes Dev ; 38(11-12): 569-582, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38997156

ABSTRACT

Salivary gland homeostasis and regeneration after radiotherapy depend significantly on progenitor cells. However, the lineage of submandibular gland (SMG) progenitor cells remains less defined compared with other normal organs. Here, using a mouse strain expressing regulated CreERT2 recombinase from the endogenous Tert locus, we identify a distinct telomerase-expressing (TertHigh) cell population located in the ductal region of the adult SMG. These TertHigh cells contribute to ductal cell generation during SMG homeostasis and to both ductal and acinar cell renewal 1 year after radiotherapy. TertHigh cells maintain self-renewal capacity during in vitro culture, exhibit resistance to radiation damage, and demonstrate enhanced proliferative activity after radiation exposure. Similarly, primary human SMG cells with high Tert expression display enhanced cell survival after radiotherapy, and CRISPR-activated Tert in human SMG spheres increases proliferation after radiation. RNA sequencing reveals upregulation of "cell cycling" and "oxidative stress response" pathways in TertHigh cells following radiation. Mechanistically, Tert appears to modulate cell survival through ROS levels in SMG spheres following radiation damage. Our findings highlight the significance of TertHigh cells in salivary gland biology, providing insights into their response to radiotherapy and into their use as a potential target for enhancing salivary gland regeneration after radiotherapy.


Subject(s)
Homeostasis , Regeneration , Telomerase , Telomerase/metabolism , Telomerase/genetics , Animals , Homeostasis/genetics , Homeostasis/radiation effects , Mice , Regeneration/radiation effects , Regeneration/genetics , Humans , Salivary Glands/radiation effects , Salivary Glands/metabolism , Salivary Glands/cytology , Cell Proliferation/radiation effects , Cell Proliferation/genetics , Cell Survival/radiation effects , Cell Survival/genetics , Submandibular Gland/radiation effects , Submandibular Gland/metabolism , Stem Cells/radiation effects , Stem Cells/metabolism , Stem Cells/cytology , Radiotherapy/adverse effects , Reactive Oxygen Species/metabolism , Cells, Cultured
9.
J Photochem Photobiol B ; 258: 112990, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032372

ABSTRACT

Photobiomodulation (PBM) has widely been used to effectively treat complications associated with cancer treatment, including oral mucositis, radiation dermatitis, and surgical wounds. However, the safety of PBM against cancer still needs to be validated as the effects of PBM on cancer cells and their mechanisms are unclear. The current study investigated the wavelength-dependent PBM effects by examining four different laser wavelengths (405, 532, 635, and 808 nm) on B16F10 melanoma tumor cells. In vitro tests showed that PBM with 808 nm promoted both proliferation and migration of B16F10 cells. In vivo results demonstrated that PBM with 808 nm significantly increased the relative tumor volume and promoted angiogenesis with overexpression of VEGF and HIF-1α. In addition, PBM induced the phosphorylation of factors closely related to cancer cell proliferation and tumor growth and upregulated the related gene expression. The current result showed that compared to the other wavelengths, 808 nm yielded a significant tumor-stimulating effect the malignant melanoma cancer. Further studies will investigate the in-depth molecular mechanism of PBM on tumor stimulation in order to warrant the safety of PBM for clinical cancer treatment.


Subject(s)
Cell Proliferation , Hypoxia-Inducible Factor 1, alpha Subunit , Low-Level Light Therapy , Melanoma, Experimental , Neovascularization, Pathologic , Skin Neoplasms , Vascular Endothelial Growth Factor A , Animals , Mice , Angiogenesis/radiation effects , Cell Line, Tumor , Cell Movement/radiation effects , Cell Proliferation/radiation effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Low-Level Light Therapy/methods , Melanoma, Experimental/radiotherapy , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Neovascularization, Pathologic/radiotherapy , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Skin Neoplasms/pathology , Skin Neoplasms/radiotherapy
10.
J Photochem Photobiol B ; 257: 112966, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38970968

ABSTRACT

BACKGROUND/AIM: Although photobiomodulation therapy (PBMt) is available to alleviate post-operative side effects of malignant diseases, its application is still controversial due to some potential of cancer recurrence and occurrence of a secondary malignancy. We investigated effect of PBMt on mitochondrial function in HT29 colon cancer cells. METHODS: HT29 cell proliferation was determined with MTT assay after PBMt. Immunofluorescent staining was performed to determine mitochondrial biogenesis and reactive oxygen species (ROS). Mitochondrial membrane potential was measured with Mitotracker. Western blotting was executed to determine expression of fission, fusion, UCP2, and cyclin B1 and D1 proteins. In vivo study was performed by subcutaneously inoculating cancer cells into nude mice and immunohistochemistry was done to determine expression of FIS1, MFN2, UCP2, and p-AKT. RESULTS: The proliferation and migration of HT29 cells reached maximum with PBMt (670 nm, light emitting diode, LED) at 2.0 J/cm2 compared to control (P < 0.05) with more expression of cyclin B1 and cyclin D1 (P < 0.05). Immunofluorescent staining showed that ROS and mitochondrial membrane potential were enhanced after PBMt compared to control. ATP synthesis of mitochondria was also higher in the PBMt group than in the control (P < 0.05). Expression levels of fission and fusion proteins were significantly increased in the PBMt group than in the control (P < 0.05). Electron microscopy revealed that the percentage of mitochondria showing fission was not significantly different between the two groups. Oncometabolites including D-2-hydoxyglutamate in the supernatant of cell culture were higher in the PBMt group than in the control with increased UCP2 expression (P < 0.05). Both tumor size and weight of xenograft in nude mice model were bigger and heavier in the PBMt group than in the control (P < 0.05). Immunohistologically, mitochondrial biogenesis proteins UCP2 and p-AKT in xenograft of nude mice were expressed more in the PBMt group than in the control (P < 0.05). CONCLUSIONS: Treatment with PBM using red light LED may induce proliferation and progression of HT29 cancer cells by increasing mitochondrial activity and fission.


Subject(s)
Cell Proliferation , Colonic Neoplasms , Membrane Potential, Mitochondrial , Mice, Nude , Mitochondria , Reactive Oxygen Species , Humans , HT29 Cells , Mitochondria/metabolism , Mitochondria/radiation effects , Animals , Cell Proliferation/radiation effects , Mice , Reactive Oxygen Species/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/radiotherapy , Colonic Neoplasms/metabolism , Membrane Potential, Mitochondrial/radiation effects , Low-Level Light Therapy , Cell Movement/radiation effects , Cyclin B1/metabolism , Mitochondrial Dynamics/radiation effects , Cyclin D1/metabolism , Proto-Oncogene Proteins c-akt/metabolism
11.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2906-2919, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041150

ABSTRACT

Rheumatoid arthritis(RA) is a condition in which the joints are in a weakly acidic environment. In RA, RA fibroblastlike synoviocytes( RAFLS) in the joints become abnormally activated and secrete a large amount of matrix metalloproteinases(MMPs), and the receptor protein CD44 on the cell membrane is specifically upregulated. Xuetongsu(XTS), an active ingredient in the Tujia ethnomedicine Xuetong, is known to inhibit the proliferation of RAFLS. However, its development and utilization have been limited due to poor targeting ability. A biomimetic XTS-Prussian blue nanoparticles(PB NPs) drug delivery system called THMPX NPs which can target CD44 was constructed in this study. The surface of THMPX NPs was modified with hyaluronic acid(HA) and a long chain of triglycerol monostearate(TGMS) and 3-aminobenzeneboronic acid(PBA)(PBA-TGMS). The overexpressed MMPs and H+ in inflammatory RAFLS can synergistically cleave the PBA-TGMS on the surface of the nanoparticles, exposing HA to interact with CD44. This allows THMPX NPs to accumulate highly in RAFLS, and upon near-infrared light irradiation, generate heat and release XTS, thereby inhibiting the proliferation and migration of RAFLS. Characterization revealed that THMPX NPs were uniform cubes with a diameter of(190. 3±4. 7) nm and an average potential of(-15. 3± 2. 3) m V. Upon near-infrared light irradiation for 5 min, the temperature of THMPX NPs reached 41. 5 ℃, indicating MMPs and H+-triggered drug release. Safety assessments showed that THMPX NPs had a hemolysis rate of less than 4% and exhibited no cytotoxicity against normal RAW264. 7 and human fibroblast-like synoviocytes(HFLS). In vitro uptake experiments demonstrated the significant targeting ability of THMPX NPs to RAFLS. Free radical scavenging experiments revealed excellent free radical clearance capacity of THMPX NPs, capable of removing reactive oxygen species in RAFLS. Cell counting kit-8 and scratch assays demonstrated that THMPX NPs significantly suppressed the viability and migratory ability of RAFLS. This study provides insights into the development of innovative nanoscale targeted drugs from traditional ethnic medicines for RA treatment.


Subject(s)
Cell Movement , Cell Proliferation , Matrix Metalloproteinases , Nanoparticles , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Nanoparticles/chemistry , Humans , Cell Movement/drug effects , Cell Movement/radiation effects , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Ferrocyanides/chemistry , Hydrogen-Ion Concentration , Synoviocytes/drug effects , Synoviocytes/radiation effects , Synoviocytes/metabolism , Lasers , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism
12.
Discov Med ; 36(186): 1464-1476, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39054717

ABSTRACT

BACKGROUND: Monotherapy consisting of radiotherapy or chemotherapy has limited efficacy in pancreatic tumors. This study aims to investigate whether the combination of 125I brachytherapy and gemcitabine (GEM) chemotherapy has a synergistic effect on pancreatic cancer (PC). METHODS: In vitro, PANC-1 cells in the exponential phase were treated with 125I radioactive seeds (6 Gy) and GEM (30 nM). Cell proliferation, apoptosis, and mitochondrial membrane potential were measured using the Cell Counting Kit-8 (CCK-8) assay, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and flow cytometry, respectively. In vivo, we examined the inhibitory effect of three different treatment regimens on tumor growth in mice when combined with 125I brachytherapy and GEM. Next, we investigated the effects of the optimal scheme among the three on the tumor microenvironment, tumor tissue morphology, tumor cell apoptosis, systemic inflammatory response, and levels of apoptosis-related proteins in the tumor. Changes in the tumor microenvironment and levels of apoptosis-related proteins were measured by Western blot. The extent of damage to tumor tissue morphology was assessed by Hematoxylin and Eosin (HE) staining. Tumor cell apoptosis was measured by TUNEL staining. Changes in inflammation-related factors were determined by Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS: The results of in vitro cell experiments demonstrated that the combination of 125I radioactive seeds (6 Gy) and GEM (30 nM) had a stronger inhibitory effect on PANC-1 cells than either alone (p < 0.05). In vivo, data showed that the GEM (after 3 d) + 125I treatment group had the strongest tumor inhibition effect on PC (p < 0.05). Western blot analysis showed that the combined treatment of 125I brachytherapy and GEM caused changes in the expression of collagen and connexin in the tumor microenvironment, promoted tumor cell apoptosis, upregulated the expression of pro-apoptotic proteins, and helped to restore pancreatic function (p < 0.01). CONCLUSION: Our research results suggest that the strategy of 125I seed implantation surgery in mice after 3 days of GEM treatment has a more pronounced synergistic effect on the treatment of PC.


Subject(s)
Apoptosis , Brachytherapy , Deoxycytidine , Gemcitabine , Iodine Radioisotopes , Pancreatic Neoplasms , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Iodine Radioisotopes/therapeutic use , Brachytherapy/methods , Animals , Mice , Apoptosis/drug effects , Apoptosis/radiation effects , Humans , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Xenograft Model Antitumor Assays , Tumor Microenvironment/drug effects , Tumor Microenvironment/radiation effects , Mice, Nude
13.
Molecules ; 29(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39064938

ABSTRACT

Doxorubicin (DOX) has been an effective antitumor agent for human liver cancer cells; however, an overdose might lead to major side effects appearing in clinical applications. In this work, we present a strategy of combining DOX and blue light (BL) irradiation for the antitumor treatment of HepG2 cells (one typical human liver cancer cell line). It is demonstrated that synergetic DOX and BL can significantly reduce cell proliferation and increase the apoptotic rate of HepG2 cells in comparison to individual DOX treatment. The additional BL irradiation is further helpful for enhancing the inhibition of cell migration and invasion. Analyses of reactive oxygen species (ROS) level and Western blotting reveal that the strategy results in more ROS accumulation, mitochondrial damage, and the upregulation of proapoptotic protein (Bcl-2) and downregulation of antiapoptotic protein (Bax). In addition to the improved therapeutic effect, the non-contact BL irradiation is greatly helpful for reducing the dosage of DOX, and subsequently reduces the side effects caused by the DOX drug. These findings offer a novel perspective for the therapeutic approach toward liver cancer with high efficiency and reduced side effects.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Doxorubicin , Light , Liver Neoplasms , Reactive Oxygen Species , Doxorubicin/pharmacology , Humans , Hep G2 Cells , Liver Neoplasms/drug therapy , Liver Neoplasms/radiotherapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Movement/drug effects , Cell Movement/radiation effects , Blue Light
14.
Lasers Med Sci ; 39(1): 194, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052077

ABSTRACT

The aim of this study was to evaluate the antiproliferative properties of low-level laser therapy (LLLT) on gingival fibroblasts obtained from calcium channel blocker-induced gingival overgrowth (GO). Gingival fibroblasts of patients with GO were compared to healthy gingival fibroblasts (H). Both cells were exposed to LLLT (685 nm wavelength, 25mW power, diode laser) and compared to those not treated with LLLT. Cell proliferation and viability were measured with MTT assay at baseline and after 24 and 72 h. TGF-ß1, CTGF, and collagen Type 1 levels were evaluated with Enzyme-Linked Immunosorbent Assay (ELISA). LLLT significantly decreased the proliferation of GO fibroblasts (p < 0.05) while leading to a significantly higher proliferation in H fibroblasts compared to the untreated cells (p < 0.05). GO cells showed significantly higher CTGF, TGF-ß, and collagen Type 1 expression than the H cells (p < 0.05). LLLT significantly reduced CTGF levels in GO cells compared to the control group (p < 0.05). In H cells, CTGF and TGF-ß levels were also significantly decreased in response to LLLT compared to the control group (p < 0.05). While LLLT significantly reduced collagen expression in the H group (p < 0.05), it did not significantly impact the GO cells. LLLT significantly reduced the synthesis of the growth factors and collagen in both groups with an antiproliferative effect on the gingival fibroblasts from calcium channel blocker-induced GO, suggesting that it can offer a therapeutic approach in the clinical management of drug-induced GO, reversing the fibrotic changes.


Subject(s)
Calcium Channel Blockers , Cell Proliferation , Connective Tissue Growth Factor , Fibroblasts , Gingiva , Gingival Overgrowth , Low-Level Light Therapy , Humans , Fibroblasts/radiation effects , Fibroblasts/drug effects , Low-Level Light Therapy/methods , Gingival Overgrowth/chemically induced , Gingival Overgrowth/radiotherapy , Gingival Overgrowth/therapy , Calcium Channel Blockers/pharmacology , Cell Proliferation/radiation effects , Cell Proliferation/drug effects , Gingiva/radiation effects , Gingiva/cytology , Connective Tissue Growth Factor/metabolism , Cells, Cultured , Collagen Type I/metabolism , Transforming Growth Factor beta1/metabolism , Cell Survival/radiation effects , Cell Survival/drug effects , Lasers, Semiconductor/therapeutic use , Male , Adult , Female
15.
BMC Cancer ; 24(1): 814, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977944

ABSTRACT

BACKGROUND: Despite a multimodal approach including surgery, chemo- and radiotherapy, the 5-year event-free survival rate for rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in childhood, remains very poor for metastatic patients, mainly due to the selection and proliferation of tumour cells driving resistance mechanisms. Personalised medicine-based protocols using new drugs or targeted therapies in combination with conventional treatments have the potential to enhance the therapeutic effects, while minimizing damage to healthy tissues in a wide range of human malignancies, with several clinical trials being started. In this study, we analysed, for the first time, the antitumour activity of SFX-01, a complex of synthetic d, l-sulforaphane stabilised in alpha-cyclodextrin (Evgen Pharma plc, UK), used as single agent and in combination with irradiation, in four preclinical models of alveolar and embryonal RMS. Indeed, SFX-01 has shown promise in preclinical studies for its ability to modulate cellular pathways involved in inflammation and oxidative stress that are essential to be controlled in cancer treatment. METHODS: RH30, RH4 (alveolar RMS), RD and JR1 (embryonal RMS) cell lines as well as mouse xenograft models of RMS were used to evaluate the biological and molecular effects induced by SFX-01 treatment. Flow cytometry and the modulation of key markers analysed by q-PCR and Western blot were used to assess cell proliferation, apoptosis, autophagy and production of intracellular reactive oxygen species (ROS) in RMS cells exposed to SFX-01. The ability to migrate and invade was also investigated with specific assays. The possible synergistic effects between SFX-01 and ionising radiation (IR) was studied in both the in vitro and in vivo studies. Student's t-test or two-way ANOVA were used to test the statistical significance of two or more comparisons, respectively. RESULTS: SFX-01 treatment exhibited cytostatic and cytotoxic effects, mediated by G2 cell cycle arrest, apoptosis induction and suppression of autophagy. Moreover, SFX-01 was able to inhibit the formation and the proliferation of 3D tumorspheres as monotherapy and in combination with IR. Finally, SFX-01, when orally administered as single agent, displayed a pattern of efficacy at reducing the growth of tumour masses in RMS xenograft mouse models; when combined with a radiotherapy regime, it was observed to act synergistically, resulting in a more positive outcome than would be expected by adding each exposure alone. CONCLUSIONS: In summary, our results provide evidence for the antitumour properties of SFX-01 in preclinical models of RMS tumours, both as a standalone treatment and in combination with irradiation. These forthcoming findings are crucial for deeper investigations of SFX-01 molecular mechanisms against RMS and for setting up clinical trials in RMS patients in order to use the SFX-01/IR co-treatment as a promising therapeutic approach, particularly in the clinical management of aggressive RMS disease.


Subject(s)
Apoptosis , Cell Proliferation , Rhabdomyosarcoma , Xenograft Model Antitumor Assays , Animals , Humans , Mice , Cell Line, Tumor , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Rhabdomyosarcoma/radiotherapy , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/pathology , Radiation, Ionizing , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Autophagy/drug effects , Autophagy/radiation effects , Combined Modality Therapy
16.
Oncol Rep ; 52(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38963046

ABSTRACT

Arsenic trioxide (ATO) is expected to be a chemical drug with antitumor activity against acute promyelocytic leukemia (APL), a type of acute myeloid leukemia. In Japan, its antitumor effects were confirmed in clinical trials for APL, and it has been approved in various countries around the world. However, there have been no reports on ATO's antitumor effects on radioresistant leukemia cells, which can be developed during radiotherapy and in combination with therapeutic radiation beams. The present study sought to clarify the antitumor effect of ATO on APL cells with radiation resistance and determine its efficacy when combined with ionizing radiation (IR). The radiation­resistant HL60 (Res­HL60) cell line was generated by subjecting the native cells to 4­Gy irradiation every week for 4 weeks. The half­maximal inhibitory concentration (IC50) for cell proliferation by ATO on native cell was 0.87 µM (R2=0.67), while the IC50 for cell proliferation by ATO on Res­HL60 was 2.24 µM (R2=0.91). IR exposure increased the sub­G1 and G2/M phase ratios in both cell lines. The addition of ATO resulted in a higher population of G2/M after 24 h rather than 48 h. When the rate of change in the sub­G1 phase was examined in greater detail, the sub­G1 phase in both control cells without ATO significantly increased by exposure to IR at 24 h, but only under the condition of 2 Gy irradiation, it had continued to increase at 48 h. Res­HL60 supplemented with ATO showed a higher rate of sub­G1 change at 24 h; however, 2 Gy irradiation resulted in a decrease compared with the control. There was a significant increase in the ratio of the G2/M phase in cells after incubation with ATO for 24 h, and exposure to 2 Gy irradiation caused an even greater increase. To determine whether the inhibition of cell proliferation and cell cycle disruptions is related to reactive oxygen species (ROS) activity, intracellular ROS levels were measured with a flow cytometric assay. Although the ROS levels of Res­HL60 were higher than those of native cells in the absence of irradiation, they did not change after 0.5 or 2 Gy irradiation. Furthermore, adding ATO to Res­HL60 reduced intracellular ROS levels. These findings provide important information that radioresistant leukemia cells respond differently to the antitumor effect of ATO and the combined effect of IR.


Subject(s)
Arsenic Trioxide , Arsenicals , Cell Proliferation , Leukemia, Promyelocytic, Acute , Oxides , Radiation, Ionizing , Humans , Arsenic Trioxide/pharmacology , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/pathology , Leukemia, Promyelocytic, Acute/radiotherapy , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , HL-60 Cells , Arsenicals/pharmacology , Oxides/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Radiation Tolerance/drug effects , Antineoplastic Agents/pharmacology , Reactive Oxygen Species/metabolism
17.
J Photochem Photobiol B ; 257: 112957, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941921

ABSTRACT

Phototherapy has been extensively used to prevent and treat signs of aging and stimulate wound healing, and phototherapy through light-emitting diodes (LEDs). In contrast to LED, organic LED (OLED) devices are composed of organic semiconductors that possess novel characteristics. We investigated the regenerative potential of OLED for restoring cellular potential from senescence and thus delaying animal aging. Bone marrow-derived stem cells (BMSCs) and adipose-derived stem cells (ADSCs) were isolated from the control and OLED- treated groups to evaluate their proliferation, migration, and differentiation potentials. Cellular senescence was evaluated using a senescence-associated ß-galactosidase (SA-ß-gal) activity assay and gene expression biomarker assessment. OLED treatment significantly increased the cell proliferation, colony formation, and migration abilities of stem cells. SA-ß-gal activity was significantly decreased in both ADSCs and BMSCs in the OLED-treated group. Gene expression biomarkers from treated mice indicated a significant upregulation of IGF-1 (insulin growthfactor-1). The upregulation of the SIRT1 gene inhibited the p16 and p19 genes then to downregulate the p53 expressions for regeneration of stem cells in the OLED-treated group. Our findings indicated that the survival rates of 10-month aging senescence-accelerated mouse prone 8 mice were prolonged and that their gross appearance improved markedly after OLED treatment. Histological analysis of skin and brain tissue also indicated significantly greater collagen fibers density, which prevents ocular abnormalities and ß-amyloid accumulation. Lordokyphosis and bone characteristics were observed to resemble those of younger mice after OLED treatment. In conclusion, OLED therapy reduced the signs of aging and enhanced stem-cell senescence recovery and then could be used for tissue regeneration.


Subject(s)
Cellular Senescence , Sirtuin 1 , Up-Regulation , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Mice , Up-Regulation/radiation effects , Cellular Senescence/radiation effects , Longevity/radiation effects , Cell Proliferation/radiation effects , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Cell Differentiation/radiation effects , Cell Movement/radiation effects , Aging , Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/radiation effects , beta-Galactosidase/metabolism , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology
18.
Front Biosci (Landmark Ed) ; 29(6): 211, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38940041

ABSTRACT

BACKGROUND: Dental pulp stem cells (DPSCs) have self-renewal and multidirectional differentiation potentials. As such, DPSCs have a wide range of clinical applications. Low-level laser therapy (LLLT) has positive photobiostimulatory effects on cell proliferation, angiogenesis, osteogenic differentiation, bone regeneration, and fracture healing. However, there have been few studies on the effect of low-energy lasers on DPSC proliferation. METHODS: DPSCs were obtained from dental pulp tissue. The effects of LLLT on the proliferation of DPSCs and the associated mechanisms were investigated by in vitro culture and laser irradiation. RESULTS: LLLT with energy densities of 3.5 J/cm2 and 14 J/cm2promoted the proliferation of DPSCs. Differential protein expression studies suggested the stimulation of DPSC proliferation by LLLT involved the PI3K-Akt and Rap1 signaling pathways, as well as the apoptosis-related pathway. CONCLUSION: This preliminary study demonstrated that low-energy lasers have a pro-proliferative effect on DPSCs, and identified possible associated mechanisms. Our findings provide a theoretical basis for the clinical application of DPSCs and suggest novel strategies for the treatment of related diseases.


Subject(s)
Cell Proliferation , Dental Pulp , Low-Level Light Therapy , Stem Cells , Dental Pulp/cytology , Dental Pulp/radiation effects , Cell Proliferation/radiation effects , Humans , Stem Cells/radiation effects , Stem Cells/cytology , Stem Cells/metabolism , Low-Level Light Therapy/methods , Cells, Cultured , Signal Transduction/radiation effects , Apoptosis/radiation effects , Cell Differentiation/radiation effects
19.
Skin Res Technol ; 30(6): e13807, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887112

ABSTRACT

BACKGROUND: The objective of this study is to investigate the mechanism by which low-level laser stimulation promotes the proliferation of intraepithelial hair follicle stem cells (HFSCs) in wounds. This research aims to expand the applications of laser treatment, enhance wound repair methods, and establish a theoretical and experimental foundation for achieving accelerated wound healing. METHODS: The experimental approach involved irradiating a cell model with low-level laser to assess the proliferation of HFSCs and examine alterations in the expression of proteins related to the Wnt/ß-catenin signaling pathway. A mouse back wound model was established to investigate the effects of low-level laser irradiation on wound healing rate, wound microenvironment, and the proliferation of HFSCs in relation to the Wnt/ß-catenin signaling pathway. RESULTS: The research findings indicate that low-level laser light effectively activates the Wnt signaling pathway, leading to the increased accumulation of core protein ß-catenin and the upregulation of key downstream gene Lef 1. Consequently, this regulatory mechanism facilitates various downstream biological effects, including the notable promotion of HFSC proliferation and differentiation into skin appendages and epithelial tissues. As a result, the process of wound healing is significantly accelerated. CONCLUSION: Low levels of laser activates the Wnt signalling pathway, promotes the regeneration of hair follicle stem cells and accelerates wound healing.


Subject(s)
Cell Proliferation , Hair Follicle , Low-Level Light Therapy , Lymphoid Enhancer-Binding Factor 1 , Regeneration , Stem Cells , Up-Regulation , Wnt Signaling Pathway , Wound Healing , Hair Follicle/radiation effects , Animals , Wound Healing/radiation effects , Wound Healing/physiology , Wnt Signaling Pathway/physiology , Wnt Signaling Pathway/radiation effects , Mice , Stem Cells/radiation effects , Stem Cells/metabolism , Lymphoid Enhancer-Binding Factor 1/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Cell Proliferation/radiation effects , Low-Level Light Therapy/methods , Regeneration/physiology , Regeneration/radiation effects , beta Catenin/metabolism , Humans
20.
J Photochem Photobiol B ; 257: 112963, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908147

ABSTRACT

The therapeutic potential of blue light photobiomodulation in cancer treatment, particularly in inhibiting cell proliferation and promoting cell death, has attracted significant interest. Oral squamous cell carcinoma (OSCC) is a prevalent form of oral cancer, necessitating innovative treatment approaches to improve patient outcomes. In this study, we investigated the effects of 420 nm blue LED light on OSCC and explored the underlying mechanisms. Our results demonstrated that 420 nm blue light effectively reduced OSCC cell viability and migration, and induced G2/M arrest. Moreover, we observed that 420 nm blue light triggered endoplasmic reticulum (ER) stress and mitochondrial dysfunction in OSCC cells, leading to activation of the CHOP signal pathway and alterations in the levels of Bcl-2 and Bax proteins, ultimately promoting cell apoptosis. Additionally, blue light suppressed mitochondrial gene expression, likely due to its damage to mitochondrial DNA. This study highlights the distinct impact of 420 nm blue light on OSCC cells, providing valuable insights into its potential application as a clinical treatment for oral cancer.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Cell Survival , Endoplasmic Reticulum Stress , Light , Mitochondria , Mouth Neoplasms , Humans , Endoplasmic Reticulum Stress/radiation effects , Mitochondria/radiation effects , Mitochondria/metabolism , Mouth Neoplasms/radiotherapy , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Cell Line, Tumor , Carcinoma, Squamous Cell/radiotherapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Apoptosis/radiation effects , Cell Survival/radiation effects , Cell Proliferation/radiation effects , Cell Movement/radiation effects , Signal Transduction/radiation effects , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Blue Light
SELECTION OF CITATIONS
SEARCH DETAIL